1
|
Arin A, Rahaman MS, Farwa U, Gwon J, Bae SH, Kim YK, Lee BT. An agarose-based TOCN-ECM bilayer lyophilized-hydrogel with hemostatic and regenerative properties for post-operative adhesion management. Int J Biol Macromol 2024; 262:130094. [PMID: 38350583 DOI: 10.1016/j.ijbiomac.2024.130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
This study used a unique approach by developing a bilayer system that can simultaneously accomplish non-adhesion, hemostatic, and tissue regenerative properties. In this system, agarose was used as a carrier material, with an agarose-TEMPO-oxidized cellulose nanofiber (TOCN), (AT) layer acting as a non-adhesion layer and an Agarose-Extracellular matrix, (AE) layer acting as a tissue regenerative layer. Thrombin was loaded on the AE layer as an initiator of the healing process, by hemostasis. AT 1:4 showed 79.3 % and AE 1:4 showed 84.66 % cell viability initially confirming the biocompatible nature of the layers. The AE layer showed cell attachment and proliferation on its surface whereas on the AT layer, cells are visible but no attachment was observed. Furthermore, in vivo analysis was conducted. The non-adhesive layer was grafted between the cecum and peritoneal wall which showed that (AT 1:4) displayed remarkable non-adhesion properties as compared to a commercial product and the non-treated group. Hemostasis and tissue regeneration ability were evaluated using rat liver models. The bleeding time of AE 1:4TH was recorded as 160 s and the blood loss was 5.6 g. The results showed that (AE 1:4) displayed effective regeneration ability in the liver model after two weeks.
Collapse
Affiliation(s)
- Asuva Arin
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, -31151, Republic of Korea
| | - Md Sohanur Rahaman
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, -31151, Republic of Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Jaegyoung Gwon
- Division of Environmental Material Engineering, Department of Forest Products, Korea Forest Research Institute, Seoul, South Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Yung Kil Kim
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, -31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea.
| |
Collapse
|
2
|
Stapleton LM, Lucian HJ, Grosskopf AK, Smith AAA, Totherow KP, Woo YJ, Appel EA. Dynamic Hydrogels for Prevention of Post‐Operative Peritoneal Adhesions. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Haley J. Lucian
- Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Abigail K. Grosskopf
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
| | - Anton A. A. Smith
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
| | | | - Y. Joseph Woo
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Eric A. Appel
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
- ChEM‐H Institute Stanford University Stanford CA 94305 USA
- Department of Pediatrics (Endocrinology) Stanford University School of Medicine Stanford CA 94305 USA
| |
Collapse
|
3
|
Sultana T, Gwon JG, Lee BT. Thermal stimuli-responsive hyaluronic acid loaded cellulose based physical hydrogel for post-surgical de novo peritoneal adhesion prevention. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110661. [PMID: 32204089 DOI: 10.1016/j.msec.2020.110661] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/21/2023]
Abstract
Effective strategies for post-surgical adhesion prevention have increasingly focused on injectable adhesion barriers due to their minimal invasiveness and wider applicability. In this study, a thermo-reversible hydrogel was developed by combining high molecular weight hyaluronic acid (HA) at various concentrations (0.05, 0.25, and 0.45% w/v) with tempo-oxidized nanocellulose (TOCN), methyl cellulose (MC) and polyethylene glycol (PEG) for anti-adhesion application. The hydrogel preparation time was short and did not require any chemical modification. TOCN ensured the mechanical stability of the hydrogel. MC confirmed thermo-sensitive feature. Higher amounts of HA increased the rate of hydrogel degradation. The HA 0.25 hydrogel was free-flowing, injectable at ambient temperature, capable of faster (40 ± 2 s), and reversible sol-gel (4 °C-37 °C) transition. A rat side-wall cecum abrasion model was used to confirm the complete de novo adhesion prevention efficacy of optimized HA 0.25 hydrogel, where the scratched abdominal wall of animals treated with HA 0.25 hydrogel healed after 14 days. During in vivo experiment, PEG in the hydrogel played a crucial role in adhesion prevention by minimizing friction between the surgical site and nearby organs. In a nutshell, HA 0.25 hydrogel, fabricated without crosslinking agent, is a potential candidate for tissue adhesion prevention strategies.
Collapse
Affiliation(s)
- Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Jae-Gyoung Gwon
- Division of Environmental Material Engineering, Department of Forest Products, Korea Forest Research Institute, Seoul, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea.
| |
Collapse
|
4
|
Controlled release of Mitomycin C from modified cellulose based thermo-gel prevents post-operative de novo peritoneal adhesion. Carbohydr Polym 2019; 229:115552. [PMID: 31826495 DOI: 10.1016/j.carbpol.2019.115552] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
The complications from surgery associated peritoneal adhesion can be alleviated by combination of physical isolation and pharmaceutical treatment. This work aims to develop thermo-sensitive hydrogel barrier by combining mitomycin C (MMC) with modified tempo oxidized nanocellulose (cTOCN) through EDC/NHS-chemical conjugation followed by integration with methyl cellulose (MC). The MMC was successfully combined with cTOCN and ensured controlled release of MMC from hydrogel throughout 14 days. Amount of MC (1.5, 2.5, 3.5% w/v) was proportional to gelation time and inversely proportional to degradation of hydrogel. The optimized hydrogel (C2.5T1M0.2) needed only 30 s for thermoreversible sol-gel (4℃-37℃) phenomenon and did not show in vitro fibroblast cells toxicity as well as ensured complete adhesion prevention efficacy, reperitonealization in rat side wall-cecal abrasion model. Overall, the developed C2.5T1M0.2 thermo-gel advances state-of-the-art in view of cytocompatibility, mechanical stability, optimum degradation, good injectability, sustain drug release from surgical sites, and satisfactory de novo anti-adhesion capacity.
Collapse
|
5
|
Stapleton LM, Steele AN, Wang H, Lopez Hernandez H, Yu AC, Paulsen MJ, Smith AAA, Roth GA, Thakore AD, Lucian HJ, Totherow KP, Baker SW, Tada Y, Farry JM, Eskandari A, Hironaka CE, Jaatinen KJ, Williams KM, Bergamasco H, Marschel C, Chadwick B, Grady F, Ma M, Appel EA, Woo YJ. Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nat Biomed Eng 2019; 3:611-620. [DOI: 10.1038/s41551-019-0442-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/08/2019] [Indexed: 01/24/2023]
|
6
|
Sultana T, Van Hai H, Abueva C, Kang HJ, Lee SY, Lee BT. TEMPO oxidized nano-cellulose containing thermo-responsive injectable hydrogel for post-surgical peritoneal tissue adhesion prevention. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:12-21. [PMID: 31146982 DOI: 10.1016/j.msec.2019.03.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
The objective of this study was to present an effective injectable adhesion barrier comprised of TEMPO-oxidized cellulose nanofiber (TOCN), methyl cellulose, carboxymethyl cellulose, and polyethylene glycol. Hydrogels with different concentrations (0.2, 0.5, 0.8, 1% w/v) of bio compatible TOCN were investigated to determine their abilities to prevent post-surgical peritoneal adhesion using a rat cecal wall abrasion model. Sol-gel transition at body temperature (37 °C) was optimized by adjusting concentration of sodium ions (Na+), with a gelation time of 45 ± 7 s. These TOCN containing hydrogels showed non cytotoxicity to rat bone marrow mesenchymal stem cells (RBMSCs) and L929 fibroblast cells as cell models during in vitro assessment. Degradation studies revealed that, TOCN concentration in hydrogel was inversely proportional to hydrolytic degradation rate. From in vivo evaluations, TOCN 0.2 hydrogel significantly reduced peritoneal adhesion in rat (n = 8) compared to untreated controls based on gross observation, histological analysis, and expression analysis of marker proteins. By taking advantages of thermo gelling, high stability, non-invasive way of application and rapid recovery potential, TOCN containing bio compatible hydrogel could be used as a cost-effective barrier to efficiently inhibit post-surgical peritoneal adhesions.
Collapse
Affiliation(s)
- Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ho Van Hai
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Celine Abueva
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Hoe Jin Kang
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Sun-Young Lee
- Division of Environmental Material Engineering, Department of Forest Products, Korea Forest Research Institute, Seoul, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea.
| |
Collapse
|
7
|
Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
|
9
|
Uysal E, Dokur M, Kırdak T, Kurt A, Karadağ M. Evaluation of the effects of adipose-derived mesenchymal stem cells on intraperitoneal adhesions. Turk J Surg 2018; 34:184-190. [PMID: 30216177 DOI: 10.5152/turkjsurg.2017.3860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/06/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVES The goal was to examine the efficiency of local implementation of adipose-derived mesenchymal stem cells, which have an anti-inflammatory effect, in preventing the intra-abdominal adhesions in rats. MATERIAL AND METHODS Twenty-one Wistar albino rats were randomly divided into 3 groups, 7 rats in each: Group 1 was defined as the control group, Group 2 as the sham group, and Group 3 as the adipose-derived mesenchymal stem cell group. A 6 cm mid-abdomen incision in the all the rats was performed. The cecum serosa and sub-serosa were injured by rubbing with a gauze. No agent was applied intraperitoneally for the rats in Group 1; 1.5 mL saline and 2x106/kg allojenic adipose-derived mesenchymal stem cells in the 1.5 mL saline were injected into peritoneum of rats in Groups 2 and 3, respectively. Laparotomy was performed on the 14th day. Adhesion scores, histopathological examination, E-cadherin expression, and the tissue hydroxyproline level were evaluated. RESULTS The general adhesion score and collagen deposition in Group 3 were found to be significantly higher than in Groups 1 and 2 (p=0.003 and p=0.009, respectively). In the inflammatory cell comparison, a significant decrease was found in Group 3 in proportion to Groups 1 and 2 (p=0.001, p=0.005, respectively). The E-cadherin levels were found to be higher in Group 3 (p=0.003). CONCLUSION Severe adhesion was observed in the adipose-derived mesenchymal stem cells group. Collagen intensity and E-Cadherin expression also increased in the adipose-derived mesenchymal stem cells group. The anti-inflammatory effect was also seen in the adipose-derived mesenchymal stem cells group.
Collapse
Affiliation(s)
- Erdal Uysal
- Department of General Surgery, Sanko University School of Medicine, Gaziantep, Turkey
| | - Mehmet Dokur
- Clinic of Emergency Medicine, Necip Fazıl City Hospital, Kahramanmaraş, Turkey
| | - Türkay Kırdak
- Department of General Surgery, Uludağ University School of Medicine, Bursa, Turkey
| | - Akif Kurt
- Department of Pharmacology, Kahramanmaraş Sütçü İmam University School of Medicine, Kahramanmaraş, Turkey
| | - Mehmet Karadağ
- Department of Biostatistic and Medical Informatics, İnönü University Health Sciences Institue, Malatya, Turkey
| |
Collapse
|
10
|
The sticky business of adhesion prevention in minimally invasive gynecologic surgery. Curr Opin Obstet Gynecol 2018; 29:266-275. [PMID: 28582326 DOI: 10.1097/gco.0000000000000372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The negative impact of postoperative adhesions has long been recognized, but available options for prevention remain limited. Minimally invasive surgery is associated with decreased adhesion formation due to meticulous dissection with gentile tissue handling, improved hemostasis, and limiting exposure to reactive foreign material; however, there is conflicting evidence on the clinical significance of adhesion-related disease when compared to open surgery. Laparoscopic surgery does not guarantee the prevention of adhesions because longer operative times and high insufflation pressure can promote adhesion formation. Adhesion barriers have been available since the 1980s, but uptake among surgeons remains low and there is no clear evidence that they reduce clinically significant outcomes such as chronic pain or infertility. In this article, we review the ongoing magnitude of adhesion-related complications in gynecologic surgery, currently available interventions and new research toward more effective adhesion prevention. RECENT FINDINGS Recent literature provides updated epidemiologic data and estimates of healthcare costs associated with adhesion-related complications. There have been important advances in our understanding of normal peritoneal healing and the pathophysiology of adhesions. Adhesion barriers continue to be tested for safety and effectiveness and new agents have shown promise in clinical studies. Finally, there are many experimental studies of new materials and pharmacologic and biologic prevention agents. SUMMARY There is great interest in new adhesion prevention technologies, but new agents are unlikely to be available for clinical use for many years. High-quality effectiveness and outcomes-related research is still needed.
Collapse
|
11
|
Barski D, Gerullis H, Ecke T, Varga G, Boros M, Pintelon I, Timmermans JP, Otto T. Human Amniotic Membrane Is Not Suitable for the Grafting of Colon Lesions and Prevention of Adhesions in a Xenograft Rat Model. Surg Innov 2017; 24:313-320. [PMID: 28548553 DOI: 10.1177/1553350617709828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION New biological materials are needed for specific applications in reconstructive bowel surgery and for the prevention of adhesion formation. Amniotic membranes (AMs) are assumed to have a number of unique characteristics that enhance the ingrowth of the surrounding tissue. The aim of the present study was to provide proof of these qualities in a xenograft model. MATERIALS AND METHODS A multilayer human AM (HAM) was applied to repair defined colon wall defects in Sprague-Dawley rats (n = 18). The control group was repaired with a suture (n = 6). The animals were killed humanely at 7, 21, and 42 days after implantation. Adhesions and perioperative complications were examined. Histological and immunohistological analyses were performed to assess a number of parameters, including degradation of the HAM, inflammation, graft rejection, and smooth muscle ingrowth. RESULTS Two rats in the treated group died. No other severe complications were observed. Adhesion formation was more prominently visible in the HAM group ( P < .05). The initially increased inflammation in the HAM group reduced over time but remained significantly increased ( P < .05). The HAM degraded over time and a subtle transient glomerulitis could be observed. CONCLUSION HAMs were found to increase adhesion formation and were not suitable for bowel augmentation in the presented xenograft model.
Collapse
|
12
|
Aktekin A, Sahin I, Aydemir Sezer U, Gulmez M, Ozkara S, Sezer S. Carboxymethyl cellulose/oxidized regenerated cellulose hydrogels as adhesion barriers: comparative study with different molecular weights and substitution degrees. CELLULOSE 2016; 23:3145-3156. [DOI: 10.1007/s10570-016-1014-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
|