1
|
Lima MA, Vaz ME, Ferreira JE, Lima ACVMDR, Capucci DC, Talamoni SA, Dutra-Rêgo F, Andrade Filho JD. Hidden diversity of Trypanosomatidae (Protozoa: Kinetoplastea) in bats from an urban park in Brazil. PLoS One 2025; 20:e0319781. [PMID: 40096043 PMCID: PMC11913285 DOI: 10.1371/journal.pone.0319781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Trypanosomatids are obligate flagellated parasites, with the genera Leishmania and Trypanosoma acting as etiological agents of significant diseases such as leishmaniasis and Chagas disease. Although ecological studies have increasingly highlighted the role of bats as potential reservoirs of these parasites, the diversity of trypanosomatids in urban bat populations remains poorly understood. This study investigates the occurrence and diversity of Trypanosomatidae in bats from Mangabeiras Municipal Park (MMP), an urban park in Belo Horizonte, Minas Gerais, Brazil, a region of ecological interest due to the prior detection of Leishmania in sand flies. A total of 56 bats representing seven species were captured, and 149 biological samples (blood, tissues, and organs) were analyzed using NNN/LIT culture medium. Contamination was reported in 32.2% of the samples, while 67.8% yielded negative results with no growth of trypanosomatids. Detection of trypanosomatids was achieved using the V7V8 Nested-PCR technique, revealing positive results in nine bats: Artibeus lituratus (Leishmania infantum, Trypanosoma sp. Neobat 3), Anoura caudifer (Trypanosoma sp. Neobat 4), Carollia perspicillata and Glossophaga soricina (Leishmania infantum), Sturnira lilium (Trypanosoma sp. Neobat 3), and Platyrrhinus lineatus (mixed infection with Leishmania infantum and Leishmania braziliensis). The integrity of the extracted DNA was confirmed through the amplification of cytb and gamma-actin genes. By expanding knowledge of trypanosomatid diversity in urban bats, this study highlights the ecological and epidemiological relevance of bats as hosts and underscores the need for targeted surveillance to assess their role in pathogen transmission dynamics.
Collapse
Affiliation(s)
- Mariana Alves Lima
- Leishmaniasis Group, René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Marcela Elisa Vaz
- Leishmaniasis Group, René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Jennifer Emanuelle Ferreira
- Graduate Program in Biodiversity and Environment, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Débora Cristina Capucci
- Leishmaniasis Group, René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Sônia Aparecida Talamoni
- Graduate Program in Biodiversity and Environment, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Dutra-Rêgo
- Leishmaniasis Group, René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Bazzoni E, Cacciotto C, Zobba R, Pittau M, Martella V, Alberti A. Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases. Animals (Basel) 2024; 14:3043. [PMID: 39457973 PMCID: PMC11504201 DOI: 10.3390/ani14203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we tentatively tried to connect the most recent findings on the bat microbiome and to investigate on their microbial communities, that may vary even in conspecific hosts and are influenced by host physiology, feeding behavior and diet, social interactions, but also by habitat diversity and climate change. From a conservation perspective, understanding the potentially negative and indirect effects of habitat destruction on animal microbiota can also play a crucial role in the conservation and management of the host itself. According to the One Health concept, which recognizes an interdependence between humans, animals, and the environment, bat microbiota represents an indicator of host and environmental health, besides allowing for evaluation of the risk of emerging infectious diseases. We noticed that a growing number of studies suggest that animal microbiota may respond in various ways to changes in land use, particularly when such changes lead to altered or deficient food resources. We have highlighted that the current literature is strongly focused on the initial phase of investigating the microbial communities found in Chiroptera from various habitats. However, there are gaps in effectively assessing the impacts of pathogens and microbial communities in general in animal conservation, veterinary, and public health. A deeper understanding of bat microbiomes is paramount to the implementation of correct habitat and host management and to the development of effective surveillance protocols worldwide.
Collapse
Affiliation(s)
- Emanuela Bazzoni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
| | - Carla Cacciotto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Rosanna Zobba
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
| | - Marco Pittau
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Bari, Italy;
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Alberto Alberti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| |
Collapse
|
3
|
Ponce-Revello C, Quiroga N, San Juan E, Correa JP, Botto-Mahan C. Detection of Trypanosoma cruzi DNA in lizards: Using non-lethal sampling techniques in a sylvatic species with zoonotic reservoir potential in Chile. Vet Parasitol Reg Stud Reports 2024; 55:101113. [PMID: 39326965 DOI: 10.1016/j.vprsr.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Several reptile species have been described as hosts of Trypanosoma cruzi, the causative agent of Chagas disease, and therefore, they have become vertebrates of epidemiological interest. In recent decades, there has been a growing interest in animal welfare, especially in populations with small numbers where lethal sampling could have catastrophic consequences, and non-lethal methodologies have been developed for detecting zoonotic parasites. In this study, we compared three non-lethal sampling methodologies for detecting T. cruzi DNA in 21 captured specimens of the native lizard Liolaemus monticola, collected from the semiarid Mediterranean ecosystem of Chile. Specimens were subjected to xenodiagnosis (XD), tail clipping, and living syringe sampling procedures to evaluate whether lizards could serve as sentinel species for T. cruzi in endemic regions. To detect the protozoan, real-time PCR (qPCR) was performed on the DNA extracted from the samples (intestinal contents, tail tissues, and blood from living syringes). Trypanosoma cruzi DNA was detected in 12 of 21 lizards, considering all three methodologies. By XD, 12 specimens showed infection (57.1 %), and both living syringe and tail sampling methodologies detected only one infected lizard (4.8 %). Therefore, T. cruzi can be detected in lizards by qPCR using the three methodologies but XD is by far the most effective non-lethal detection methodology. The use of tail and living syringe methodologies showed a large underestimation; however, they might be options for monitoring the presence of T. cruzi in lizard populations when large sample sizes are available.
Collapse
Affiliation(s)
- Carla Ponce-Revello
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile.
| | - Nicol Quiroga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile
| | - Esteban San Juan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile
| | - Juana P Correa
- Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Mosley IA, Auckland LD, Light JE, Hamer SA. Apparent absence of Trypanosoma cruzi in Mexican free-tailed bats (Tadarida brasiliensis) from Texas, USA. Vet Parasitol Reg Stud Reports 2024; 51:101031. [PMID: 38772647 DOI: 10.1016/j.vprsr.2024.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
The Mexican free-tailed bat (Tadarida brasiliensis) is one of the most abundant mammals in North America. Mexican free-tailed bats have a wide geographic range stretching from northern South America to the western United States. Bats are theorized to be the original hosts for Trypanosoma cruzi -the causative agent of Chagas disease- and can serve as a source of infection to triatomine insect vectors that feed upon them. Chagas disease is a neglected tropical disease across the Americas where triatomines are present, including the southern United States, where Texas reports this highest number of locally-acquired human cases. To learn more about the role of bats in the ecology of Chagas disease in Texas, we surveyed a colony of Mexican free-tailed bats from Brazos County, Texas, for T. cruzi using carcasses salvaged after an extreme weather event. A total of 283 Mexican free-tailed bats collected in February 2021 were dissected and DNA from the hearts and kidneys was used for T. cruzi detection via qPCR. None of the bat hearts or kidneys tested positive for T. cruzi; this sample size affords 95% confidence that the true prevalence of T. cruzi in this population does not exceed 1%. Future sampling of multiple bat species as well as migrant and resident colonies of Mexican free-tailed bats across different times of the year over a broader geographic range would be useful in learning more about the role of bats in the ecology of Chagas disease in Texas.
Collapse
Affiliation(s)
- Ilana A Mosley
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lisa D Auckland
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jessica E Light
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
San Juan E, Araya-Donoso R, Sierra-Rosales C, Correa JP, Quiroga N, Campos-Soto R, Solari A, Llewellyn M, Bacigalupo A, Botto-Mahan C. Humans as blood-feeding sources in sylvatic triatomines of Chile unveiled by next-generation sequencing. Parasit Vectors 2023; 16:225. [PMID: 37415248 DOI: 10.1186/s13071-023-05841-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Triatomines are blood-sucking insects capable of transmitting Trypanosoma cruzi, the parasite that causes Chagas disease in humans. Vectorial transmission entails an infected triatomine feeding on a vertebrate host, release of triatomine infective dejections, and host infection by the entry of parasites through mucous membranes, skin abrasions, or the biting site; therefore, transmission to humans is related to the triatomine-human contact. In this cross-sectional study, we evaluated whether humans were detected in the diet of three sylvatic triatomine species (Mepraia parapatrica, Mepraia spinolai, and Triatoma infestans) present in the semiarid-Mediterranean ecosystem of Chile. METHODS We used triatomines collected from 32 sites across 1100 km, with an overall T. cruzi infection frequency of 47.1% (N = 4287 total specimens) by conventional PCR or qPCR. First, we amplified the vertebrate cytochrome b gene (cytb) from all DNA samples obtained from triatomine intestinal contents. Then, we sequenced cytb-positive PCR products in pools of 10-20 triatomines each, grouped by site. The filtered sequences were grouped into amplicon sequence variants (ASVs) with a minimum abundance of 100 reads. ASVs were identified by selecting the best BLASTn match against the NCBI nucleotide database. RESULTS Overall, 16 mammal (including human), 14 bird, and seven reptile species were identified in the diet of sylvatic triatomines. Humans were part of the diet of all analyzed triatomine species, and it was detected in 19 sites representing 12.19% of the sequences. CONCLUSIONS Sylvatic triatomine species from Chile feed on a variety of vertebrate species; many of them are detected here for the first time in their diet. Our results highlight that the sylvatic triatomine-human contact is noteworthy. Education must be enforced for local inhabitants, workers, and tourists arriving in endemic areas to avoid or minimize the risk of exposure to Chagas disease vectors.
Collapse
Affiliation(s)
- Esteban San Juan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Catalina Sierra-Rosales
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Juana P Correa
- Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción, Chile
| | - Nicol Quiroga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ricardo Campos-Soto
- Escuela de Ciencias Agrícolas y Veterinarias, Universidad Viña del Mar, Viña del Mar, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Martin Llewellyn
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Antonella Bacigalupo
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Brown N, Escobar LE. A review of the diet of the common vampire bat ( Desmodus rotundus) in the context of anthropogenic change. Mamm Biol 2023; 103:1-21. [PMID: 37363038 PMCID: PMC10258787 DOI: 10.1007/s42991-023-00358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/30/2023] [Indexed: 06/28/2023]
Abstract
The common vampire bat (Desmodus rotundus) maintains a diverse, sanguivorous diet, utilizing a broad range of prey taxa. As anthropogenic change alters the distribution of this species, shifts in predator-prey interactions are expected. Understanding prey richness and patterns of prey selection is, thus, increasingly informative from ecological, epidemiological, and economic perspectives. We reviewed D. rotundus diet and assessed the geographical, taxonomical, and behavioral features to find 63 vertebrate species within 21 orders and 45 families constitute prey, including suitable host species in regions of invasion outside D. rotundus' range. Rodentia contained the largest number of species utilized by D. rotundus, though cattle were the most commonly reported prey source, likely linked to the high availability of livestock and visibility of bite wounds compared to wildlife. Additionally, there was tendency to predate upon species with diurnal activity and social behavior, potentially facilitating convenient and nocturnal predation. Our review highlights the dietary heterogeneity of D. rotundus across its distribution. We define D. rotundus as a generalist predator, or parasite, depending on the ecological definition of its symbiont roles in an ecosystem (i.e., lethal vs. non-lethal blood consumption). In view of the eminent role of D. rotundus in rabies virus transmission and its range expansion, an understanding of its ecology would benefit public health, wildlife management, and agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s42991-023-00358-3.
Collapse
Affiliation(s)
- Natalie Brown
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA USA
- Global Change Center, Virginia Tech, Blacksburg, VA USA
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA USA
- Doctorado en Agrociencias, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Carrera 7 No. 179-03, Bogotá, Colombia
| |
Collapse
|
7
|
Botzotz J, Méndez-Valdés G, Ortiz S, López A, Botto-Mahan C, Solari A. Natural Trypanosoma cruzi Infection and Climatic Season Influence the Developmental Capacity in Field-Caught Mepraia spinolai Nymphs. INSECTS 2023; 14:272. [PMID: 36975957 PMCID: PMC10058416 DOI: 10.3390/insects14030272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this study, we evaluated the effect of the climatic season and infection by Trypanosoma cruzi, etiological agent of Chagas disease, on the molting capacity of the triatomine vector Mepraia spinolai endemic to Chile. We used wild-caught first-to-fourth instar nymphs during cooling (fall and winter) and warming (spring) periods. After capturing, nymphs were fed at the laboratory, and maintained under optimal rearing conditions. Feeding was repeated 40 days later. We followed-up the molting events on 709 nymphs, recording one, two or the absence of molts after two feeding opportunities. Within the same climatic period, only infected second- and fourth-instar nymphs from the warming period showed a larger proportion of double molting compared to uninfected nymphs. Regarding the climatic period, infected and uninfected first- and fourth-instar nymphs exhibited a larger proportion of double molting in the warming and cooling periods, respectively. The pattern of non-molting nymph occurrence suggests they probably reach diapause by environmental stochasticity. The effect of the climatic period and T. cruzi infection on the development of M. spinolai is an instar-dependent phenomenon, highlighting the occurrence of finely synchronized processes at different moments of the life cycle of such an hemimetabolous insect as triatomines.
Collapse
Affiliation(s)
- Juan Botzotz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Gabriel Méndez-Valdés
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Sylvia Ortiz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Angélica López
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
8
|
De Bona S, Correa JP, San Juan E, Estay-Olea D, Quiroga N, Bacigalupo A, Araya-Donoso R, Botto-Mahan C. Opportunistic or selective? Stage-dependent feeding behavior in a wild vector of Chagas disease. Int J Parasitol 2023; 53:55-64. [PMID: 36462561 DOI: 10.1016/j.ijpara.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022]
Abstract
The composition and contribution of different host species in the dynamics of vector-borne zoonotic parasites are particularly relevant for public health. Hence, the study of host selection by vectors is fundamental. Developmental stage and infection status are factors that may modulate vector feeding behavior. In the semi-arid Mediterranean ecosystem of South America, the transmission of Trypanosoma cruzi, the protozoan causing Chagas disease, includes the triatomine vector Mepraia spinolai and several vertebrate species. In this field study, we examined whether M. spinolai exhibits an opportunistic feeding behavior dependent upon developmental stage and/or infection status. We found that M. spinolai does not feed according to the relative availability of vertebrate species. In addition, early stage nymphs (first/second instars) fed on twice as many different species as middle (third/fourth instars) and late (fifth instars and adults) M. spinolai, with the former feeding on native rodents and lizards and the latter mostly on rabbits. Infected and uninfected M. spinolai showed similar feeding profiles. Wild triatomine species might be described as stage-dependent selective blood feeders, as a consequence of the temporal and spatial scale at which host-vector interactions occur, highlighting that all developmental stages might be infected and capable of transmitting T. cruzi.
Collapse
Affiliation(s)
- Sophie De Bona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Santiago, Chile
| | - Juana P Correa
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción, Chile
| | - Esteban San Juan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Santiago, Chile
| | - Daniela Estay-Olea
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| | - Nicol Quiroga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Santiago, Chile
| | - Antonella Bacigalupo
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Santiago, Chile.
| |
Collapse
|
9
|
Federici L, Masulli M, De Laurenzi V, Allocati N. An overview of bats microbiota and its implication in transmissible diseases. Front Microbiol 2022; 13:1012189. [PMID: 36338090 PMCID: PMC9631491 DOI: 10.3389/fmicb.2022.1012189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Recent pandemic events have raised the attention of the public on the interactions between human and environment, with particular regard to the more and more feasible transmission to humans of micro-organisms hosted by wild-type species, due to the increasing interspecies contacts originating from human’s activities. Bats, due to their being flying mammals and their increasing promiscuity with humans, have been recognized as hosts frequently capable of transmitting disease-causing microorganisms. Therefore, it is of considerable interest and importance to have a picture as clear as possible of the microorganisms that are hosted by bats. Here we focus on our current knowledge on bats microbiota. We review the most recent literature on this subject, also in view of the bat’s body compartments, their dietary preferences and their habitat. Several pathogenic bacteria, including many carrying multidrug resistance, are indeed common guests of these small mammals, underlining the importance of preserving their habitat, not only to protect them from anthropogenic activities, but also to minimize the spreading of infectious diseases.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- *Correspondence: Nerino Allocati,
| |
Collapse
|
10
|
Blood-Meal Sources and Trypanosoma cruzi Infection in Coastal and Insular Triatomine Bugs from the Atacama Desert of Chile. Microorganisms 2022; 10:microorganisms10040785. [PMID: 35456835 PMCID: PMC9028406 DOI: 10.3390/microorganisms10040785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Mepraia parapatrica is one of the lesser known and less abundant sylvatic triatomine species naturally infected by the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. M. parapatrica lives in sympatry with T. cruzi-infected rodents, but only birds, reptiles, and marine mammals have been reported as blood-meal sources of this vector species by serology. The distribution range of this kissing bug overlaps with fishers’ settlements and tourist areas, and therefore the study of the blood-meal sources of this triatomine species is relevant. Here, we determined the blood-meal sources of M. parapatrica by NGS or standard sequencing from a coastal mainland area and an island in northern Chile, and T. cruzi infection by real-time PCR. The blood-meals of. M parapatrica included 61.3% reptiles, 35.5% mammals (including humans) and 3.2% birds. Feeding on reptiles was more frequent on the mainland, while on the island feeding on mammals was more frequent. The presence of T. cruzi-infected triatomine bugs and humans as part of the diet of M. parapatrica in both areas represents an epidemiological threat and potential risk to the human population visiting or established in these areas. Currently there are no tools to control wild triatomines; these results highlight the potential risk of inhabiting these areas and the necessity of developing information campaigns for the community and surveillance actions.
Collapse
|