1
|
Beilharz S, Debnath MK, Vinella D, Shoffstall AJ, Karayilan M. Advances in Injectable Polymeric Biomaterials and Their Contemporary Medical Practices. ACS APPLIED BIO MATERIALS 2024; 7:8076-8101. [PMID: 39471414 DOI: 10.1021/acsabm.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Injectable biomaterials have been engineered to operate within the human body, offering versatile solutions for minimally invasive therapies and meeting several stringent requirements such as biocompatibility, biodegradability, low viscosity for ease of injection, mechanical strength, rapid gelation postinjection, controlled release of therapeutic agents, hydrophobicity/hydrophilicity balance, stability under physiological conditions, and the ability to be sterilized. Their adaptability and performance in diverse clinical settings make them invaluable for modern medical treatments. This article reviews recent advancements in the design, synthesis, and characterization of injectable polymeric biomaterials, providing insights into their emerging applications. We discuss a broad spectrum of these materials, including natural, synthetic, hybrid, and composite types, that are being applied in targeted drug delivery, cell and protein transport, regenerative medicine, tissue adhesives, injectable implants, bioimaging, diagnostics, and 3D bioprinting. Ultimately, the review highlights the critical role of injectable polymeric biomaterials in shaping the future of medical treatments and improving patient outcomes across a wide range of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sophia Beilharz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mithun Kumar Debnath
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Daniele Vinella
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Metin Karayilan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Wang Y, Wang J, Ma M, Gao R, Wu Y, Zhang C, Huang P, Wang W, Feng Z, Gao J. Hyaluronic-Acid-Nanomedicine Hydrogel for Enhanced Treatment of Rheumatoid Arthritis by Mediating Macrophage-Synovial Fibroblast Cross-Talk. Biomater Res 2024; 28:0046. [PMID: 38894889 PMCID: PMC11185174 DOI: 10.34133/bmr.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
The occurrence of rheumatoid arthritis (RA) is highly correlated with progressive and irreversible damage of articular cartilage and continuous inflammatory response. Here, inspired by the unique structure of synovial lipid-hyaluronic acid (HA) complex, we developed supramolecular HA-nanomedicine hydrogels for RA treatment by mediating macrophage-synovial fibroblast cross-talk through locally sustained release of celastrol (CEL). Molecular dynamics simulation confirmed that HA conjugated with hydrophobic segments could interspersed into the CEL-loaded [poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolaone-co-1,4,8-trioxa[4.6]spiro-9-undecanone] (PECT) nanoparticles to form the supramolecular nanomedicine hydrogel HA-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-un-decanone)/PECT@CEL (HP@CEL), enabling fast hydrogel formation after injection and providing a 3-dimensional environment similar with synovial region. More importantly, the controlled release of CEL from HP@CEL inhibited the macrophage polarization toward the proinflammatory M1 phenotype and further suppressed the proliferation of synovial fibroblasts by regulating the Toll-like receptor pathway. In collagen-induced arthritis model in mice, HP@CEL hydrogel treatment substantial attenuated clinical symptoms and bone erosion and improved the extracellular matrix deposition and bone regeneration in ankle joint. Altogether, such a bioinspired injectable polymer-nanomedicine hydrogel represents an effective and promising strategy for suppressing RA progression through augmenting the cross-talk of macrophages and synovial fibroblast for regulation of chronic inflammation.
Collapse
Affiliation(s)
- Yaping Wang
- Medical 3D Printing Center,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jingrong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Mengze Ma
- Medical 3D Printing Center,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Rui Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yan Wu
- Medical 3D Printing Center,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Key Laboratory of Innovative Cardiovascular Devices,
Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jianbo Gao
- Medical 3D Printing Center,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
3
|
Cheng Y, Huangfu Y, Zhao T, Wang L, Yang J, Liu J, Feng Z, Que K. Thermosensitive hydrogel with programmed dual-octenidine release combating biofilm for the treatment of apical periodontitis. Regen Biomater 2024; 11:rbae031. [PMID: 38605850 PMCID: PMC11007118 DOI: 10.1093/rb/rbae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
The utilization of intracanal medicaments is an indispensable procedure in root-canal treatment. However, the conventional intracanal medicaments still need improvement regarding antimicrobial efficacy and ease of clinical operation. To address the above issues, OCT/PECT@OCT + ALK composite hydrogel characterized by programming sequential release of dual antimicrobial agents has been proposed. Thanks to the self-assemble ability of amphiphilic copolymer poly(ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT), dual hydrophilic and hydrophobic antimicrobial agents could be easily encapsulated in the hydrogel system and tailored for sequential drug release for a better antibiofilm effect. The hydrophilic octenidine (Octenidine dihydrochloride, OCT-HCl) is encapsulated in the hydrophilic part of hydrogel for instantaneous elevating the drug concentration through bursting release, and the hydrophobic octenidine (Octenidine, OCT) is further loaded into the PECT nanoparticles to achieve a slower and sustained-release profile. Additionally, calcium hydroxide (Ca(OH)2) was incorporated into the system and evenly dispersed among PECT nanoparticles to create an alkaline (ALK) environment, synergistically enhancing the antibiofilm effect with higher efficiency and prolonged duration. The antibiofilm effect has been demonstrated in root-canal models and apical periodontitis rats, exhibiting superior performance compared to clinically used Ca(OH)2 paste. This study demonstrates that OCT/PECT@OCT + ALK composite thermosensitive hydrogel is a potential intracanal medicament with excellent antibiofilm effect and clinical operability.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yini Huangfu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Tingyuan Zhao
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Linxian Wang
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Jing Yang
- Department of Oral Implantology, Tianjin Stomatological Hospital, Tianjin 300041, China
| | - Jie Liu
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Kehua Que
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
4
|
Hou X, Guan Y, He S, Wu Z, Bai J, Xu J, Wang J, Xu S, Zhu H, Yin Y, Yang X, Shi Y. A novel self-assembled nanoplatform based on retrofitting poloxamer 188 for triple-negative breast cancer targeting treatment. Chem Biol Interact 2023; 384:110710. [PMID: 37716421 DOI: 10.1016/j.cbi.2023.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Poloxamer 188 is a widely used pharmaceutical excipient, which can be found in a variety of drug formulations. In this study, a novel self-assembled nanoplatform was developed for active targeting of folate receptor-overexpressing triple-negative breast cancer. This platform, FPP NPs, was prepared by the retrofitted poloxamer 188 derivatives, resulting in nanoparticles with an appropriate size (< 100 nm), good stability, and satisfactory biocompatibility. Cellular uptake and in vivo distribution studies showed that the FPP NPs had strong tumor cell uptake and active targeting capabilities. Furthermore, docetaxel (DTX) was loaded into FPP NPs in this research. The resulting DTX/FPP NPs exhibited high drug encapsulation efficiency and drug loading capacity, and could rapidly release DTX under slightly acidic conditions, significantly increasing the antitumor activity of the encapsulated drug both in vitro and in vivo. In addition, DTX/FPP NPs could significantly decrease the hepatotoxicity and nephrotoxicity of DTX. Therefore, this drug delivery nanoplatform, based on retrofitted poloxamer 188 with self-assembly properties in aqueous solution and active targeting capabilities to tumors, may provide a promising approach for targeted treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Xueyan Hou
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China.
| | - Yalin Guan
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, PR China
| | - Zeqing Wu
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China
| | - Jintao Bai
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China
| | - Jingjing Xu
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China
| | - Jingwen Wang
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China
| | - Suyue Xu
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China
| | - Huiqing Zhu
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China
| | - Yanyan Yin
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China
| | - Xue Yang
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China.
| | - Yongli Shi
- School of Pharmacy, Xinxiang Medical University, Henan, 453003, PR China.
| |
Collapse
|
5
|
García-García G, Caro C, Fernández-Álvarez F, García-Martín ML, Arias JL. Multi-stimuli-responsive chitosan-functionalized magnetite/poly(ε-caprolactone) nanoparticles as theranostic platforms for combined tumor magnetic resonance imaging and chemotherapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102695. [PMID: 37394106 DOI: 10.1016/j.nano.2023.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Chitosan-functionalized magnetite/poly(ε-caprolactone) nanoparticles were formulated by interfacial polymer disposition plus coacervation, and loaded with gemcitabine. That (core/shell)/shell nanostructure was confirmed by electron microscopy, elemental analysis, electrophoretic, and Fourier transform infrared characterizations. A short-term stability study proved the protection against particle aggregation provided by the chitosan shell. Superparamagnetic properties of the nanoparticles were characterized in vitro, while the definition of the longitudinal and transverse relaxivities was an initial indication of their capacity as T2 contrast agents. Safety of the particles was demonstrated in vitro on HFF-1 human fibroblasts, and ex vivo on SCID mice. The nanoparticles demonstrated in vitro pH- and heat-responsive gemcitabine release capabilities. In vivo magnetic resonance imaging studies and Prussian blue visualization of iron deposits in tissue samples defined the improvement in nanoparticle targeting into the tumor when using a magnetic field. This tri-stimuli (magnetite/poly(ε-caprolactone))/chitosan nanostructure could find theranostic applications (biomedical imaging & chemotherapy) against tumors.
Collapse
Affiliation(s)
- Gracia García-García
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Carlos Caro
- Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Junta de Andalucía-Universidad de Málaga, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - María Luisa García-Martín
- Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Junta de Andalucía-Universidad de Málaga, C/ Severo Ochoa, 35, 29590 Málaga, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
| | - José L Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Av. del Conocimiento, 18016 Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, Av. de Madrid, 15, 18012 Granada, Spain.
| |
Collapse
|
6
|
Jia J, Chen W, Xu L, Wang X, Li M, Wang B, Huang X, Wang T, Chen Y, Li M, Tian D, Zhuang J, Lin X, Li N. Codelivery of dihydroartemisinin and chlorin e6 by copolymer nanoparticles enables boosting photodynamic therapy of breast cancer with low-power irradiation. Regen Biomater 2023; 10:rbad048. [PMID: 37250978 PMCID: PMC10224804 DOI: 10.1093/rb/rbad048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
Given that chemotherapy as a stand-alone therapeutic strategy may not be sufficient to effectively treat cancer, there is increasing interest in combination of chemotherapy and alternative therapies. Photodynamic therapy has the advantages of high selectivity and low side effects, so the combination of photodynamic therapy and chemotherapy has become one of the most appealing strategies for tumor treatment. In this work, we constructed a nano drug codelivery system (PPDC) to realize the combined treatment of chemotherapy and photodynamic therapy through encapsulating chemotherapeutic drug dihydroartemisinin and photosensitizer chlorin e6 in PEG-PCL. The potentials, particle size and morphology of nanoparticles were characterized by dynamic light scattering and transmission electron microscopy. We also investigated the reactive oxygen species (ROS) generation and drug release ability. The antitumor effect in vitro was investigated by methylthiazolyldiphenyl-tetrazolium bromide assays and cell apoptosis experiments, and the potential cell death mechanisms were explored by ROS detection and Western blot analysis. The in vivo antitumor effect of PPDC was evaluated under the guidance of fluorescence imaging. Our work provides a potential antitumor treatment approach and expands the application of dihydroartemisinin for breast cancer therapy.
Collapse
Affiliation(s)
| | | | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xuewen Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Min Li
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Bin Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiangyu Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Tao Wang
- School and Hospital of Stomatology, Fujian Stomatological Hospital, Fujian Medical University, Fuzhou 350002, China
| | - Yang Chen
- Department of Hepatobiliary Surgery, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Mengdie Li
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan Tian
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Junyang Zhuang
- Correspondence address: E-mail: , (N.L.); (X.L.); (J.Z.)
| | - Xinhua Lin
- Correspondence address: E-mail: , (N.L.); (X.L.); (J.Z.)
| | - Ning Li
- Correspondence address: E-mail: , (N.L.); (X.L.); (J.Z.)
| |
Collapse
|
7
|
Meng Y, Zhai H, Zhou Z, Wang X, Han J, Feng W, Huang Y, Wang Y, Bai Y, Zhou J, Quan D. Three dimensional
printable multi‐arms poly(
CL‐
co
‐TOSUO
) for resilient biodegradable elastomer. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Yue Meng
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Hong Zhai
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Ziting Zhou
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Xiaoying Wang
- School of Biomedical Engineering Jinan University Guangzhou China
| | - Jiandong Han
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - WenJuan Feng
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yuxin Huang
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yuan Wang
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Ying Bai
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Jing Zhou
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Daping Quan
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| |
Collapse
|
8
|
Doescher C, Thai A, Cha E, Cheng PV, Agrawal DK, Thankam FG. Intelligent Hydrogels in Myocardial Regeneration and Engineering. Gels 2022; 8:576. [PMID: 36135287 PMCID: PMC9498403 DOI: 10.3390/gels8090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) causes impaired cardiac function due to the loss of cardiomyocytes following an ischemic attack. Intelligent hydrogels offer promising solutions for post-MI cardiac tissue therapy to aid in structural support, contractility, and targeted drug therapy. Hydrogels are porous hydrophilic matrices used for biological scaffolding, and upon the careful alteration of ideal functional groups, the hydrogels respond to the chemistry of the surrounding microenvironment, resulting in intelligent hydrogels. This review delves into the perspectives of various intelligent hydrogels and evidence from successful models of hydrogel-assisted treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
9
|
Li X, Shi Y, Xu S. Local delivery of tumor‐targeting nano‐micelles harboring
GSH
‐responsive drug release to improve antitumor efficiency. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoqiang Li
- Research and Development Department Jinan Guo Ke Medical Technology Development Co., Ltd Jinan Shandong China
| | - Yongli Shi
- College of Pharmacy Xinxiang Medical University Xinxiang China
| | - Shuxin Xu
- Research and Development Department Jinan Guo Ke Medical Technology Development Co., Ltd Jinan Shandong China
| |
Collapse
|
10
|
Basanth A, Mayilswamy N, Kandasubramanian B. Bone regeneration by biodegradable polymers. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Abina Basanth
- Biopolymer Science, Cipet: Ipt, Hil Colony, Kochi, India
| | - Neelaambhigai Mayilswamy
- Department Of Metallurgical And Materials Engineering, Diat(D.U.), Ministry Of Defence, Girinagar, Pune, India
| | | |
Collapse
|
11
|
Rafael D, Melendres MMR, Andrade F, Montero S, Martinez-Trucharte F, Vilar-Hernandez M, Durán-Lara EF, Schwartz S, Abasolo I. Thermo-responsive hydrogels for cancer local therapy: Challenges and state-of-art. Int J Pharm 2021; 606:120954. [PMID: 34332061 DOI: 10.1016/j.ijpharm.2021.120954] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Despite the enormous efforts done by the scientific community in the last decades, advanced cancer is still considered an incurable disease. New formulations are continuously under investigation to improve drugs therapeutic index, i.e., increase chemotherapeutic efficacy and reduce adverse effects. In this context, hydrogels-based systems for drug local sustained/controlled release have been proposed to reduce off-target effects caused by the repeated administration of systemic/oral anticancer drugs and improve their therapeutic effectiveness. Moreover, it increases the patient welfare by reducing the number of administrations needed. Among the several types of existing hydrogels, the thermo-responsive ones, which are able to change their physical state from liquid at 25 °C to a gel at the body temperature, i.e., 37 °C, gained special attention as in situ sustained drug release depot-systems in cancer treatment. To date, several thermo-responsive hydrogels have been used for drugs and/or genetic material delivery, yielding promising results both at preclinical and clinical evaluation stages. This culminates in the market authorization of Jelmyto® for the treatment of urothelial cancer. Here are summarized and discussed the last 10 years advances regarding the application of thermo-responsive hydrogels in local cancer treatment.
Collapse
Affiliation(s)
- Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Mercè Roca Melendres
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernanda Andrade
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Barcelona, Spain.
| | - Sara Montero
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Martinez-Trucharte
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Vilar-Hernandez
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Francisco Durán-Lara
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile.
| | - Simó Schwartz
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ibane Abasolo
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Luo Y, Li J, Hu Y, Gao F, Pak-Heng Leung G, Geng F, Fu C, Zhang J. Injectable thermo-responsive nano-hydrogel loading triptolide for the anti-breast cancer enhancement via localized treatment based on "two strikes" effects. Acta Pharm Sin B 2020; 10:2227-2245. [PMID: 33304788 PMCID: PMC7715064 DOI: 10.1016/j.apsb.2020.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
The clinical application of triptolide (TPL) in tumor therapy has been greatly limited by its toxicity and inefficient delivery. Herein, a localized and sustained-release thermo-sensitive hydrogel was developed for the intra-tumor administration of TPL. Based on the amphiphilic structure of poly (N-isopropylacrylamide-co-acrylic acid)-g-F68 copolymer, it was able to form nano-micelles to efficiently encapsulate TPL, and then turn into a hydrogel at 37 °C. TPL@nano-gel exhibited a sustained drug release profile in vitro and a stronger anticancer effect caused by "two strikes". The "first strike" was its enhanced cytotoxicity compared to free TPL, due to the enhanced pro-apoptosis effect observed in both MDA-MB-231 and MCF-7 cells caused by the regulation of endogenous mitochondrial pathways. Furthermore, TPL@nano-gel exhibited a "second-strike" through its anti-angiogenesis capabilities mediated through VEGFR-2 signaling inhibition. As expected, after intra-tumoral injection at a 0.45 mg/kg TPL-equivalent dose three times over 14 days in 4T1 tumor-bearing mice, TPL@nano-gel led to lower systemic toxicity and higher antitumor efficacy compared to multiple injections of TPL. In this regard, these findings indicate that this injectable thermo-responsive hydrogel carries great potential for TPL as a safe and effective cancer therapy.
Collapse
Affiliation(s)
- Yaoyao Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingjing Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, HongKong 999077, China
| | - Yichen Hu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610100, China
| | - Fei Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, University of Hong Kong, HongKong 999077, China
| | - Funeng Geng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu 615000, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Liu W, Ou-Yang W, Zhang C, Wang Q, Pan X, Huang P, Zhang C, Li Y, Kong D, Wang W. Synthetic Polymeric Antibacterial Hydrogel for Methicillin-Resistant Staphylococcus aureus-Infected Wound Healing: Nanoantimicrobial Self-Assembly, Drug- and Cytokine-Free Strategy. ACS NANO 2020; 14:12905-12917. [PMID: 32946218 DOI: 10.1021/acsnano.0c03855] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibacterial hydrogels are attracting extensive attention in soft tissue repair and regeneration, including bacteria-infected-wound healing. The abuse of antibiotics leads to drug resistance. Recent developments have demonstrated that the delivery of inorganic bactericidal agents in hydrogels can drive the wound healing process; however, this approach is complicated by external light stimuli, cytotoxicity, nondegradability, and sophisticated fabrication. Herein, an inherent antibacterial, bioresorbable hydrogel was developed by the spontaneous self-aggregation of amphiphilic, oxadiazole-group-decorated quaternary ammonium salts (QAS)-conjugated poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC-QAS) micellar nanoantimicrobials for methicillin-resistant Staphylococcus aureus (MRSA)-infected cutaneous wound healing. The PCEC-QAS hydrogel showed a stable gel state within the temperature range of 5-50 °C and antibacterial efficacy against both Gram-negative and -positive bacteria in vitro and in vivo. Additionally, the PCEC-QAS hydrogel facilitated the cell spreading, proliferation, and migration without cytotoxicity. An in vivo degradation and skin defect healing study suggested the PCEC-QAS hydrogel was totally absorbed without local or systemic toxicity and could promote wound repair in the absence of drugs, cytokines, or cells. Significantly, this hydrogel accelerated the regeneration of a MRSA-infected full-thickness impaired skin wound by successfully reconstructing an intact and thick epidermis similar to normal mouse skin. Collectively, a self-assembling PCEC-QAS antibacterial hydrogel is a promising dressing material to promote skin regeneration and prevent bacterial infection without additional drugs, cells, light irradiation, or delivery systems, providing a simple but effective strategy for treating dermal wounds.
Collapse
Affiliation(s)
- Wenshuai Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wenbin Ou-Yang
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chao Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qiangsong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiangbin Pan
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuejie Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
14
|
Kasiński A, Zielińska-Pisklak M, Oledzka E, Sobczak M. Smart Hydrogels - Synthetic Stimuli-Responsive Antitumor Drug Release Systems. Int J Nanomedicine 2020; 15:4541-4572. [PMID: 32617004 PMCID: PMC7326401 DOI: 10.2147/ijn.s248987] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Among modern drug formulations, stimuli-responsive hydrogels also called "smart hydrogels" deserve a special attention. The basic feature of this system is the ability to change their mechanical properties, swelling ability, hydrophilicity, bioactive molecules permeability, etc., influenced by various stimuli, such as temperature, pH, electromagnetic radiation, magnetic field and biological factors. Therefore, stimuli-responsive matrices can be potentially used in tissue engineering, cell cultures and technology of innovative drug delivery systems (DDSs), releasing the active substances under the control of internal or external stimuli. Moreover, smart hydrogels can be used as injectable DDSs, due to gel-sol transition connected with in situ cross-linking process. Innovative smart hydrogel DDSs can be utilized as matrices for targeted therapy, which enhances the effectiveness of tumor chemotherapy and subsequently limits systemic toxicity. External stimulus sensitivity allows remote control over the drug release profile and gel formation. On the other hand, internal factors provide drg accumulation in tumor tissue and reduce the concentration of active drug form in healthy tissue. In this report, we summarise the basic knowledge and chemical strategies for the synthetic smart hydrogel DDSs applied in antitumor therapy.
Collapse
Affiliation(s)
- Adam Kasiński
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| |
Collapse
|
15
|
Guo J, Feng Z, Liu X, Wang C, Huang P, Zhang J, Deng L, Wang W, Dong A. An injectable thermosensitive hydrogel self-supported by nanoparticles of PEGylated amino-modified PCL for enhanced local tumor chemotherapy. SOFT MATTER 2020; 16:5750-5758. [PMID: 32529197 DOI: 10.1039/d0sm00147c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We synthesized amino-modified poly(ε-caprolactone) PCN-b-PEG-b-PCN (PECN) triblock copolymers and studied the contribution of the introduced amino groups to the drug delivery efficiency of PECN nanoparticles (NPs) and their injectable thermosensitive hydrogels. PECN15 with an optimal amino group content was obtained. Firstly, the hydrophobic drug paclitaxel (PTX) was loaded into PECN15 up to 5.91% and formed PTX/PECN NPs 90 nm in size and with a slightly positive charge (7.3 mV). Furthermore, the injectable PTX/PECN NPs aqueous solution (25 wt%) at ambient temperature could undergo fast gelation at 37 °C and sustainedly release PTX/PECN NPs in 10 days. More importantly, compared with our previously reported PECT NPs, the PECN NPs without an increase in toxicity could improve the cell uptake and enhance intracellular drug release by responding to the acidic environment of the endosome. Thus, the PTX/PECN NPs presented a lower IC50 of 3.14 μg mL-1 than that of the PTX/PECT NPs (7.67 μg mL-1) and free PTX (4.65 μg mL-1). Moreover, through peritumoral injection, the PTX/PECNGel showed 94.27% inhibition rate of tumor growth on day 19, higher than PTX/PECTGel (72.28%) and Taxol® (47.03%). Therefore, the PECN NPs hydrogel provided a more effective injectable platform to enhance local cancer chemotherapy, and also provided the possibility of further functionalization by the reactive amino groups.
Collapse
Affiliation(s)
- Jinxuan Guo
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zujian Feng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiang Liu
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Changrong Wang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Jianhua Zhang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
16
|
Li Q, Feng Z, Song H, Zhang J, Dong A, Kong D, Wang W, Huang P. 19F magnetic resonance imaging enabled real-time, non-invasive and precise localization and quantification of the degradation rate of hydrogel scaffolds in vivo. Biomater Sci 2020; 8:3301-3309. [PMID: 32356855 DOI: 10.1039/d0bm00278j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The degradation behavior of hydrogel scaffolds is closely related to the controlled release of bioactive agents and matching with the proliferative demands of newly generated tissues. However, the current methods cannot provide precise localization and track the degradation of individual hydrogel scaffolds in vivo, despite superficial or volumetric information. Here, for the first time, we presented the use of 19F magnetic resonance imaging (19F MRI) to precisely monitor the localization and quantify the degradation rate of implantable or injectable hydrogels in a real-time and noninvasive manner, with no interference of endogenous background signals and limitation of penetration depth. The total voxel and content in the region of interest (ROI) were linearly correlated to the injection amount, providing exact three-dimensional (3D) stereoscopic and two-dimensional (2D) anatomical information in the meantime. Moreover, a computational algorithm was established to present the real-time degradation rate in vivo as a function of time, which was implemented directly from the 19F MRI dataset. In addition, labelling with a zwitterionic 19F contrast agent demonstrated a facile and general applicability for multiple types of materials with no influence on their original gelation properties as well as 19F NMR properties in the hydrogel matrix. Therefore, this 19F MRI method offers a new approach to non-invasively track the degradation rate of hydrogel scaffolds in vivo in a precise localization and accurate quantification way, which will suffice the need for the evaluation of implants at deep depths in large animals or human objects.
Collapse
Affiliation(s)
- Qinghua Li
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu W, Feng Z, Ou-Yang W, Pan X, Wang X, Huang P, Zhang C, Kong D, Wang W. 3D printing of implantable elastic PLCL copolymer scaffolds. SOFT MATTER 2020; 16:2141-2148. [PMID: 32016231 DOI: 10.1039/c9sm02396h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(l-lactic acid) (PLLA) scaffolds have been used in regenerative medicine, however, they commonly suffer from low flexibility, restricting their application in the repair and reconstruction of soft tissues. In this study, poly(l-lactide-co-ε-caprolactone) (PLCL) copolymers were examined to modulate the elasticity of PLLA with the random presence of CL units in PLLA. Thermodynamic analysis revealed that the introduction of PCL could significantly decrease the melting point and glass transition temperature of PLLA, benefiting the extrusion and printing of PLCL. Diverse scaffolds with designed architectures including porous cubes with or without large holes, cambered plates with holes and round tubes could be easily constructed by 3D printing. In the process of elastic deformation, the maximum elastic stress of the copolymer scaffold was obviously increased from 19.6 to 31.5 MPa when the relative content of PCL was increased to 70%, while the elongation at break was evidently increased from 388% to about 1974%. The Young's modulus of PLCL was also significantly decreased (P < 0.05) in comparison with that of PLLA. PLCL scaffolds have good platelet and endotheliocyte adhesion ability and no obvious hemolysis was observed. In vivo subcutaneous implantation of PLCL scaffolds demonstrated superior biocompatibility. Collectively, this work highlights that copolymerization of PCL segments into PLLA is an effective approach to tune the 3D printability and the stiffness and elasticity of PLLA scaffolds. PLCL scaffolds hold great promise for the regeneration of soft tissues including but not limited to cartilage, myocardium, muscle, tendon and nervous tissues.
Collapse
Affiliation(s)
- Wenshuai Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China. and Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenbin Ou-Yang
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Xiangbin Pan
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China. and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
18
|
Recent advances of smart acid‐responsive gold nanoparticles in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1619. [DOI: 10.1002/wnan.1619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
|
19
|
Liu X, Feng Z, Wang C, Su Q, Song H, Zhang C, Huang P, Liang XJ, Dong A, Kong D, Wang W. Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials 2020; 230:119649. [DOI: 10.1016/j.biomaterials.2019.119649] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
|
20
|
Cirillo G, Spizzirri UG, Curcio M, Nicoletta FP, Iemma F. Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics 2019; 11:E486. [PMID: 31546921 PMCID: PMC6781516 DOI: 10.3390/pharmaceutics11090486] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023] Open
Abstract
The interest in injectable hydrogels for cancer treatment has been significantly growing over the last decade, due to the availability of a wide range of starting polymer structures with tailored features and high chemical versatility. Many research groups are working on the development of highly engineered injectable delivery vehicle systems suitable for combined chemo-and radio-therapy, as well as thermal and photo-thermal ablation, with the aim of finding out effective solutions to overcome the current obstacles of conventional therapeutic protocols. Within this work, we have reviewed and discussed the most recent injectable hydrogel systems, focusing on the structure and properties of the starting polymers, which are mainly classified into natural or synthetic sources. Moreover, mapping the research landscape of the fabrication strategies, the main outcome of each system is discussed in light of possible clinical applications.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
21
|
Liu H, Shi X, Wu D, Kahsay Khshen F, Deng L, Dong A, Wang W, Zhang J. Injectable, Biodegradable, Thermosensitive Nanoparticles-Aggregated Hydrogel with Tumor-Specific Targeting, Penetration, and Release for Efficient Postsurgical Prevention of Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19700-19711. [PMID: 31070356 DOI: 10.1021/acsami.9b01987] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High locoregional recurrence of breast cancer after surgery remains a clinically appealing challenge. Local chemotherapy, especially sustainable delivery of chemotherapeutics at tumor sites by implantable hydrogels, has shown great potential to prevent cancer recurrence. However, the applications of conventional hydrogels are often limited by their intrinsic poor drug penetration into solid tumors and nonspecific drug accumulation in adjacent normal tissues. Herein, we developed a novel modular coassembly strategy to prepare a kind of pH-sensitive, tumor-specific targeting, and penetrating peptide (CRGDK)-modified doxorubicin-based prodrug nanoparticles (PDNPs), whose aqueous dispersion can undergo sol-gel transition after in vivo injection by thermo-induced self-aggregation to in situ form biodegradable hydrogel depot (PDNPs-gel), anchoring high amounts of PDNPs at tumor sites. Because of CRGDK-mediated targeting to overexpressed neuropilin-1 receptors on tumor vessels and tumor cells, PDNPs released from PDNPs-gel can effectively penetrate into tumor tissues, specifically enter tumor cells and finally realize intracellular acid-triggered drug release. In an in vivo incomplete resection of breast cancer model, a single peritumoral administration of PDNP-gel can achieve high inhibition efficacy against tumor recurrence. In addition, the administration of PDNP-gel only involves simple redispersion of PDNPs in water without any pretreatment for gelation, providing great convenience for storage, dosage, and prescription in practical use. Collectively, the reported multifunctional nanoparticles self-aggregated hydrogel system possesses great potential for efficient postsurgical prevention of tumor recurrence.
Collapse
Affiliation(s)
| | | | | | | | | | - Anjie Dong
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | | |
Collapse
|
22
|
Peng D, Gao H, Huang P, Shi X, Zhou J, Zhang J, Dong A, Tang H, Wang W, Deng L. Host-guest supramolecular hydrogel based on nanoparticles: co-delivery of DOX and siBcl-2 for synergistic cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:877-893. [DOI: 10.1080/09205063.2019.1612602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dan Peng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huijie Gao
- Tianjin Life Science Research Center and School of basic medical sciences, Tianjin Medical University, Tianjin, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoguang Shi
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and School of basic medical sciences, Tianjin Medical University, Tianjin, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery. J Control Release 2019; 297:60-70. [PMID: 30684513 DOI: 10.1016/j.jconrel.2019.01.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
Abstract
Injectable in situ thermosensitive hydrogels have potential applications in tissue engineering and drug delivery. The hydrogel formulations exist as aqueous solutions at room temperature but rapidly solidify into gels at 37 °C in situ, making them highly suitable for administering drugs in a minimally invasive manner to the target organ(s). The hydrogel formed with nanoparticles assembled with amphiphilic polymer blocks of polyethyleneglycol (PEG) and biodegradable polycaprolactone (PCL) have been tested as platforms for targeted and sustained drug delivery, and have shown encouraging results. In this review, we summarize the influence of the molecular weight, PEG/PCL ratio and functional structure of hydrophobic PCL blocks on the critical gelation temperature, gelling behavior and drug release kinetics of the hydrogels. The current studies on the biomedical applications of thermosensitive PEG/PCL hydrogels have also been discussed.
Collapse
|
24
|
Zhao F, Dong A, Deng L, Guo R, Zhang J. Morphology control and property design of boronate dynamic nanostructures. Polym Chem 2019. [DOI: 10.1039/c9py00217k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The morphogenesis of boronate dynamic nanostructures (BDNs) with different building blocks was systematically investigated to elucidate their design rules.
Collapse
Affiliation(s)
- Fuli Zhao
- Department of Polymer Science and Engineering
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Anjie Dong
- Department of Polymer Science and Engineering
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Liandong Deng
- Department of Polymer Science and Engineering
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Ruiwei Guo
- Department of Polymer Science and Engineering
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Jianhua Zhang
- Department of Polymer Science and Engineering
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| |
Collapse
|
25
|
Raza F, Zhu Y, Chen L, You X, Zhang J, Khan A, Khan MW, Hasnat M, Zafar H, Wu J, Ge L. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci 2019; 7:2023-2036. [DOI: 10.1039/c9bm00139e] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intratumoral delivery of chemotherapeutic agents may permit the localization of drugs in tumors, decrease nonspecific targeting and increase efficacy.
Collapse
|
26
|
Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang XQ. Bioactive hydrogels for bone regeneration. Bioact Mater 2018; 3:401-417. [PMID: 30003179 PMCID: PMC6038268 DOI: 10.1016/j.bioactmat.2018.05.006] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/11/2023] Open
Abstract
Bone self-healing is limited and generally requires external intervention to augment bone repair and regeneration. While traditional methods for repairing bone defects such as autografts, allografts, and xenografts have been widely used, they all have corresponding disadvantages, thus limiting their clinical use. Despite the development of a variety of biomaterials, including metal implants, calcium phosphate cements (CPC), hydroxyapatite, etc., the desired therapeutic effect is not fully achieved. Currently, polymeric scaffolds, particularly hydrogels, are of interest and their unique configurations and tunable physicochemical properties have been extensively studied. This review will focus on the applications of various cutting-edge bioactive hydrogels systems in bone regeneration, as well as their advantages and limitations. We will examine the composition and defects of the bone, discuss the current biomaterials for bone regeneration, and classify recently developed polymeric materials for hydrogel synthesis. We will also elaborate on the properties of desirable hydrogels as well as the fabrication techniques and different delivery strategies. Finally, the existing challenges, considerations, and the future prospective of hydrogels in bone regeneration will be outlined.
Collapse
Affiliation(s)
- Xin Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Mingzhu Gao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Sahla Syed
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jerry Zhuang
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| |
Collapse
|
27
|
Kumar P, Choonara YE, Pillay V. Thermo-intelligent Injectable Implants: Intricate Mechanisms and Therapeutic Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-981-10-6080-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
28
|
Lee HY, Park JH, Ji YB, Kwon DY, Lee BK, Kim JH, Park K, Kim MS. Preparation of pendant group-functionalized amphiphilic diblock copolymers in the presence of a monomer activator and evaluation as temperature-responsive hydrogels. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Larrañeta E, Stewart S, Ervine M, Al-Kasasbeh R, Donnelly RF. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. J Funct Biomater 2018; 9:E13. [PMID: 29364833 PMCID: PMC5872099 DOI: 10.3390/jfb9010013] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
Hydrogels have been shown to be very useful in the field of drug delivery due to their high biocompatibility and ability to sustain delivery. Therefore, the tuning of their properties should be the focus of study to optimise their potential. Hydrogels have been generally limited to the delivery of hydrophilic drugs. However, as many of the new drugs coming to market are hydrophobic in nature, new approaches for integrating hydrophobic drugs into hydrogels should be developed. This article discusses the possible new ways to incorporate hydrophobic drugs within hydrogel structures that have been developed through research. This review describes hydrogel-based systems for hydrophobic compound delivery included in the literature. The section covers all the main types of hydrogels, including physical hydrogels and chemical hydrogels. Additionally, reported applications of these hydrogels are described in the subsequent sections.
Collapse
Affiliation(s)
- Eneko Larrañeta
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Sarah Stewart
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Michael Ervine
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Rehan Al-Kasasbeh
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
30
|
Shen W, Chen X, Luan J, Wang D, Yu L, Ding J. Sustained Codelivery of Cisplatin and Paclitaxel via an Injectable Prodrug Hydrogel for Ovarian Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40031-40046. [PMID: 29131563 DOI: 10.1021/acsami.7b11998] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The sustained release of both the hydrophilic drug and hydrophobic drug from one delivery system remains challenging in pharmaceutics and biomaterials science. The combination of hydrophilic cisplatin and hydrophobic paclitaxel (PTX) exhibits a clinical survival advantage compared with the individual drug therapy against various tumors such as ovarian cancer. In this study, a localized, long-term codelivery system of cisplatin and PTX was developed using an injectable and thermosensitive polymer-platinum(IV) conjugate hydrogel as the carrier. The thermosensitive Bi(mPEG-PLGA)-Pt(IV) (PtGel) conjugate was synthesized via covalently linking two mPEG-PLGA copolymers onto a Pt(IV) prodrug, and its concentrated aqueous solution exhibited a reversible sol-gel transition upon heating. Meanwhile, the core-corona micelles formed by the amphiphilic conjugates in water could serve as a reservoir for the solubilization of PTX, and thus an injectable binary drug-loaded hydrogel formulation was obtained. We also found that the introduction of PTX into the conjugate hydrogel decreased its sol-gel transition temperature and improved its gel strength. In vitro release experiments showed that both of the loaded drugs were released in a sustained manner for as long as 2.5 months, which was the longest combination delivery of these two drugs ever reported. In vitro cellular assays revealed that the dual-drug system exhibited a synergistic anticancer effect against ovarian cancer cells. Finally, using the SKOV-3 ovarian cancer xenograft mouse model, we demonstrated that a single injection of the PTX-loaded conjugate hydrogel system resulted in enhanced anticancer efficacy and significantly reduced the side effects, when compared with the multiple injections of the free drug combination.
Collapse
Affiliation(s)
- Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Danni Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| |
Collapse
|
31
|
Liang J, Dong X, Wei C, Ma G, Liu T, Kong D, Lv F. A visible and controllable porphyrin-poly(ethylene glycol)/α-cyclodextrin hydrogel nanocomposites system for photo response. Carbohydr Polym 2017; 175:440-449. [PMID: 28917887 DOI: 10.1016/j.carbpol.2017.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 02/08/2023]
|
32
|
Yu M, Dong A, Chen C, Xu S, Cao Y, Liu S, Zhang Q, Qi R. Thermosensitive Hydrogel Containing Doxycycline Exerts Inhibitory Effects on Abdominal Aortic Aneurysm Induced By Pancreatic Elastase in Mice. Adv Healthc Mater 2017; 6. [PMID: 28885781 DOI: 10.1002/adhm.201700671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Indexed: 01/27/2023]
Abstract
Doxycycline (DOX) is reported to exert therapeutic effects against abdominal aortic aneurysm (AAA), a severe degenerative disease. In this study, a DOX hydrogel formulation of DOX/PECTgel is studied, and its phase transition behavior and in vitro release profiles are explored. In addition, the anti-AAA effects and bioavailability of DOX/PECTgel are evaluated in an elastase induced AAA mouse model. The results show that the phase transition temperature of 30% poly(e-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) solution is above 34 °C. In vitro release profiles of DOX/PECTgel indicate a fast release of DOX at the first two days, followed by a slow and sustained release for 14 d. In vivo single-dose single subcutaneous injection of DOX/PECTgel containing 8.4 or 4.2 mg mL-1 DOX presents comparatively preventive effects on AAA, compared to intraperitoneal injections of DOX alone at a dose of 15 mg kg-1 for seven injections, while DOX bioavailability of the DOX/PECTgel treated groups is 1.39 times or 1.19 times of the DOX alone treated group, respectively.
Collapse
Affiliation(s)
- Maomao Yu
- Peking University Institute of Cardiovascular Sciences; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; Peking University Health Science Center; 38 Xueyuan Road Beijing 100191 China
| | - Anjie Dong
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Cong Chen
- Peking University Institute of Cardiovascular Sciences; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; Peking University Health Science Center; 38 Xueyuan Road Beijing 100191 China
| | - Shuxin Xu
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Yini Cao
- Peking University Institute of Cardiovascular Sciences; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; Peking University Health Science Center; 38 Xueyuan Road Beijing 100191 China
| | - Shu Liu
- Peking University Institute of Cardiovascular Sciences; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; Peking University Health Science Center; 38 Xueyuan Road Beijing 100191 China
- Shihezi University College of Pharmacy/Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education; Xinjiang 832003 China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; School of Pharmaceutical Sciences; Peking University; 38 Xueyuan Road Beijing 100191 China
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; Peking University Health Science Center; 38 Xueyuan Road Beijing 100191 China
| |
Collapse
|
33
|
Wang P, Zhuo X, Chu W, Tang X. Exenatide-loaded microsphere/thermosensitive hydrogel long-acting delivery system with high drug bioactivity. Int J Pharm 2017; 528:62-75. [PMID: 28579543 DOI: 10.1016/j.ijpharm.2017.05.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022]
|
34
|
Huang P, Song H, Zhang Y, Liu J, Cheng Z, Liang XJ, Wang W, Kong D, Liu J. FRET-enabled monitoring of the thermosensitive nanoscale assembly of polymeric micelles into macroscale hydrogel and sequential cognate micelles release. Biomaterials 2017; 145:81-91. [PMID: 28858720 DOI: 10.1016/j.biomaterials.2017.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 01/02/2023]
Abstract
Thermosensitive "micellar hydrogel" is prepared based on poly(ε-caprolactone-co- 1,4,8-trioxa[4.6]spiro-9-undecanone)-b-poly(ethylene glycol)- b-poly(ε-caprolactone- co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) triblock copolymer. Fluorescence resonance energy transfer (FRET) is adopted to explore its assembly (formation) and disassembly (degradation) mechanism within the range of 10 nm. Results prove that the thermosensitive non-covalent aggregation of micelles facilitates the hydrogel formation and the sustained shedding of cognate micelles induces the hydrogel degradation, during which polymers are steadily incorporated in micelles without any micelle disassembly or reassembly. It is confirmed that using multiple-tags based imaging technology, such as FRET imaging, the fate of macro biodegradable materials in vitro and in vivo can be followed at a precise nano even molecular level. Such an unique hydrogel composed of nothing more than PECT micelles can act as not only an injectable nanomedicine reservoir by subcutaneous or peri-tissue administration, but also an advanced "combo" macroscale platform for co-delivery of multi-modal therapeutic agents. Our findings also indicate that biological stimuli (e.g., temperature, enzymes)-induced non-covalent micelle self-assembly may provide us an effective strategy to prepare a macroscale device from nanoscale subunits.
Collapse
Affiliation(s)
- Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5484, USA
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
35
|
Zhang E, Li J, Zhou Y, Che P, Ren B, Qin Z, Ma L, Cui J, Sun H, Yao F. Biodegradable and injectable thermoreversible xyloglucan based hydrogel for prevention of postoperative adhesion. Acta Biomater 2017; 55:420-433. [PMID: 28391053 DOI: 10.1016/j.actbio.2017.04.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 11/19/2022]
Abstract
Peritoneal adhesion is very common after abdominal and pelvic surgery, which leads to a variety of severe complications. Although numerous pharmacological treatments and barrier-based devices have been investigated to minimize or prevent postoperative adhesion, the clinical efficacy is not very encouraging. In this work, a biodegradable and thermoreversible galactose modified xyloglucan (mXG) hydrogel was developed and the efficacy of mXG hydrogel in preventing postoperative peritoneal adhesion was investigated. The 4% (w/v) mXG solution was a free flowing sol at low temperature, but could rapidly convert into a physical hydrogel at body temperature without any extra additives or chemical reactions. In vitro cell tests showed that mXG hydrogel was non-toxic and could effectively resist the adhesion of fibroblasts. Moreover, in vitro and in vivo degradation experiments exhibited that mXG hydrogel was degradable and biocompatible. Finally, the rat model of sidewall defect-cecum abrasion was employed to evaluate the anti-adhesion efficacy of the mXG hydrogel. The results demonstrated that mXG hydrogel could effectively prevent postoperative peritoneal adhesion without side effects. The combination of suitable gel temperature, appropriate biodegradation period, and excellent postoperative anti-adhesion efficacy make mXG hydrogel a promising candidate for the prevention of postsurgical peritoneal adhesion. STATEMENT OF SIGNIFICANCE Despite numerous drugs or barrier-based devices have been developed to prevent postoperative adhesion, few solutions have proven to be uniformly effective in subsequent clinical trials. In the present study, we developed a biodegradable and thermoreversible galactose modified xyloglucan (mXG) hydrogel by green enzymatic reaction without using any organic reagents. The developed physical mXG hydrogel not only showed excellent injectability, appropriate gelation time and temperature, but also exhibited excellent biocompatibility and biodegradability both in vitro and in vivo. In addition, mXG hydrogel was easy to handle and could effectively prevent postoperative adhesion without side effects in a rat model of sidewall defect-bowel abrasion. Our study provide a safe and effective postoperative anti-adhesion material which may have potential applications in clinical practice.
Collapse
Affiliation(s)
- Ershuai Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yuhang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Pengcheng Che
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Bohua Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhihui Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Litao Ma
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Jing Cui
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
36
|
González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E232. [PMID: 28772591 PMCID: PMC5503311 DOI: 10.3390/ma10030232] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 12/02/2022]
Abstract
This review describes, in an organized manner, the recent developments in the elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as an interesting challenge, in particular for tissue engineering applications. In this context, a large number of studies has been carried out in the design of hydrogels that serve as support for antimicrobial agents (nanoparticles, antibiotics, etc.). Another interesting approach is to use polymers with inherent antimicrobial activity provided by functional groups contained in their structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides (AMPs) or natural polymers, such as chitosan. A summary of the different alternatives employed for this purpose is described in this review, considering their advantages and disadvantages. Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react to external stimuli are equally depicted in this review.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Departamento de Química, Matemáticas y del Medio Ambiente, Facultad de Ciencias Naturales, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago 7820436, Chile.
| | - Juan Rodriguez-Hernandez
- Departamento de Química y Propiedades de Polímeros, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
37
|
In vivo Pharmacological Evaluations of Pilocarpine-Loaded Antioxidant-Functionalized Biodegradable Thermogels in Glaucomatous Rabbits. Sci Rep 2017; 7:42344. [PMID: 28186167 PMCID: PMC5301226 DOI: 10.1038/srep42344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
To alleviate oxidative stress-induced ocular hypertension, grafting of antioxidant molecules to drug carriers enables a dual-function mechanism to effectively treat glaucomatous intraocular pressure (IOP) dysregulation. Providing potential application for intracameral administration of antiglaucoma medications, this study, for the first time, aims to examine in vivo pharmacological efficacy of pilocarpine-loaded antioxidant-functionalized biodegradable thermogels in glaucomatous rabbits. A series of gallic acid (GA)-grafted gelatin-g-poly(N-isopropylacrylamide) (GN) polymers were synthesized via redox reactions at 20-50 °C. Our results showed that raising redox radical initiation reaction temperature maximizes GA grafting level, antioxidant activity, and water content at 40 °C. Meanwhile, increase in overall hydrophilicity of GNGA carriers leads to fast polymer degradation and early pilocarpine depletion in vivo, which is disadvantageous to offer necessary pharmacological performance at prolonged time. By contrast, sustained therapeutic drug concentrations in aqueous humor can be achieved for long-term (i.e., 28 days) protection against corneal aberration and retinal injury after pilocarpine delivery using dual-function optimized carriers synthesized at 30 °C. The GA-functionalized injectable hydrogels are also found to contribute significantly to enhancement of retinal antioxidant defense system and preservation of histological structure and electrophysiological function, thereby supporting the benefits of drug-containing antioxidant biodegradable thermogels to prevent glaucoma development.
Collapse
|
38
|
Wu J, Zhang K, Yu X, Ding J, Cui L, Yin J. Hydration of hydrogels regulates vascularization in vivo. Biomater Sci 2017; 5:2251-2267. [DOI: 10.1039/c7bm00268h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The key barrier to the clinical application of tissue engineering scaffolds is the limitation of rapid and sufficient vascularization.
Collapse
Affiliation(s)
- Jie Wu
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
- Key Laboratory of Polymer Ecomaterials
| | - Kunxi Zhang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Xi Yu
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Lei Cui
- Department of Plastic Surgery
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai 200092
- People's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| |
Collapse
|
39
|
Guan Z, Yang L, Wang W, Zhang J, Liu J, Ren C, Wang S, Gao Y, Huang P. Thermosensitive micellar hydrogel for enhanced anticancer therapy through redox modulation mediated combinational effects. RSC Adv 2017. [DOI: 10.1039/c7ra06357a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Illustration of the design and action pathway of the PECT/DOX micelle and PECT/ZnPP micelle in situ formed thermosensitive micellar hydrogel.
Collapse
Affiliation(s)
- Zhiyu Guan
- Department of Thoracic Surgery
- The Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Jun Zhang
- Department of Thoracic Surgery
- The Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Shuo Wang
- Department of Thoracic Surgery
- The Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Yang Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Tianjin 300192
- P. R. China
| |
Collapse
|
40
|
Lin Z, Xu S, Gao W, Hu H, Chen M, Wang Y, He B, Dai W, Zhang H, Wang X, Dong A, Yin Y, Zhang Q. A comparative investigation between paclitaxel nanoparticle- and nanocrystal-loaded thermosensitive PECT hydrogels for peri-tumoural administration. NANOSCALE 2016; 8:18782-18791. [PMID: 27801924 DOI: 10.1039/c6nr05498f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For in situ thermosensitive hydrogels, it is a big challenge to achieve high drug loading, long-term local retention, and effective drug release simultaneously. To address these issues, we combined the strategy of drug nanocrystals (NCs) and thermosensitive hydrogels with higher gel strength. In particular, we developed paclitaxel NC-based hydrogels using PECT, a thermosensitive polymer synthesized by us (PTX-NC-PECT), and a nanoparticle-based system was used as the control (PTX-NP-PECT). First, high levels of PTX could be loaded in both PECT hydrogels. Moreover, in vivo near infrared fluorescence (NIRF) imaging showed that both hydrogel systems were able to maintain the payloads of 1,1-dioctadecyltetramethyl indotricarbocyanine iodide (DiR) at a peri-tumoural site for at least 21 days, much longer than that achieved with the control hydrogel of Pluronic® F127. Furthermore, we observed that PTX-NCs released free PTX more effectively and homogeneously than PTX-NPs in vitro. It was further verified in vivo that the release of DiR from DiR-NC-PECT was more complete than that from DiR-NP-PECT. Finally, PTX-NC-PECT gel demonstrated the strongest anti-tumour efficacy on MCF-7 breast cancer. In conclusion, PTX-NC-PECT hydrogel might be a high-performance thermosensitive hydrogel for local cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China. and Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Shuxin Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wei Gao
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Hongxiang Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Anjie Dong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
41
|
Huang P, Song H, Zhang Y, Liu J, Zhang J, Wang W, Liu J, Li C, Kong D. Bridging the Gap between Macroscale Drug Delivery Systems and Nanomedicines: A Nanoparticle-Assembled Thermosensitive Hydrogel for Peritumoral Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29323-29333. [PMID: 27731617 DOI: 10.1021/acsami.6b10416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The objective of this study was to investigate the spatiotemporal delivery of nanomedicines by an injectable, thermosensitive, and nanoparticle-self-aggregated hydrogel for peritumoral chemotherapy. Doxorubicin (Dox) was taken as the model medicine, which was encapsulated into poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) nanoparticles (PECT/Dox NPs). Macroscale hydrogel was formed by thermosensitive self-aggregation of PECT/Dox NPs in aqueous solution. Drug release from the hydrogel formulation was dominated by sustained shedding of PECT/Dox NPs and the following drug diffusion from these NPs. The hydrogel retention and release pattern of NPs in vivo was further confirmed by fluorescence resonance energy transfer (FRET) imaging. A single treatment with the hydrogel formulation possessed similar cytotoxicity against HepG2 cells compared to triple administrations of free Dox or PECT/Dox NPs in vitro due to enhanced uptake of PECT/Dox NPs and sustained intracellular drug release. Importantly, single peritumoral injection of drug-encapsulated hydrogel in vivo showed advantages over multiple intravenous administrations of PECT/Dox NPs and free Dox, including preferential and prolonged local drug accumulation and retention in tumors, resulting in superior cancer chemotherapy efficiency. Collectively, such a unique thermosensitive and nanoparticle-shedding hydrogel could effectively combine the advantages of nanomedicines and macroscale drug delivery systems, demonstrating great potential in the local nanodrugs' delivery. It will open a new promising path for cancer chemotherapy with enhanced treatment efficacy and minimized side effects.
Collapse
Affiliation(s)
- Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| |
Collapse
|
42
|
Gu D, O'Connor AJ, G H Qiao G, Ladewig K. Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opin Drug Deliv 2016; 14:879-895. [PMID: 27705026 DOI: 10.1080/17425247.2017.1245290] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Smart hydrogel systems present opportunities to not only provide hydrophobic molecule encapsulation capability but to also respond to specific delivery routes. Areas covered: An overview of the design principles, preparation methods and applications of hydrogel systems for delivery of hydrophobic drugs is given. It begins with a summary of the advantages of hydrogels as delivery vehicles over other approaches, particularly macromolecular nanocarriers, before proceeding to address the design and preparation strategies and chemistry involved, with a particular focus on the introduction of hydrophobic domains into (naturally) hydrophilic hydrogels. Finally, the applications in different delivery routes are discussed. Expert opinion: Modifications to conventional hydrogels can endow them with the capability to carry hydrophobic drugs but other functions as well, such as the improved mechanical stability, which is important for long-term in vivo residence and/or self-healing properties useful for injectable delivery pathways. These modifications harness hydrophobic-hydrophobic forces, physical interactions and inclusion complexes. The lack of in-depth understanding of these interactions, currently limits more delicate and application-oriented designs. Increased efforts are needed in (i) understanding the interplay of gel formation and simultaneous drug loading; (ii) improving hydrogel systems with respect to their biosafety; and (iii) control over release mechanism and profile.
Collapse
Affiliation(s)
- Dunyin Gu
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Andrea J O'Connor
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Greg G H Qiao
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Katharina Ladewig
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| |
Collapse
|
43
|
Feng Z, Zhao J, Li Y, Xu S, Zhou J, Zhang J, Deng L, Dong A. Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG. Biomater Sci 2016; 4:1493-1502. [PMID: 27546028 DOI: 10.1039/c6bm00408c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Thermo-sensitive injectable hydrogels based on poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) block copolymers have attracted considerable attention for sustained drug release and tissue engineering applications. Previously, we have reported a thermo-sensitive hydrogel of P(CL-co-TOSUO)-PEG-P(CL-co-TOSUO) (PECT) triblock copolymers modified by hydrophilic cyclic ether pendant groups 1,4,8-trioxa-[4.6]spiro-9-undecanone (TOSUO). Unfortunately, the low gel modulus of PECT (only 50-70 Pa) may limit its applications. Herein, another kind of thermogelling triblock copolymer of a pendant cyclic ether-modified caprolactonic poloxamer analog, PEG-P(CL-co-TOSUO)-PEG (PECTE), was successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. PECTE powder could directly disperse in water to form a stable nanoparticle (NP) aqueous dispersion and underwent sol-gel-sol transition behavior at a higher concentration with the temperature increasing from ambient or lower temperatures. Significantly, the microstructure parameters (e.g., different chemical compositions of the hydrophobic block and topology) played a critical role in the phase transition behavior. Furthermore, comparison studies on PECTE and PEG-PCL-PEG (PECE) showed that the introduction of pendant cyclic ether groups into PCL blocks could avoid unexpected ahead-of-time gelling of the PECE aqueous solution. In addition, the rheological analysis of PECTE and PECT indicated that the storage modulus of the PECTE hydrogel could be 100 times greater than that of the PECT hydrogel under the same mole ratios of TOSUO/CL and lower molecular weight. Consequently, PECTE thermal hydrogel systems are believed to be promising as in situ gel-forming biomaterials for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Zujian Feng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Xu S, Fan H, Yin L, Zhang J, Dong A, Deng L, Tang H. Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcinomatosis. Eur J Pharm Biopharm 2016; 104:251-9. [PMID: 27185379 DOI: 10.1016/j.ejpb.2016.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Abstract
Intraperitoneal (IP) chemotherapy is a preferable treatment option for peritoneal carcinomatosis of malignancies by delivering chemotherapeutic drugs into the abdominal cavity. A persistent major challenge in IP chemotherapy is the need to provide effective drug concentration in the peritoneal cavity for an extended period of time. In the present work, the thermosensitive hydrogel system (PTX/PECT(gel)) assembled by PTX (paclitaxel)-loaded amphiphilic copolymer (PECT, poly (ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly (ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)) nanoparticles was developed for sustained IP chemotherapy of peritoneal carcinomatosis model. Cytotoxicity assay indicated that PECT hydrogel was biocompatible with very low cytotoxicity and PTX/PECT(gel) had enhanced cytotoxicity than free PTX. In vivo toxicity study demonstrated the biocompatibility and biosafety of PECT hydrogel as an IP chemotherapy carrier. The fluorescence imaging method was employed to monitor the intraperitoneal degradation of PECT hydrogel by labeling PECT with rhodamine B. PECT hydrogel with the dose of 200μL showed about 8days' retention time and most of the injected hydrogel was located in the intestine. The anti-tumor efficacy study was carried out in mice bearing CT26 intraperitoneal ascites fluid as colorectal peritoneal carcinomatosis model. The result showed that intraperitoneal administration of PTX/PECT(gel) could effectively suppress growth and metastasis of CT26 peritoneal carcinomatosis in vivo, compared with Taxol® group. The pharmacokinetic studies demonstrated that PTX/PECT(gel) could improve the bioavailability of PTX by being formulated in PECT hydrogel. Overall, sustained drug concentration at peritoneal levels in combination with drug in the form of nanoparticle contributes to the enhanced anti-tumor efficacy. Thus, our results suggested that PTX/PECT(gel) may have great potential applications in IP chemotherapy.
Collapse
Affiliation(s)
- Shuxin Xu
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Hongxia Fan
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li Yin
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China.
| | - Hua Tang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
45
|
Xu S, Yin L, Xiang Y, Deng H, Deng L, Fan H, Tang H, Zhang J, Dong A. Supramolecular Hydrogel from Nanoparticles and Cyclodextrins for Local and Sustained Nanoparticle Delivery. Macromol Biosci 2016; 16:1188-99. [DOI: 10.1002/mabi.201600076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/25/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Shuxin Xu
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Li Yin
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Yuzhang Xiang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Hongzhang Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Hongxia Fan
- Tianjin Life Science Research Center and School of basic medical sciences; Tianjin Medical University; Tianjin 300072 China
| | - Hua Tang
- Tianjin Life Science Research Center and School of basic medical sciences; Tianjin Medical University; Tianjin 300072 China
| | - Jianhua Zhang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
46
|
Dong X, Wei C, Liu T, Lv F, Qian Z. Real-Time Fluorescence Tracking of Protoporphyrin Incorporated Thermosensitive Hydrogel and Its Drug Release in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5104-13. [PMID: 26848506 DOI: 10.1021/acsami.5b11493] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Chang Wei
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy/Collaborative Innovation
Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
47
|
Zhang Y, Yang C, Wang W, Liu J, Liu Q, Huang F, Chu L, Gao H, Li C, Kong D, Liu Q, Liu J. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep 2016; 6:21225. [PMID: 26876480 PMCID: PMC4753416 DOI: 10.1038/srep21225] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
Ample attention has focused on cancer drug delivery via prodrug nanoparticles due to their high drug loading property and comparatively lower side effects. In this study, we designed a PEG-DOX-Cur prodrug nanoparticle for simultaneous delivery of doxorubicin (DOX) and curcumin (Cur) as a combination therapy to treat cancer. DOX was conjugated to PEG by Schiff's base reaction. The obtained prodrug conjugate could self-assemble in water at pH 7.4 into nanoparticles (PEG-DOX NPs) and encapsulate Cur into the core through hydrophobic interaction (PEG-DOX-Cur NPs). When the PEG-DOX-Cur NPs are internalized by tumor cells, the Schiff's base linker between PEG and DOX would break in the acidic environment that is often observed in tumors, causing disassembling of the PEG-DOX-Cur NPs and releasing both DOX and Cur into the nuclei and cytoplasma of the tumor cells, respectively. Compared with free DOX, free Cur, free DOX-Cur combination, or PEG-DOX NPs, PEG-DOX-Cur NPs exhibited higher anti-tumor activity in vitro. In addition, the PEG-DOX-Cur NPs also showed prolonged blood circulation time, elevated local drug accumulation and increased tumor penetration. Enhanced anti-tumor activity was also observed from the PEG-DOX-Cur-treated animals, demonstrating better tumor inhibitory property of the NPs. Thus, the PEG-DOX-Cur prodrug nanoparticle system provides a simple yet efficient approach of drug delivery for chemotherapy.
Collapse
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Honglin Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, P. R. China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| |
Collapse
|
48
|
Liu W, Zhang W, Yu X, Zhang G, Su Z. Synthesis and biomedical applications of fluorescent nanogels. Polym Chem 2016. [DOI: 10.1039/c6py01021k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent nanogel is an innovative biomedical material with hydroscopicity, degradability, and responsiveness.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Wensi Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xiaoqing Yu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Guanghua Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|
49
|
Huang P, Zhang Y, Wang W, Zhou J, Sun Y, Liu J, Kong D, Liu J, Dong A. Co-delivery of doxorubicin and 131I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy. J Control Release 2015; 220:456-464. [DOI: 10.1016/j.jconrel.2015.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/13/2015] [Accepted: 11/07/2015] [Indexed: 01/27/2023]
|
50
|
Zhang L, Shen W, Luan J, Yang D, Wei G, Yu L, Lu W, Ding J. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater 2015; 23:271-281. [PMID: 26004219 DOI: 10.1016/j.actbio.2015.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/26/2015] [Accepted: 05/09/2015] [Indexed: 12/13/2022]
Abstract
Delivery of therapeutic agents to posterior segment of the eyes is challenging due to the anatomy and physiology of ocular barriers and thus long-acting implantable formulations are much desired. In this study, a thermogelling system composed of two poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymers was developed as an injectable matrix for intravitreal drug delivery. The thermogel was prepared by mixing a sol and a precipitate of PLGA-PEG-PLGA triblock copolymers with different block ratios, among which a hydrophobic glucocorticoid, dexamethasone (DEX), was incorporated. The DEX-loaded thermogel was a low-viscous liquid at low temperature and formed a non-flowing gel at body temperature. The in vitro release rate of DEX from the thermogel could be conveniently modulated by varying the mixing ratio of the two copolymers. The long-lasting intraocular residence of the thermogel was demonstrated by intravitreal injection of a fluorescence-labeled thermogel to rabbits. Compared with a DEX suspension, the intravitreal retention time of DEX increased from a dozen hours to over 1week when being loaded in the thermogel. Additionally, intravitreal administration of the thermogel did not impair the morphology of retina and cornea. This study reveals that the injectable PLGA-PEG-PLGA thermogel is a biocompatible carrier for sustained delivery of bioactive agents into the eyes, and provides an alternative approach for treatment of posterior segment diseases.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Dongxiao Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|