1
|
da Silva FS, do Nascimento BLS, Cruz ACR, da Silva SP, Aragão CF, Dias DD, Silva LHDSE, Reis LAM, Reis HCF, Chagas LLD, Rosa Jr. JW, Vieira DBR, Brandão RCF, Medeiros DBDA, Nunes Neto JP. Sequencing and Description of the Mitochondrial Genome of Orthopodomyia fascipes (Diptera: Culicidae). Genes (Basel) 2024; 15:874. [PMID: 39062653 PMCID: PMC11276460 DOI: 10.3390/genes15070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
The genus Orthopodomyia Theobald, 1904 (Diptera: Culicidae) comprises 36 wild mosquito species, with distribution largely restricted to tropical and temperate areas, most of which are not recognized as vectors of epidemiological importance due to the lack of information related to their bionomy and involvement in the cycle transmission of infectious agents. Furthermore, their evolutionary relationships are not completely understood, reflecting the scarcity of genetic information about the genus. Therefore, in this study, we report the first complete description of the mitochondrial genome of a Neotropical species representing the genus, Orthopodomyia fascipes Coquillet, 1906, collected in the Brazilian Amazon region. Using High Throughput Sequencing, we obtained a mitochondrial sequence of 15,598 bp, with an average coverage of 418.5×, comprising 37 functional subunits and a final portion rich in A + T, corresponding to the control region. The phylogenetic analysis, using Maximum Likelihood and Bayesian Inference based on the 13 protein-coding genes, corroborated the monophyly of Culicidae and its two subfamilies, supporting the proximity between the tribes Orthopodomyiini and Mansoniini, partially disagreeing with previous studies based on the use of molecular and morphological markers. The information generated in this study contributes to a better understanding of the taxonomy and evolutionary history of the genus and other groups of Culicidae.
Collapse
Affiliation(s)
- Fábio Silva da Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Bruna Laís Sena do Nascimento
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Ana Cecília Ribeiro Cruz
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Sandro Patroca da Silva
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Carine Fortes Aragão
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Daniel Damous Dias
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Lucas Henrique da Silva e Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Lúcia Aline Moura Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Hanna Carolina Farias Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Liliane Leal das Chagas
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - José Wilson Rosa Jr.
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Durval Bertram Rodrigues Vieira
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Roberto Carlos Feitosa Brandão
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Daniele Barbosa de Almeida Medeiros
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Joaquim Pinto Nunes Neto
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| |
Collapse
|
2
|
Rakotonirina A, Dauga C, Pol M, Hide M, Vuth L, Ballan V, Kilama S, Russet S, Marcombe S, Boyer S, Pocquet N. Speciation patterns of Aedes mosquitoes in the Scutellaris Group: a mitochondrial perspective. Sci Rep 2024; 14:10930. [PMID: 38740928 DOI: 10.1038/s41598-024-61573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
The Scutellaris Group of Aedes comprises 47 mosquito species, including Aedes albopictus. While Ae. albopictus is widely distributed, the other species are mostly found in the Asia-Pacific region. Evolutionary history researches of Aedes species within the Scutellaris Group have mainly focused on Ae. albopictus, a species that raises significant public health concerns, neglecting the other species. In this study, we aimed to assess genetic diversity and estimate speciation times of several species within the Scutellaris Group. Mosquitoes were therefore collected from various Asia-Pacific countries. Their mitochondrial cytochrome c oxidase subunit 1 (cox1) and subunit 3 (cox3) sequences were analyzed alongside those of other Scutellaris Group species available in the GenBank database. To estimate the divergence time, we analyzed 1849 cox1 gene sequences from 21 species, using three species (Aedes aegypti, Aedes notoscriptus and Aedes vigilax) as outgroups. We found that most of the speciation dates occurred during the Paleogene and the Neogene periods. A separation between the Scutellaris Subgroup and the Albopictus Subgroup occurred approximately 64-61 million years ago (MYA). We also identified a split between species found in Asia/Micronesia and those collected in Melanesia/Polynesia approximately 36-35 MYA. Our findings suggest that the speciation of Aedes species within the Scutellaris Group may be driven by diversity in mammalian hosts, climate and environmental changes, and geological dynamics rather than human migration.
Collapse
Affiliation(s)
- Antsa Rakotonirina
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie.
| | - Catherine Dauga
- Arboriruses and Insect Vectors Laboratory, Institut Pasteur Paris, Paris, France
| | - Morgane Pol
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Mallorie Hide
- Maladies Infectieuses et Vecteurs: écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Linavin Vuth
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Valentine Ballan
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Sosiasi Kilama
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Sylvie Russet
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Sébastien Marcombe
- Vector Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
- Vector Control Consulting-South East Asia SOLE CO., LTD., Vientiane, Lao PDR
| | - Sébastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Department of Global Health, Institut Pasteur, CNRS UMR2000, Paris, France
| | - Nicolas Pocquet
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| |
Collapse
|
3
|
de Sousa AA, Cruz ACR, da Silva FS, da Silva SP, Neto JPN, Barros MC, Fraga EDC, Sampaio I. Sequencing and Analysis of the Mitochondrial Genome of Aedes aegypti (Diptera: Culicidae) from the Brazilian Amazon Region. INSECTS 2023; 14:938. [PMID: 38132611 PMCID: PMC10744036 DOI: 10.3390/insects14120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Aedes aegypti is a mosquito native to the African continent, which is now widespread in the tropical and subtropical regions of the world. In many regions, it represents a major challenge to public health, given its role in the cycle of transmission of important arboviruses, such as Dengue, Zika, and Chikungunya. Considering the epidemiological importance of Ae. aegypti, the present study sequenced the partial mitochondrial genome of a sample collected in the municipality of Balsas, in the Brazilian state of Maranhão, followed by High Throughput Sequencing and phylogenetic analyses. The mitochondrial sequence obtained here was 15,863 bp long, and contained 37 functional subunits (thirteen PCGs, twenty-two tRNAs and two rRNAs) in addition to a partial final portion rich in A+T. The data obtained here contribute to the enrichment of our knowledge of the taxonomy and evolutionary biology of this prominent disease vector. These findings represent an important advancement in the understanding of the characteristics of the populations of northeastern Brazil and provide valuable insights into the taxonomy and evolutionary biology of this prominent disease vector.
Collapse
Affiliation(s)
- Andrelina Alves de Sousa
- Post-Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Pará, Brazil;
| | - Ana Cecília Ribeiro Cruz
- Evandro Chagas Institute (IEC/SVS/MS), Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Pará, Brazil; (A.C.R.C.); (F.S.d.S.); (S.P.d.S.); (J.P.N.N.)
- Post-Graduate Program in Parasite Biology in the Amazon, Center of Biological and Health Sciences, Pará State University, Belém 66095-662, Pará, Brazil
| | - Fábio Silva da Silva
- Evandro Chagas Institute (IEC/SVS/MS), Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Pará, Brazil; (A.C.R.C.); (F.S.d.S.); (S.P.d.S.); (J.P.N.N.)
- Post-Graduate Program in Parasite Biology in the Amazon, Center of Biological and Health Sciences, Pará State University, Belém 66095-662, Pará, Brazil
| | - Sandro Patroca da Silva
- Evandro Chagas Institute (IEC/SVS/MS), Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Pará, Brazil; (A.C.R.C.); (F.S.d.S.); (S.P.d.S.); (J.P.N.N.)
| | - Joaquim Pinto Nunes Neto
- Evandro Chagas Institute (IEC/SVS/MS), Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Pará, Brazil; (A.C.R.C.); (F.S.d.S.); (S.P.d.S.); (J.P.N.N.)
- Post-Graduate Program in Parasite Biology in the Amazon, Center of Biological and Health Sciences, Pará State University, Belém 66095-662, Pará, Brazil
| | - Maria Claudene Barros
- Laboratory of Genetics and Molecular Biology (GENBIMOL), Maranhão State University, Caxias 65604-380, Maranhão, Brazil; (M.C.B.); (E.d.C.F.)
| | - Elmary da Costa Fraga
- Laboratory of Genetics and Molecular Biology (GENBIMOL), Maranhão State University, Caxias 65604-380, Maranhão, Brazil; (M.C.B.); (E.d.C.F.)
| | - Iracilda Sampaio
- Laboratory of Evolution, Institute of Coastal Studies, Federal University of Pará, Bragança 68600-000, Pará, Brazil
| |
Collapse
|
4
|
Dong H, Yuan H, Yang X, Shan W, Zhou Q, Tao F, Zhao C, Bai J, Li X, Ma Y, Peng H. Phylogenetic Analysis of Some Species of the Anopheles hyrcanus Group (Diptera: Culicidae) in China Based on Complete Mitochondrial Genomes. Genes (Basel) 2023; 14:1453. [PMID: 37510357 PMCID: PMC10379722 DOI: 10.3390/genes14071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Some species of the Hyrcanus group are vectors of malaria in China. However, the member species are difficult to identify accurately by morphology. The development of sequencing technologies offers the possibility of further studies based on the complete mitochondrial genome. In this study, samples of mosquitoes of the Hyrcanus group were collected in China between 1997 and 2015. The mitochondrial genomes of ten species of the Hyrcanus group were analyzed, including the structure and base composition, codon usage, secondary structure of tRNA, and base difference sites in protein coding regions. Phylogenetic analyses using maximum-likelihood and Bayesian inference were performed based on mitochondrial genes and complete mitochondrial genomes The mitochondrial genome of 10 Hyrcanus group members ranged from 15,403 bp to 15,475 bp, with an average 78.23% (A + T) content, comprising of 13 PCGs (protein coding genes), 22 tRNAs, and 2 rRNAs. Site differences between some closely related species in the PCGs were small. There were only 36 variable sites between Anopheles sinensis and Anopheles belenrae for a variation ratio of 0.32% in all PCGs. The pairwise interspecies distance based on 13 PCGs was low, with an average of 0.04. A phylogenetic tree constructed with the 13 PCGs was consistent with the known evolutionary relationships. Some phylogenetic trees constructed by single coding regions (such as COI or ND4) or combined coding regions (COI + ND2 + ND4 + ND5 or ND2 + ND4) were consistent with the phylogenetic tree constructed using the 13 PCGs. The phylogenetic trees constructed using some coding genes (COII, ND5, tRNAs, 12S rRNA, and 16S rRNA) differed from the phylogenetic tree constructed using PCGs. The difference in mitochondrial genome sequences between An. sinensis and An. belenrae was very small, corresponding to intraspecies difference, suggesting that the species was in the process of differentiation. The combination of all 13 PCG sequences was demonstrated to be optimal for phylogenetic analysis in closely related species.
Collapse
Affiliation(s)
- Haowei Dong
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Hao Yuan
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xusong Yang
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Wenqi Shan
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qiuming Zhou
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Feng Tao
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Chunyan Zhao
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Jie Bai
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Xiangyu Li
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Yajun Ma
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Heng Peng
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| |
Collapse
|