1
|
Kalsi S, Singh J, Saini KV, Sharma NK. Orientation effect and locational variation in elastic-plastic compressive properties of bovine cortical bone. Proc Inst Mech Eng H 2025; 239:72-82. [PMID: 39785362 DOI: 10.1177/09544119241308056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Bone is a highly heterogeneous and anisotropic material with a hierarchical structure. The effect of diaphysis locations and directions of loading on elastic-plastic compressive properties of bovine femoral cortical bone was examined in this study. The impact of location and loading directions on elastic-plastic compressive properties of cortical bone was found to be statistically insignificant in this study. The variances of most of the compressive properties were also observed to be location and directionality independent except for the locational differences in modulus of resilience (distal to central for longitudinal loading) and plastic work (central to distal for transverse loading) as well as differences in variances of the modulus of resilience and elastic modulus values for two directions of loading. The micro-mechanisms of cortical bone failure for longitudinal and transverse directions of loading were considered to be responsible for the difference in variances in the later properties values as well as for the maximum and minimum coefficient of variation (CV) obtained for compressive properties in two directions of loading. The representative cubical volume at the tested hierarchical level contained all unique microstructural features of the plexiform bone and therefore produced the homogeneous and isotropic elastic-plastic compressive properties of cortical bone. It is expected that the outcome of this study may be helpful in the area of bone tissue engineering and finite element simulation of cortical bone.
Collapse
Affiliation(s)
- Sachin Kalsi
- Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India
| | - Jagjit Singh
- Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India
| | - Karan Vir Saini
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nitin Kumar Sharma
- Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Vordos N, Drosos G, Kazanidis I, Ververidis A, Ypsilantis P, Kazakos K, Simopoulos C, Mitropoulos AC, Touloupidis S. Hydroxyapatite Crystal Thickness and Buckling Phenomenon in Bone Nanostructure During Mechanical Tests. Ann Biomed Eng 2018; 46:627-639. [DOI: 10.1007/s10439-018-1983-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/12/2018] [Indexed: 12/22/2022]
|
3
|
REN LI, WANG ZHE, HUANG LINGWEI, YANG PENGFEI, SHANG PENG. TECHNOLOGIES FOR STRAIN ASSESSMENT FROM WHOLE BONE TO MINERALIZED OSTEOID LEVEL: A CRITICAL REVIEW. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone has distinctive structures and mechanical properties at the whole bone, perilacunar and mineralized osteoid levels. A systematic understanding of bone strain magnitudes at different anatomical levels and their internal interactions is the prerequisite to advances in bone mechanobiology. However, due to the intrinsic shortcomings of the strain-measuring technologies, the systematic assessment of bone strain at different anatomical levels under physiological conditions and a deep understanding of their internal interactions are still restricted. To promote technological advances and provide systematic and valuable information for mechanical engineers and bone biomechanical researchers, the most useful methods for measuring bone strain at different anatomical levels are demonstrated in this review, and suggestions for the future development of the technologies and their potential integrated applications are proposed.
Collapse
Affiliation(s)
- LI REN
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - ZHE WANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - LINGWEI HUANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - PENGFEI YANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - PENG SHANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| |
Collapse
|
4
|
Ren L, Yang P, Wang Z, Zhang J, Ding C, Shang P. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J Mech Behav Biomed Mater 2015; 50:104-22. [DOI: 10.1016/j.jmbbm.2015.04.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023]
|
5
|
Abstract
The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone's remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material's performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions.
Collapse
Affiliation(s)
- S R Stock
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL, 60611-3008, USA,
| |
Collapse
|
6
|
Synthesis and photopolymerisation of maleic polyvinyl alcohol based hydrogels for bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0538-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Sui T, Korsunsky AM. Hierarchical Modeling of Elastic Behavior of Human Dental Tissue Based on Synchrotron Diff raction Characterization. Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Sui T, Lunt AJG, Baimpas N, Sandholzer MA, Hu J, Dolbnya IP, Landini G, Korsunsky AM. Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains. Acta Biomater 2014; 10:343-54. [PMID: 24121194 DOI: 10.1016/j.actbio.2013.09.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 11/15/2022]
Abstract
Human enamel is a typical hierarchical mineralized tissue with a two-level composite structure. To date, few studies have focused on how the mechanical behaviour of this tissue is affected by both the rod orientation at the microscale and the preferred orientation of mineral crystallites at the nanoscale. In this study, wide-angle X-ray scattering was used to determine the internal lattice strain response of human enamel samples (with differing rod directions) as a function of in situ uniaxial compressive loading. Quantitative stress distribution evaluation in the birefringent mounting epoxy was performed in parallel using photoelastic techniques. The resulting experimental data was analysed using an advanced multiscale Eshelby inclusion model that takes into account the two-level hierarchical structure of human enamel, and reflects the differing rod directions and orientation distributions of hydroxyapatite crystals. The achieved satisfactory agreement between the model and the experimental data, in terms of the values of multidirectional strain components under the action of differently orientated loads, suggests that the multiscale approach captures reasonably successfully the structure-property relationship between the hierarchical architecture of human enamel and its response to the applied forces. This novel and systematic approach can be used to improve the interpretation of the mechanical properties of enamel, as well as of the textured hierarchical biomaterials in general.
Collapse
Affiliation(s)
- Tan Sui
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sui T, Sandholzer MA, Baimpas N, Dolbnya IP, Landini G, Korsunsky AM. Hierarchical modelling of elastic behaviour of human enamel based on synchrotron diffraction characterisation. J Struct Biol 2013; 184:136-46. [DOI: 10.1016/j.jsb.2013.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 11/25/2022]
|
10
|
Sui T, Sandholzer MA, Baimpas N, Dolbnya IP, Walmsley A, Lumley PJ, Landini G, Korsunsky AM. Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentine. Acta Biomater 2013; 9:7937-47. [PMID: 23602879 DOI: 10.1016/j.actbio.2013.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
Human dentine is a hierarchical mineralized tissue with a two-level composite structure, with tubules being the prominent structural feature at a microlevel, and collagen fibres decorated with hydroxyapatite (HAp) crystallite platelets dominating the nanoscale. Few studies have focused on this two-level structure of human dentine, where the response to mechanical loading is thought to be affected not only by the tubule volume fraction at the microscale, but also by the shape and orientation distribution of mineral crystallites, and their nanoscale spatial arrangement and alignment. In this paper, in situ elastic strain evolution within HAp in dentine subjected to uniaxial compressive loading along both longitudinal and transverse directions was characterized simultaneously by two synchrotron X-ray scattering techniques: small- and wide-angle X-ray scattering (SAXS and WAXS, respectively). WAXS allows the evaluation of the apparent modulus linking the external load to the internal HAp crystallite strain, while the nanoscale HAp distribution and arrangement can be quantified by SAXS. We proposed an improved multiscale Eshelby inclusion model that takes into account the two-level hierarchical structure, and validated it with a multidirectional experimental strain evaluation. The agreement between the simulation and measurement indicates that the multiscale hierarchical model developed here accurately reflects the structural arrangement and mechanical response of human dentine. This study benefits the comprehensive understanding of the mechanical behaviour of hierarchical biomaterials. The knowledge of the mechanical properties related to the hierarchical structure is essential for the understanding and predicting the effects of structural alterations that may occur due to disease or treatment on the performance of dental tissues and their artificial replacements.
Collapse
|
11
|
Deymier-Black AC, Singhal A, Yuan F, Almer JD, Brinson LC, Dunand DC. Effect of high-energy X-ray irradiation on creep mechanisms in bone and dentin. J Mech Behav Biomed Mater 2013; 21:17-31. [DOI: 10.1016/j.jmbbm.2013.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/08/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
|
12
|
Deymier-Black AC, Singhal A, Almer JD, Dunand DC. Effect of X-ray irradiation on the elastic strain evolution in the mineral phase of bovine bone under creep and load-free conditions. Acta Biomater 2013; 9:5305-12. [PMID: 22871638 DOI: 10.1016/j.actbio.2012.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/16/2012] [Accepted: 07/27/2012] [Indexed: 11/16/2022]
Abstract
Both the load partitioning between hydroxyapatite (HAP) and collagen during compressive creep deformation of bone and the HAP residual strain in unloaded bone have been shown in previous synchrotron X-ray diffraction studies to be affected by the X-ray irradiation dose. Here, through detailed analysis of the X-ray diffraction patterns of bovine bone, the effect of X-ray dose on (i) the rate of HAP elastic strain accumulation/shedding under creep conditions and (ii) the HAP lattice spacing and average root mean square (RMS) strain under load-free conditions are examined. These strain measurements exhibit three stages in response to increasing X-ray dose. Up to ∼75 kGy (stage I) no effect of dose is observed, indicating a threshold behavior. Between ∼75 and ∼300 kGy (stage II) in unloaded bone the HAP d-spacing increases and the RMS strain decreases with dose, indicating strain relaxation of HAP. Furthermore, under constant compressive load creep conditions, the rate of compressive elastic strain accumulation in HAP decreases with increasing dose until, at ∼115 kGy, it changes sign, indicating that the HAP phase is shedding load during creep deformation. These stage II behaviors are consistent with HAP-collagen interfacial damage, which allows the HAP elastic strain to relax within both the loaded and unloaded samples. Finally, for doses in excess of ∼300 kGy (stage III, measured up to 7771 kGy) the HAP lattice spacing and RMS strain for load-free samples and the rate of HAP elastic strain shedding for crept samples remain independent of dose, suggesting a saturation of damage and/or stiffening of the collagen matrix due to intermolecular cross-linking.
Collapse
Affiliation(s)
- Alix C Deymier-Black
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|