1
|
Goldhawk DE, Al KF, Donnelly SC, Varela-Mattatall GE, Dassanayake P, Gelman N, Prato FS, Burton JP. Assessing microbiota in vivo: debugging with medical imaging. Trends Microbiol 2025; 33:408-420. [PMID: 39746827 DOI: 10.1016/j.tim.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
The microbiota is integral to human health and has been mostly characterized through various ex vivo 'omic'-based approaches. To better understand the real-time function and impact of the microbiota, in vivo molecular imaging is required. With technologies such as positron emission tomography (PET), magnetic resonance imaging (MRI), and computed tomography (CT), insight into microbiological processes may be coupled to in vivo information. Noninvasive imaging enables longitudinal tracking of microbes and their components in real time; mapping of microbiota biodistribution, persistence and migration; and simultaneous monitoring of host physiological responses. The development of molecular imaging for clinical translation is an interdisciplinary science, with broad implications for deeper understanding of host-microbe interactions and the role(s) of the microbiome in health and disease.
Collapse
Affiliation(s)
- Donna E Goldhawk
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Kait F Al
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotic Research, Lawson Research Institute, London, Ontario, Canada
| | | | - Gabriel E Varela-Mattatall
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Praveen Dassanayake
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Neil Gelman
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Frank S Prato
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotic Research, Lawson Research Institute, London, Ontario, Canada; Department of Surgery, Division of Urology, Western University, London, Ontario, Canada.
| |
Collapse
|
2
|
Wen D, Zhang X, Ding L, Wen H, Liu W, Zhang C, Wang B, Li L, Diao H. Folic acid functionalized aggregation-induced emission nanoparticles for tumor cell targeted imaging and photodynamic therapy. RSC Adv 2022; 12:4484-4489. [PMID: 35425471 PMCID: PMC8981163 DOI: 10.1039/d1ra09173e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/29/2022] [Indexed: 12/21/2022] Open
Abstract
Recently, molecules with aggregation-induced luminescence (AIE) characteristics have received more and more attention due to the fluorescence of traditional dyes being easily quenched in the aggregated state. AIE molecules have significant advantages, such as excellent light stability, bright fluorescence, high contrast, and large Stokes shift. These characteristics have aroused wide interest of researchers and opened up new applications in many fields, especially in the field of biological applications. However, AIE molecules or their aggregates have certain limitations in multifunctional biological research due to their low specific targeting ability, poor biocompatibility, and poor stability in physiological body fluids. In order to overcome these problems, a novel nanoparticle, FFM1, was fabricated and characterized. FFM1 displayed good water solubility, biocompatibility, and AIE emission properties. It could target HeLa cells specifically by recognizing their folate receptor. Reactive oxygen triggered by light irradiation induced tumor cell apoptosis. Summarily, FFM1 displayed excellent capacity in target imaging and photodynamic killing of HeLa cells. It has shown potential application value in targeted diagnosis and photodynamic therapy of tumors, and has important guiding significance for the treatment of malignant tumors. It paves a way for the development of a novel strategy for tumor theranostics.
Collapse
Affiliation(s)
- Danning Wen
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Xueyun Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Lei Ding
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Huan Wen
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Wen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Chengwu Zhang
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Bin Wang
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Lihong Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Haipeng Diao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| |
Collapse
|
3
|
Huang W, Luo S, Yang D, Zhang S. Applications of smartphone-based near-infrared (NIR) imaging, measurement, and spectroscopy technologies to point-of-care (POC) diagnostics. J Zhejiang Univ Sci B 2021; 22:171-189. [PMID: 33719223 DOI: 10.1631/jzus.b2000388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The role of point-of-care (POC) diagnostics is important in public health. With the support of smartphones, POC diagnostic technologies can be greatly improved. This opportunity has arisen from not only the large number and fast spread of cell-phones across the world but also their improved imaging/diagnostic functions. As a tool, the smartphone is regarded as part of a compact, portable, and low-cost system for real-time POC, even in areas with few resources. By combining near-infrared (NIR) imaging, measurement, and spectroscopy techniques, pathogens can be detected with high sensitivity. The whole process is rapid, accurate, and low-cost, and will set the future trend for POC diagnostics. In this review, the development of smartphone-based NIR fluorescent imaging technology was described, and the quality and potential of POC applications were discussed.
Collapse
Affiliation(s)
- Wenjing Huang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.,Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | - Dong Yang
- Division of Biomedical Engineering, Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA
| | - Sheng Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China. .,State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
4
|
Mauro N, Fiorica C, Giuffrè M, Calà C, Maida CM, Giammona G. A self-sterilizing fluorescent nanocomposite as versatile material with broad-spectrum antibiofilm features. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111308. [PMID: 32919669 DOI: 10.1016/j.msec.2020.111308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
Hematogenous spread of infections from colonized central intravenous catheters or central lines is a long-recognized problem with infection rates of 2 and 6.8 per 1000 days, respectively. Besides, removal of severe microbial colonization of implanted biomaterials is still a challenge and usually requires invasive operations. Hence, on demand self-sterilizing materials are required to avoid explant of colonized biomaterials and improve patient compliance. Moreover, photoluminescence is needed to make trackable biomaterials, which can be easily monitored upon implanting them in the body. Here, we propose the incorporation of near infrared (NIR) sensitive red-emitting carbon nanodot (CDs) into a polymeric matrix to give rise to innovative biomaterials with self-tracking and photothermal antimicrobial abilities. We obtain a material which can be processed to obtain medical devices using different techniques, among which, for instance, electrospinning. Herein, a proof-of-concept preparation of electrospun scaffolds is reported as it is highly desired in biomedical applications. Beside to confer imaging properties to the scaffold, that would allow an easy control over the in vivo positioning of implanted biomaterials as well as its degradation state and grade of integration with the surrounding native tissues, thanks to the capability to convert NIR light into local heat CDs can be exploited to exert broad-spectrum antimicrobial effect toward several pathogens. The rise in temperature can be easily modulated by controlling the irradiation time to achieve both an in vitro self-sterilization of the device and eventually in vivo destabilization of the microbial colonization. This innovative biomaterial could successfully inhibit biofilm formation and might be used as a powerful tool to treat antibiotic-resistant nature of biofilm-related infections in implanted medical devices.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123 Palermo, Italy; Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milano, Italy
| | - Calogero Fiorica
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123 Palermo, Italy.
| | - Mario Giuffrè
- Department of Scienze per la Promozione della Salute e Materno Infantile - G. d'Alessandro, University of Palermo, Via del Vespro 133, Palermo 90127, Italy
| | - Cinzia Calà
- Department of Scienze per la Promozione della Salute e Materno Infantile - G. d'Alessandro, University of Palermo, Via del Vespro 133, Palermo 90127, Italy
| | - Carmelo Massimo Maida
- Department of Scienze per la Promozione della Salute e Materno Infantile - G. d'Alessandro, University of Palermo, Via del Vespro 133, Palermo 90127, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123 Palermo, Italy
| |
Collapse
|
5
|
Su Y, Lv C, Zhang Y, Liu S, Xie Z, Zheng M. Fluorescent nanoparticles with ultralow chromophore loading for long-term tumor-targeted imaging. Acta Biomater 2020; 111:398-405. [PMID: 32434078 DOI: 10.1016/j.actbio.2020.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 01/28/2023]
Abstract
Recently, organic dyes with aggregation-induced emission (AIE) have attracted much attention in bioimaging and diagnostics. Relatively, the application of traditional dyes has diminished because of aggregation-caused quenching (ACQ). In this work, we compare the imaging ability of nanoparticle formulations of these two kinds of dyes. Boron dipyrromethene (BODIPY) was chosen as a representative of the ACQ dyes, and an aggregation-induced emission (AIE) dye BPMT was used for comparison. BODIPY and BPMT were entrapped into PEG5k-PLA10k to form BODIPY-loaded NPs (BNPs) and BPMT-loaded NPs (ANPs), respectively. In vivo and ex vivo imaging demonstrated that BNP1 with ultralow BODIPY load (0.07%) can effectively accumulate in tumor tissues and enable long-term noninvasive imaging. In contrast, ANP4 with high BPMT load (1.6%) has poor bioimaging ability. In general, our work has certain reference significance for the application of ACQ dyes and AIEgens in bioimaging, diagnostics, and theranostics. STATEMENT OF SIGNIFICANCE: In this work, Boron dipyrromethene (BODIPY) was chosen as a representative of ACQ dyes. As a control, (Z)-2-(4'-(9H-carbazol-9-yl)-[1,1'-biphenyl]-4-yl)-3-(7-(4-(bis(4methoxyphenyl)amino) phenyl) benzo[c] [1,2,5] thiadiazol-4-yl) acrylonitrile (BPMT) was selected as an aggregation-induced emission (AIE) dye. BODIPY and BPMT was entrapped into PEG5k-PLA10k to form BODIPY-loaded NPs (BNPs) and BPMT-loaded NPs (ANPs), respectively. In vivo and ex vivo imaging demonstrated that BNP1 with ultralow BODIPY load (0.07%) can effectively accumulate in tumor tissues and realize long-term noninvasive imaging. The weaknesses of ACQ effect can be converted into advantages by skillful use of nanotechnology, which can not only save the cost but also realize high efficiency targeted cancer imaging.
Collapse
Affiliation(s)
- Ya Su
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Chunyan Lv
- School of Engineering, HuZhou University, Huzhou Cent Hosp, 759 Erhuan Rd, Huzhou, Zhejiang, PR China
| | - Yujian Zhang
- School of Engineering, HuZhou University, Huzhou Cent Hosp, 759 Erhuan Rd, Huzhou, Zhejiang, PR China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China..
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China.
| |
Collapse
|
6
|
Busscher HJ, Woudstra W, van Kooten TG, Jutte P, Shi L, Liu J, Hinrichs WLJ, Frijlink HW, Shi R, Liu J, Parvizi J, Kates S, Rotello VM, Schaer TP, Williams D, Grainger DW, van der Mei HC. Accepting higher morbidity in exchange for sacrificing fewer animals in studies developing novel infection-control strategies. Biomaterials 2019; 232:119737. [PMID: 31901693 DOI: 10.1016/j.biomaterials.2019.119737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 10/25/2022]
Abstract
Preventing bacterial infections from becoming the leading cause of death by the year 2050 requires the development of novel, infection-control strategies, building heavily on biomaterials science, including nanotechnology. Pre-clinical (animal) studies are indispensable for this development. Often, animal infection outcomes bear little relation to human clinical outcome. Here, we review conclusions from pathogen-inoculum dose-finding pilot studies for evaluation of novel infection-control strategies in murine models. Pathogen-inoculum doses are generally preferred that produce the largest differences in quantitative infection outcome parameters between a control and an experimental group, without death or termination of animals due to having reached an inhumane end-point during the study. However, animal death may represent a better end-point for evaluation than large differences in outcome parameters or number of days over which infection persists. The clinical relevance of lower pre-clinical outcomes, such as bioluminescence, colony forming units (CFUs) retrieved or more rapid clearance of infection is unknown, as most animals cure infection without intervention, depending on pathogen-species and pathogen-inoculum dose administered. In human clinical practice, patients suffering from infection present to hospital emergency wards, frequently in life-threatening conditions. Animal infection-models should therefore use prevention of death and recurrence of infection as primary efficacy targets to be addressed by novel strategies. To compensate for increased animal morbidity and mortality, animal experiments should solely be conducted for pre-clinical proof of principle and safety. With the advent of sophisticated in vitro models, we advocate limiting use of animal models when exploring pathogenesis or infection mechanisms.
Collapse
Affiliation(s)
- Henk J Busscher
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| | - Willem Woudstra
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Theo G van Kooten
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Paul Jutte
- University of Groningen, University Medical Center of Groningen, Department of Orthopaedic Surgery, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, PR China
| | - Wouter L J Hinrichs
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hendrik W Frijlink
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Rui Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, PR China
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, PR China
| | - Javad Parvizi
- Sidney Kimmel Medical College, Rothman Institute at Thomas Jefferson University Hospital, Sheridan Building, Suite 1000, 125 South 9th Street, Philadelphia, PA, 19107, USA
| | - Stephen Kates
- Virginia Commonwealth University, Department of Orthopaedic Surgery, 1200 E. Broad St, Richmond, VA, 23059-0153, USA
| | - Vincent M Rotello
- University of Massachusetts, Department of Chemistry, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Thomas P Schaer
- University of Pennsylvania, Department of Clinical Studies New Bolton Center, Kennett Square, PA, USA
| | - Dustin Williams
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, 84112, USA; George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, 84148, USA
| | - David W Grainger
- University of Utah, Department of Biomedical Engineering, Department of Pharmaceutics and Pharmaceutical Chemistry, Salt Lake City, UT, 84112, USA
| | - Henny C van der Mei
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
7
|
Martínez-Carmona M, Gun'ko Y, Vallet-Regí M. ZnO Nanostructures for Drug Delivery and Theranostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E268. [PMID: 29690644 PMCID: PMC5923598 DOI: 10.3390/nano8040268] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/19/2023]
Abstract
In the last two decades, zinc oxide (ZnO) semiconductor Quantum dots (QDs) have been shown to have fantastic luminescent properties, which together with their low-cost, low-toxicity and biocompatibility have turned these nanomaterials into one of the main candidates for bio-imaging. The discovery of other desirable traits such as their ability to produce destructive reactive oxygen species (ROS), high catalytic efficiency, strong adsorption capability and high isoelectric point, also make them promising nanomaterials for therapeutic and diagnostic functions. Herein, we review the recent progress on the use of ZnO based nanoplatforms in drug delivery and theranostic in several diseases such as bacterial infection and cancer.
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland.
| | - Yurii Gun'ko
- School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland.
| | - María Vallet-Regí
- Department Chemistry in Pharmaceutical Sciences, School of Pharmacy , Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
8
|
Damestani Y, De Howitt N, Halaney DL, Garay JE, Aguilar G. Evaluation of laser bacterial anti-fouling of transparent nanocrystalline yttria-stabilized-zirconia cranial implant. Lasers Surg Med 2016; 48:782-789. [PMID: 27389389 DOI: 10.1002/lsm.22558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE The development and feasibility of a novel nanocrystalline yttria-stabilized-zirconia (nc-YSZ) cranial implant has been recently established. The purpose of what we now call "window to the brain (WttB)" implant (or platform), is to improve patient care by providing a technique for delivery and/or collection of light into/from the brain, on demand, over large areas, and on a chronically recurring basis without the need for repeated craniotomies. WttB holds the transformative potential for enhancing light-based diagnosis and treatment of a wide variety of brain pathologies including cerebral edema, traumatic brain injury, stroke, glioma, and neurodegenerative diseases. However, bacterial adhesion to the cranial implant is the leading factor for biofilm formation (fouling), infection, and treatment failure. Escherichia coli (E. coli), in particular, is the most common isolate in gram-negative bacillary meningitis after cranial surgery or trauma. The transparency of our WttB implant may provide a unique opportunity for non-invasive treatment of bacterial infection under the implant using medical lasers. STUDY DESIGN/MATERIALS AND METHODS A drop of a diluted overnight culture of BL21-293 E. coli expressing luciferase was seeded between the nc-YSZ implant and the agar plate. This was followed by immediate irradiation with selected laser. After each laser treatment the nc-YSZ was removed, and cultures were incubated for 24 hours at 37 °C. The study examined continuous wave (CW) and pulsed wave (PW) modes of near-infrared (NIR) 810 nm laser wavelength with a power output ranging from 1 to 3 W. During irradiation, the temperature distribution of nc-YSZ surface was monitored using an infrared thermal camera. Relative luminescence unit (RLU) was used to evaluate the viability of bacteria after the NIR laser treatment. RESULTS Analysis of RLU suggests that the viability of E. coli biofilm formation was reduced with NIR laser treatment when compared to the control group (P < 0.01) and loss of viability depends on both laser fluence and operation mode (CW or PW). The results demonstrate that while CW laser reduces the biofilm formation more than PW laser with the same power, the higher surface temperature of the implant generated by CW laser limits its medical efficacy. In contrast, with the right parameters, PW laser produces a more moderate photothermal effect which can be equally effective at controlling bacterial growth. CONCLUSIONS Our results show that E. coli biofilm formation across the thickness of the nc-YSZ implant can be disrupted using NIR laser treatment. The results of this in vitro study suggest that using nc-YSZ as a cranial implant in vivo may also allow for locally selective, non-invasive, chronic treatment of bacterial layers (fouling) that might form under cranial implants, without causing adverse thermal damage to the underlying host tissue when appropriate laser parameters are used. Lasers Surg. Med. 48:782-789, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yasaman Damestani
- Department of Bioengineering, University of California - Riverside, Riverside, California, 92521
| | - Natalie De Howitt
- Department of Bioengineering, University of California - Riverside, Riverside, California, 92521
| | - David L Halaney
- Department of Mechanical Engineering, University of California - Riverside, Riverside, California, 92521
| | - Javier E Garay
- Department of Mechanical and Aerospace Engineering, University of California - San Diego, La Jolla, California, 92093
| | - Guillermo Aguilar
- Department of Bioengineering, University of California - Riverside, Riverside, California, 92521. .,Department of Mechanical Engineering, University of California - Riverside, Riverside, California, 92521.
| |
Collapse
|
9
|
Siraj N, El-Zahab B, Hamdan S, Karam TE, Haber LH, Li M, Fakayode SO, Das S, Valle B, Strongin RM, Patonay G, Sintim HO, Baker GA, Powe A, Lowry M, Karolin JO, Geddes CD, Warner IM. Fluorescence, Phosphorescence, and Chemiluminescence. Anal Chem 2015; 88:170-202. [PMID: 26575092 DOI: 10.1021/acs.analchem.5b04109] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Noureen Siraj
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Bilal El-Zahab
- Department of Mechanical and Materials Engineering, Florida International University , Miami, Florida 33174, United States
| | - Suzana Hamdan
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Tony E Karam
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Louis H Haber
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Min Li
- Process Development Center, Albemarle Corporation , Baton Rouge, Louisiana 70805, United States
| | - Sayo O Fakayode
- Department of Chemistry, Winston-Salem State University , Winston-Salem, North Carolina 27110, United States
| | - Susmita Das
- Department of Civil Engineering, Adamas Institute of Technology , Barasat, Kolkata 700126, West Bengal India
| | - Bertha Valle
- Department of Chemistry, Texas Southern University , Houston, Texas 77004, United States
| | - Robert M Strongin
- Department of Chemistry, Portland State University , Portland, Oregon 97207, United States
| | - Gabor Patonay
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-4098, United States
| | - Herman O Sintim
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri Columbia , Columbia, Missouri 65211-7600, United States
| | - Aleeta Powe
- Department of Chemistry, University of Louisville , Louisville, Kentucky 40208, United States
| | - Mark Lowry
- Department of Chemistry, Portland State University , Portland, Oregon 97207, United States
| | - Jan O Karolin
- Institute of Fluorescence, University of Maryland Baltimore County , Baltimore, Maryland 21202, United States
| | - Chris D Geddes
- Institute of Fluorescence, University of Maryland Baltimore County , Baltimore, Maryland 21202, United States
| | - Isiah M Warner
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Zhou J, Hu W, Tang L. Non-invasive Characterization of Immune Responses to Biomedical Implants. Ann Biomed Eng 2015; 44:693-704. [DOI: 10.1007/s10439-015-1470-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
|
11
|
Chen H, Zhang M, Li B, Chen D, Dong X, Wang Y, Gu Y. Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials 2015; 53:532-44. [DOI: 10.1016/j.biomaterials.2015.02.105] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 01/09/2023]
|
12
|
Scaffold-based anti-infection strategies in bone repair. Ann Biomed Eng 2014; 43:515-28. [PMID: 25476163 DOI: 10.1007/s10439-014-1205-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
Abstract
Bone fractures and non-union defects often require surgical intervention where biomaterials are used to correct the defect, and approximately 10% of these procedures are compromised by bacterial infection. Currently, treatment options are limited to sustained, high doses of antibiotics and surgical debridement of affected tissue, leaving a significant, unmet need for the development of therapies to combat device-associated biofilm and infections. Engineering implants to prevent infection is a desirable material characteristic. Tissue engineered scaffolds for bone repair provide a means to both regenerate bone and serve as a base for adding antimicrobial agents. Incorporating anti-infection properties into regenerative medicine therapies could improve clinical outcomes and reduce the morbidity and mortality associated with biomaterial implant-associated infections. This review focuses on current animal models and technologies available to assess bone repair in the context of infection, antimicrobial agents to fight infection, the current state of antimicrobial scaffolds, and future directions in the field.
Collapse
|
13
|
In vivo monitoring of Staphylococcus aureus biofilm infections and antimicrobial therapy by [18F]fluoro-deoxyglucose-MicroPET in a mouse model. Antimicrob Agents Chemother 2014; 58:6660-7. [PMID: 25155589 DOI: 10.1128/aac.03138-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A mouse model was developed for in vivo monitoring of infection and the effect of antimicrobial treatment against Staphylococcus aureus biofilms, using the [(18)F]fluoro-deoxyglucose-MicroPET ([(18)F]FDG-MicroPET) image technique. In the model, sealed Vialon catheters were briefly precolonized with S. aureus strains ATCC 15981 or V329, which differ in cytotoxic properties and biofilm matrix composition. After subcutaneous implantation of catheters in mice, the S. aureus strain differences found in bacterial counts and the inflammatory reaction triggered were detected by the regular bacteriological and histological procedures and also by [(18)F]FDG-MicroPET image signal intensity determinations in the infection area and regional lymph node. Moreover, [(18)F]FDG-MicroPET imaging allowed the monitoring of the rifampin treatment effect, identifying the periods of controlled infection and those of reactivated infection due to the appearance of bacteria naturally resistant to rifampin. Overall, the mouse model developed may be useful for noninvasive in vivo determinations in studies on S. aureus biofilm infections and assessment of new therapeutic approaches.
Collapse
|