1
|
Jia X, Fan X, Chen C, Lu Q, Zhou H, Zhao Y, Wang X, Han S, Ouyang L, Yan H, Dai H, Geng H. Chemical and Structural Engineering of Gelatin-Based Delivery Systems for Therapeutic Applications: A Review. Biomacromolecules 2024; 25:564-589. [PMID: 38174643 DOI: 10.1021/acs.biomac.3c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As a biodegradable and biocompatible protein derived from collagen, gelatin has been extensively exploited as a fundamental component of biological scaffolds and drug delivery systems for precise medicine. The easily engineered gelatin holds great promise in formulating various delivery systems to protect and enhance the efficacy of drugs for improving the safety and effectiveness of numerous pharmaceuticals. The remarkable biocompatibility and adjustable mechanical properties of gelatin permit the construction of active 3D scaffolds to accelerate the regeneration of injured tissues and organs. In this Review, we delve into diverse strategies for fabricating and functionalizing gelatin-based structures, which are applicable to gene and drug delivery as well as tissue engineering. We emphasized the advantages of various gelatin derivatives, including methacryloyl gelatin, polyethylene glycol-modified gelatin, thiolated gelatin, and alendronate-modified gelatin. These derivatives exhibit excellent physicochemical and biological properties, allowing the fabrication of tailor-made structures for biomedical applications. Additionally, we explored the latest developments in the modulation of their physicochemical properties by combining additive materials and manufacturing platforms, outlining the design of multifunctional gelatin-based micro-, nano-, and macrostructures. While discussing the current limitations, we also addressed the challenges that need to be overcome for clinical translation, including high manufacturing costs, limited application scenarios, and potential immunogenicity. This Review provides insight into how the structural and chemical engineering of gelatin can be leveraged to pave the way for significant advancements in biomedical applications and the improvement of patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Cheng Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongfeng Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Yanming Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongji Yan
- Department of Medical Cell Biology (MCB), Uppsala University (UU), 751 05 Uppsala, Sweden
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| |
Collapse
|
2
|
Kuvshinova EA, Petrakova NV, Nikitina YO, Sviridova IK, Akhmedova SA, Kirsanova VA, Karalkin PA, Komlev VS, Sergeeva NS, Kaprin AD. Functionalization of Octacalcium Phosphate Bone Graft with Cisplatin and Zoledronic Acid: Physicochemical and Bioactive Properties. Int J Mol Sci 2023; 24:11633. [PMID: 37511391 PMCID: PMC10380611 DOI: 10.3390/ijms241411633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Bones are the fourth most frequent site of metastasis from malignant tumors, including breast cancer, prostate cancer, melanoma, etc. The bioavailability of bone tissue for chemotherapy drugs is extremely low. This requires a search for new approaches of targeted drug delivery to the tumor growth zone after surgery treatment. The aim of this work was to develop a method for octacalcium phosphate (OCP) bone graft functionalization with the cytostatic drug cisplatin to provide the local release of its therapeutic concentrations into the bone defect. OCP porous ceramic granules (OCP ceramics) were used as a platform for functionalization, and bisphosphonate zoledronic acid was used to mediate the interaction between cisplatin and OCP and enhance their binding strength. The obtained OCP materials were studied using scanning electron and light microscopy, high-performance liquid chromatography, atomic emission spectroscopy, and real-time PCR. In vitro and in vivo studies were performed on normal and tumor cell lines and small laboratory animals. The bioactivity of initial OCP ceramics was explored and the efficiency of OCP functionalization with cisplatin, zoledronic acid, and their combination was evaluated. The kinetics of drug release and changes in ceramics properties after functionalization were studied. It was established that zoledronic acid changed the physicochemical and bioactive properties of OCP ceramics and prolonged cisplatin release from the ceramics. In vitro and in vivo experiments confirmed the biocompatibility, osteoconductivity, and osteoinductivity, as well as cytostatic and antitumor properties of the obtained materials. The use of OCP ceramics functionalized with a cytostatic via the described method seems to be promising in clinics when primary or metastatic tumors of the bone tissue are removed.
Collapse
Affiliation(s)
- Ekaterina A Kuvshinova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
| | - Nataliya V Petrakova
- A.A. Baikov Institute of Metallurgy and Materials Science RAS, Leninsky Avenue 49, 119334 Moscow, Russia
| | - Yulia O Nikitina
- A.A. Baikov Institute of Metallurgy and Materials Science RAS, Leninsky Avenue 49, 119334 Moscow, Russia
| | - Irina K Sviridova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
| | - Suraja A Akhmedova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
| | - Valentina A Kirsanova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
| | - Pavel A Karalkin
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
- L.L. Levshin Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, 119991 Moscow, Russia
| | - Vladimir S Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science RAS, Leninsky Avenue 49, 119334 Moscow, Russia
| | - Natalia S Sergeeva
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
| | - Andrey D Kaprin
- FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia, Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| |
Collapse
|
3
|
Duan C, Yu M, Xu J, Li BY, Zhao Y, Kankala RK. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother 2023; 162:114643. [PMID: 37031496 DOI: 10.1016/j.biopha.2023.114643] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Multi-drug resistance (MDR) in cancer cells, either intrinsic or acquired through various mechanisms, significantly hinders the therapeutic efficacy of drugs. Typically, the reduced therapeutic performance of various drugs is predominantly due to the inherent over expression of ATP-binding cassette (ABC) transporter proteins on the cell membrane, resulting in the deprived uptake of drugs, augmenting drug detoxification, and DNA repair. In addition to various physiological abnormalities and extensive blood flow, MDR cancer phenotypes exhibit improved apoptotic threshold and drug efflux efficiency. These severe consequences have substantially directed researchers in the fabrication of various advanced therapeutic strategies, such as co-delivery of drugs along with various generations of MDR inhibitors, augmented dosage regimens and frequency of administration, as well as combinatorial treatment options, among others. In this review, we emphasize different reasons and mechanisms responsible for MDR in cancer, including but not limited to the known drug efflux mechanisms mediated by permeability glycoprotein (P-gp) and other pumps, reduced drug uptake, altered DNA repair, and drug targets, among others. Further, an emphasis on specific cancers that share pathogenesis in executing MDR and effluxed drugs in common is provided. Then, the aspects related to various nanomaterials-based supramolecular programmable designs (organic- and inorganic-based materials), as well as physical approaches (light- and ultrasound-based therapies), are discussed, highlighting the unsolved issues and future advancements. Finally, we summarize the review with interesting perspectives and future trends, exploring further opportunities to overcome MDR.
Collapse
Affiliation(s)
- Chunyan Duan
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China.
| | - Mingjia Yu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China
| | - Jiyuan Xu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China
| | - Bo-Yi Li
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ying Zhao
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China.
| |
Collapse
|
4
|
Zhang F, Zhang C, Fu S, Liu H, Han M, Fan X, Zhang H, Li W. Amphiphilic Cationic Peptide-Coated PHA Nanosphere as an Efficient Vector for Multiple-Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3024. [PMID: 36080060 PMCID: PMC9457696 DOI: 10.3390/nano12173024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Amphiphilic core-shell (ACS) nanoparticles are gaining increasing research interest for multi-drug delivery in cancer therapy. In this work, a new cationic peptide-coated PHA nanosphere was prepared by self-assembly of a hydrophobic core of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a hydrophilic shell of fusion proteins of PHA granule-associated protein (PhaP) and cationic peptide RALA through a strong hydrophobic effect. The hydrophobic drug curcumin (Cur) was encapsulated in PHBHHx nanoparticles. The chemotherapy drug 5-fluorouracil (5-FU) was administered in the form of its metabolite oligomeric 5-fluorodeoxyuridine (FUdR). Fifteen consecutive FUdR (FUdR15S) were adsorbed on the surface of PHBHHx nanoparticles by electrostatic interaction with RALA to form Cur@PHBX-PR/FUdR15S. Such amphiphilic cationic nanospheres had 88.3% EE of Cur and the drug loading of Cur and FUdR were 7.8% and 12.1%. The dual-drug-loaded nanospheres showed a time-differential release of Cur and FUdR. In addition, Cur@PHBX-PR/FUdR15S exhibited excellent anticancer activity and played a vital role in promoting the synergistic effect of FUdR and Cur in gastric cancer cells. The exploration of antitumor mechanisms demonstrated that Cur improved the activity of apoptosis-related proteins and cancer cells sensitized to FUdR. This amphiphilic core-shell system can serve as a general platform for sequential delivery of multiple drugs to treat several cancer cells.
Collapse
Affiliation(s)
- Fanghua Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Chao Zhang
- Department of Life Science, Hengshui University, Hengshui 053000, China
| | - Shuangqing Fu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Huandi Liu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Mengnan Han
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xueyu Fan
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Honglei Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wei Li
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Wang Y, Zhong D, Xie F, Chen S, Ma Z, Yang X, Iqbal MZ, Zhang Q, Lu J, Wang S, Zhao R, Kong X. Manganese Phosphate-Doxorubicin-Based Nanomedicines Using Mimetic Mineralization for Cancer Chemotherapy. ACS Biomater Sci Eng 2022; 8:1930-1941. [PMID: 35380774 DOI: 10.1021/acsbiomaterials.2c00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inorganic nanomaterials showed great potential as drug carriers for chemotherapeutics molecules due to their biocompatible physical and chemical properties. A manganese-based inorganic nanomaterial manganese phosphate (MnP) had become a new drug carrier in cancer therapy. However, the approach for manganese phosphate preparation and drug integration is still confined in complex methods. Inspired by mimetic mineralization, we proposed a "one-step" method for the preparation of manganese phosphate-doxorubicin (DOX) nanomedicines (MnP-DOX) by manganese ion and DOX complexation. The structural characterization results revealed that the prepared MnP-DOX nanocomplexes were homogeneous with controlled sizes and shapes. More importantly, the MnP-DOX nanocomposites could significantly induce cancer inhibition in vitro and in vivo. The results indicated that the drug molecules were integrated into MnP nanocarriers by mimetic mineralization, which not only prevented the premature release of the drug but also reduced excessive modification. Moreover, the designed MnP-DOX complex showed high loading efficacy and pH-dependent degradation leading to drug release, achieving high efficiency for cancer chemotherapy in vitro and in vivo via a facile process. These achievements presented an approach to construct the manganese phosphate-based chemotherapy nanomedicines by mimetic mineralization for cancer therapy.
Collapse
Affiliation(s)
- Yuxin Wang
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Daliang Zhong
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Fan Xie
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Siying Chen
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Zaiqiang Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Xinyan Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 311399, China
| | - M Zubair Iqbal
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Quan Zhang
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jiaju Lu
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Shibo Wang
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Ruibo Zhao
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiangdong Kong
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
6
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
7
|
Altinoz MA, Ozpinar A. Oxamate targeting aggressive cancers with special emphasis to brain tumors. Biomed Pharmacother 2022; 147:112686. [DOI: 10.1016/j.biopha.2022.112686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
|
8
|
Ao M, Yu F, Li Y, Zhong M, Tang Y, Yang H, Wu X, Zhuang Y, Wang H, Sun X, Hong X, Chen XD. Carrier-free nanoparticles of camptothecin prodrug for chemo-photothermal therapy: the making, in vitro and in vivo testing. J Nanobiotechnology 2021; 19:350. [PMID: 34717646 PMCID: PMC8557616 DOI: 10.1186/s12951-021-01093-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Background Nanoscale drug delivery systems have emerged as broadly applicable approach for chemo-photothermal therapy. However, these nanoscale drug delivery systems suffer from carrier-induced toxicity, uncontrolled drug release and low drug carrying capacity issues. Thus, to develop carrier-free nanoparticles self-assembled from amphiphilic drug molecules, containing photothermal agent and anticancer drug, are very attractive. Results In this study, we conjugated camptothecin (CPT) with a photothermal agent new indocyanine green (IR820) via a redox-responsive disulfide linker. The resulting amphiphilic drug–drug conjugate (IR820-SS-CPT) can self-assemble into nanoparticles (IR820-SS-CPT NPs) in aqueous solution, thus remarkably improving the membrane permeability of IR820 and the aqueous solubility of CPT. The disulfide bond in the IR820-SS-CPT NPs could be cleaved in GSH rich tumor microenvironment, leading to the on demand release of the conjugated drug. Importantly, the IR820-SS-CPT NPs displayed an extremely high therapeutic agent loading efficiency (approaching 100%). Besides, in vitro experimental results indicated that IR820-SS-CPT NPs displayed remarkable tumor cell killing efficiency. Especially, the IR820-SS-CPT NPs exhibited excellent anti-tumor effects in vivo. Both in vitro and in vivo experiments were conducted, which have indicated that the design of IR820-SS-CPT NPs can provide an efficient nanotherapeutics for chemo-photothermal therapy. Conclusion A novel activatable amphiphilic small molecular prodrug IR820-SS-CPT has been developed in this study, which integrated multiple advantages of GSH-triggered drug release, high therapeutic agent content, and combined chemo-photothermal therapy into one drug delivery system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01093-y.
Collapse
Affiliation(s)
- Mingtao Ao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Yu
- Medical College, Guangxi University, Nanning, 530004, China. .,Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China.
| | - Yixiang Li
- Medical College, Guangxi University, Nanning, 530004, China
| | - Mengya Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361005, China
| | - Yonghe Tang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Hua Yang
- Medical College, Guangxi University, Nanning, 530004, China
| | - Xiaojing Wu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Yifan Zhuang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361005, China
| | - Huiyun Wang
- Department of Pharmacy, Jining Medical University, Rizhao, 276826, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361005, China.
| | - Xiao Dong Chen
- Suzhou Key Lab of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Wang N, Liu C, Yao W, Zhou H, Yu S, Chen H, Qiao W. Endogenous reactive oxygen species burst induced and spatiotemporally controlled multiple drug release by traceable nanoparticles for enhancing antitumor efficacy. Biomater Sci 2021; 9:4968-4983. [PMID: 34085682 DOI: 10.1039/d1bm00668a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) are not only used as a therapeutic reagent in chemodynamic therapy (CDT), to stimulate the release of antineoplastic drugs, they can also be used to achieve a combined effect of CDT and chemotherapy to enhance anticancer effects. Herein, we synthesized a pH-responsive prodrug (PEG2k-NH-N-DOX), ROS-responsive prodrug (PEG2k-S-S-CPT-ROS), organic CDT agents (TPP-PEG2k-LND, TPP-PEG2k-TOS), and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), and used them to encapsulate combrestatinA4 (CA4) to prepare traceable pH/ROS dual-responsive multifunctional nanoparticles (TLDCAG NPs) with endogenous ROS burst and spatiotemporally controlled multiple drug release ability. Firstly, TLDCAG NPs were accumulated in the tumor cell microenvironment via an enhanced permeability and retention (EPR) effect. Secondly, CA4 was released and specifically destroyed angiogenesis to facilitate the interaction between the tumor and the remaining TLDCG NPs. After accumulating in tumor cells, the TLDCG NPs could be destroyed under acidic conditions to quickly release doxorubicin (DOX), TPP-PEG2k-LND, and TPP-PEG2k-TOS. Thirdly, TPP-PEG2k-LND and TPP-PEG2k-TOS quickly targeted mitochondria, induced endogenous ROS bursts, reduced the mitochondrial membrane potential, and induced tumor cell apoptosis. Endogenous ROS can not only be used as a therapeutic reagent for CDT, but also can cut off the thioketal bond in PEG2k-S-S-CPT-ROS and release camptothecin (CPT). Finally, TLDCAG NPs were traced by magnetic resonance imaging (MRI). Furthermore, in vitro and vivo results indicate that the TLDCAG NPs have vigorous antitumor activity and negligible systemic toxicity. Therefore, the TLDCAG NPs provide an efficient strategy for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
10
|
Wang N, Liu C, Yao W, Zhou H, Yu S, Chen H, Qiao W. A traceable, GSH/pH dual-responsive nanoparticles with spatiotemporally controlled multiple drugs release ability to enhance antitumor efficacy. Colloids Surf B Biointerfaces 2021; 205:111866. [PMID: 34044333 DOI: 10.1016/j.colsurfb.2021.111866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Constructing highly efficient and multifunctional nanoparticles to overcome the multiple challenges of targeted drug delivery is a new strategy urgently needed in tumor therapy. Here, we synthesized pH-responsive prodrug (PEG2K-NH-N-DOX), GSH-responsive prodrug (PEG2K-S-S-CPT), folate-receptor targeting polymers (FA-PEG2K-L8, FA-PEG2K-TOS) and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), used to encapsulate combrestatinA4 (CA4) to prepare multifunctional nanoparticles (FTDCAG NPs). Unlike other nanoparticles, FTDCAG NPs contains three drugs with the ability to control the release in time and space, which can maximize the effectiveness of precise cancer chemotherapy. We first confirmed that specific binding between FTDCAG NPs and overexpressed folate-receptor cells by flow cytometry and confocal laser scanning microscopy. We then investigated the spatiotemporally controlled release ability of FTDCAG NPs loaded with doxorubicin (DOX), CA4 and camptothecin (CPT). Relative to pH = 7.4, the release efficiency of CA4 in the pH = 6.5 increased by 63.4 %. The first released CA4 is able to destroy the angiogenesis and help tumor cells to be exposed to the remaining FTDCG NPs. After being internalized into the tumor cells, FTDCG NPs is disassembled and the CPT and DOX were released due to the increase of intracellular GSH concentration and the decrease of pH value. Besides, the relaxation time of FTDCAG NPs is 3.86 times that of clinical Gd-DTPA, and the in vitro and vivo T1-weighted imaging is brighter, which can be used to trace the nanoparticles by MRI. Therefore, FTDCAG NPs provide an efficient strategy for the design of multifunctional drug delivery systems for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
11
|
Li Q, Fu D, Zhang J, Li T, Wang H, Hou W, Niu B, Guo R, Liu Y. Poly(aspartic acid)-based pH-responsive targeting co-delivery nanoparticles. J Biomater Appl 2021; 36:579-591. [PMID: 33509034 DOI: 10.1177/0885328220988071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Encapsulation of therapeutic molecules into nanocarrier is an extensively explored strategy to treat cancer more effectively. In this study, pH-responsive targeting dual-agent delivery nanoparticles were prepared, into which hydrophilic doxorubicin hydrochloride (DOX) and hydrophobic curcumin (CUR) were entrapped. Tyrosine (Tyr) was grafted onto poly(aspartic acid) (PASP) to produce PASP-Tyr, the following reaction between hyaluronic acid (HA) and ethylenediamine (EDA) modified PASP-Tyr formed the nanocarrier HA-EDA-PASP-Tyr (HEPT), and the loading capacity was up to 50.9 ± 4.3% for CUR and 26.0 ± 1.9% for DOX. The spherical HEPT with the mean particle size of 142.9 ± 11.4 nm expanded and deformed into petaloid pattern with an increased size of about 2 µm when triggered by the acidic microenvironment. In vitro anticancer activity evaluation revealed that the co-loaded (DOX+CUR)@HEPT nanoparticles presented higher cytotoxicity against HCT-116 cells compared with that of the free combination of (DOX+CUR). Confocal laser scanning microscopy observation indicated that HEPT carrier promoted cellular uptake of drugs by means of active targeting capacity of HA ligand. With high loading capacity and tailored carrier structure, the nanoparticles formulations may offer a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Qiang Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Dongsheng Fu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jie Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Tianyang Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Huifang Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Wenjuan Hou
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ruijie Guo
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yiming Liu
- Large Apparatus Analysis and Test Centre, Shanxi Academy of Analytical Science, Taiyuan, China
| |
Collapse
|
12
|
Li Q, Fu D, Zhang J, Yan H, Wang H, Niu B, Guo R, Liu Y. Dual stimuli-responsive polypeptide-calcium phosphate hybrid nanoparticles for co-delivery of multiple drugs in cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111586. [PMID: 33529927 DOI: 10.1016/j.colsurfb.2021.111586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/25/2022]
Abstract
In this study, a new type of polypeptide, crosslinked methoxy poly(ethylene glycol)-g-poly(aspartic acid)-g-tyrosine (CPPT), was synthesized via a green and simple one-pot polymerization method. With the disulfide-crosslinked interlayer and the CaP shell, the pH and redox dual-sensitive polypeptide-based organic-inorganic hybrid nanoparticles encapsulated curcumin (Cur) into the hydrophobic core of micelles and loaded doxorubicin hydrochloride (DOX) on the hydrophilic segment of micelles as well as CaP shell. The spherical Cur- and DOX-loaded nanoparticles (CPPT@CaP-CD) showed a hydrodynamics size of about 157.9 ± 3.9 nm. The premature leakage of drugs from the nanoparticles at physiological pH was efficiently restrained because of the enhanced structure integrity, whereas at acidic and hypoxia microenvironment the release of both drugs was promoted due to the rapid dissolution of the CaP shell and the break of the disulfide crosslinked network, facilitating the stimuli-responsive controllable drugs release. In vitro anticancer activity evaluation revealed that the co-loaded nanoparticles presented higher cytotoxicity against A549 cells compared with that of the free combination of Cur + DOX. Confocal laser scanning microscopy observation indicated that more DOX and Cur were released into the nucleus triggered by the up-regulated intracellular glutathione (GSH) concentration and decreased pH, displaying enhanced cell uptake. The self-assembling polypeptide-based dual-sensitive drug co-delivery system could be a promising platform for efficient chemotherapy.
Collapse
Affiliation(s)
- Qiang Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dongsheng Fu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hong Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ruijie Guo
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yiming Liu
- Shanxi Academy of Analytical Science, Taiyuan, 030006, China.
| |
Collapse
|
13
|
Prasad SR, Jayakrishnan A, Kumar TSS. Combinational delivery of anticancer drugs for osteosarcoma treatment using electrosprayed core shell nanocarriers. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:44. [PMID: 32367204 DOI: 10.1007/s10856-020-06379-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
In bone cancer treatment, local delivery of chemotherapeutic agents is preferred compared to other routes of administration. Delivery of multiple drugs using biodegradable carriers improves the treatment efficiency and overcomes drug resistance and toxicity. With this approach, we have developed multilayer biodegradable core shell nanoparticles (NPs) using the electro-spraying technique to deliver methotrexate (MTX) and doxorubicin (DOX) for the treatment of osteosarcoma. These core-shell NPs with a mean particle size of 212 ± 41 nm consist of hydroxyapatite (HA) and DOX as core with the outer shell made of chitosan (CH) followed by polycaprolactone (PCL) with MTX. The encapsulation efficiency of MTX was around 85% and DOX was 38%. In vitro drug release studies were performed in phosphate buffered saline (PBS) at pH 5 and pH 7.4 for 8 days. Different release profiles were observed in both acidic and alkaline pH. The sequential release of MTX followed by DOX was observed in both pH in sustained manner. Human osteosarcoma MG 63 (OMG-63) cells lines were used to test the cytotoxicity of drug loaded NPs. Multi-drug encapsulated bioresorbable and biodegradable electro-sprayed core shell NPs will be promising as a bone substitute for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- S Ram Prasad
- Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - A Jayakrishnan
- Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
- Raja Ramanna Fellow, Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum, 695 014, Kerala, India.
| | - T S Sampath Kumar
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| |
Collapse
|
14
|
The Application of Nanotechnology in the Codelivery of Active Constituents of Plants and Chemotherapeutics for Overcoming Physiological Barriers during Antitumor Treatment. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9083068. [PMID: 31915707 PMCID: PMC6930735 DOI: 10.1155/2019/9083068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
Antitumor therapy using a combination of drugs has shown increased clinical efficacy. Active constituents derived from plants can offer several advantages, such as high efficiacy, low toxicity, extensive effects, and multiple targets. At present, the combination of plants' active constituents and chemotherapeutic drugs has attracted increased attention. Nanodrug delivery systems (NDDSs) have been widely used in tumor-targeted therapy because of their efficacy of delivering antitumor drugs. The in vivo process of tumor-targeted NDDSs has several steps. They include blood circulation, tumor accumulation and penetration, target cell internalization and uptake, and drug release and drug response. In each step, NDDSs encounter multiple barriers that prevent their effective delivery to target sites. Studies have been performed to find alternative strategies to overcome these barriers. We reviewed the recent progress of codelivery of active constituents of plants and chemotherapeutics using NDDSs. Progress into transversing the physiological barriers for more effective in vivo antitumor delivery will be discussed in this review.
Collapse
|
15
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
16
|
Huang Y, Huang Y, He J, Wang H, Luo Y, Li Y, Liu J, Zhong L, Zhao Y. PEGylated immunoliposome-loaded endoglin single-chain antibody enhances anti-tumor capacity of porcine α1,3GT gene. Biomaterials 2019; 217:119231. [PMID: 31254933 DOI: 10.1016/j.biomaterials.2019.119231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Tumor could not be completely removed due to the absence of immune storm against tumor. The porcine α1,3 galactosyltransferase (α1,3 GT) induce the hyperacute rejection by synthesizing Galα1-3Galβ1-(3)4GlcNAc-R (αGal) on the surface of graft endothelial cells (ECs) during xeno-transplantation. This study aimed to develop anti-endoglin single-chain Fv fragments (ENG-scFv) conjugated PEGylated immunoliposomes (iLPs) to induce immune storm against tumor. Immune fluorescence was performed to detect the binding of ENG-scFv to human ENG, the endosomal/lysosomal escape of ENG-scFv-iLPs/α1,3 GT, and αGal expression in hENG-HEK293 cells. In vitro MTT assay was performed to measure ENG-scFv-iLPs/α1,3 GT cytotoxicity. NOD/SCID mouse born A549 tumor model was used to evaluate the therapeutic potency of ENG-scFv-iLPs/α1,3 GT. ENG-scFv-iLPs enabled efficient targeting delivery of α1,3 GT plasmid to ENG + tumors neovascular endothelial cells (TnECs), promoted endosomal/lysosomal escape due to the pH-sensitive ability, then synthesized carbohydrate epitope αGal on the surface of these cells to achieve the purpose of destroying the tumor. The mechanism of uptake for nanoparticles was energy driven, the clathrin-mediated endocytosis was the main endocytic pathway of the ENG-mAb-iLPs/α1,3 GT and lipid-raft-mediated of the ENG-scFv-iLPs/α1,3 GT, and macropinocytosis was also involved in intracellular entry. The inhibition of tumor angiogenesis and proliferation by ENG-scFv-iLPs/α1,3 GT was closely related to down-regulation of VEGF. Our findings establish an alternative therapeutic paradigm for scFv-conjugated nanoparticles to induce tumor cell apoptosis and inhibit tumor growth early. Such iLPs nanocarrier could efficiently release α1,3 GT to their distinct sites of action, where the endoglin + tumor neovascular endothelial cells (ENG + TnECs) exist, in a site-specific manner. Therefore, we believe that these scFv-targeted core-shell immunocomplexes are an important potential α1,3 GT delivery system for various solid tumor-targeted therapy.
Collapse
Affiliation(s)
- Yingying Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huiling Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yiqun Luo
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yanmei Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Junjie Liu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
17
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
18
|
Li SY, Guo SL. Optimal construction and pharmacokinetic study of CZ48-loaded poly (lactic acid) microbubbles for controlled drug delivery. Colloids Surf B Biointerfaces 2019; 178:269-275. [PMID: 30878801 DOI: 10.1016/j.colsurfb.2019.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 01/27/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
CZ48, a prodrug of camptothecin (CPT) with derivative resistant to lactone hydrolysis, suffers from limited application for cancer treatment due to poor water-solubility, thus causing its low bioavailability and absorption in vivo. To echo this problem, CZ48 was incorporated into poly (lactic acid) (PLA) microbubbles via a double emulsion technique (W/O/W), and the successful loading was confirmed by X-ray diffraction (XRD) patterns and confocal laser scanning microscope (CLSM). The obtained CZ48-loaded microbubbles had a diameter ranging from 0.5 to 6.7 μm, and the encapsulation efficiency and drug-loading content were as high as 85.73 ± 2.41% and 26.07 ± 0.76%, respectively. The in vitro drug release demonstrated that only about 55% of CZ48 was released for CZ48-loaded PLA microbubbles in 48 h. In contrast, over 90% of CZ48 was released for free CZ48 crystals sample in only 5 h. Besides, in vivo pharmacokinetic studies further revealed that the availability of both CZ48 and its metabolite CPT were obviously enhanced after the incorporation of CZ48 into PLA microbubbles. To be noted, the value of AUC0-∞ of the CZ48-loaded microbubbles was about 5-fold higher than that of free CZ48 suspension, implying a much higher anticancer effect of the CZ48-loaded microbubbles. The half-life time (T1/2) of both CZ48 and CPT of the CZ48-loaded microbubbles were also significantly longer than that of the free CZ48, indicating a delayed release time for the microbubbles. Hence, this work promotes a promising drug carrier system for the controlled release of CZ48 as well as other drugs with poor water-solubility.
Collapse
Affiliation(s)
- Si-Yang Li
- Jiangsu Food & Pharmaceutical Science College, Huaian 223003 PR China
| | - Sheng-Lei Guo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China.
| |
Collapse
|
19
|
Amphiphilic core-shell nanoparticles: Synthesis, biophysical properties, and applications. Colloids Surf B Biointerfaces 2018; 172:68-81. [DOI: 10.1016/j.colsurfb.2018.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 08/12/2018] [Indexed: 11/18/2022]
|
20
|
Castillo PM, Jimenez-Ruiz A, Carnerero JM, Prado-Gotor R. Exploring Factors for the Design of Nanoparticles as Drug Delivery Vectors. Chemphyschem 2018; 19:2810-2828. [DOI: 10.1002/cphc.201800388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Paula M. Castillo
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Aila Jimenez-Ruiz
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Jose M. Carnerero
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Rafael Prado-Gotor
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| |
Collapse
|
21
|
Wang L, Guan H, Wang Z, Xing Y, Zhang J, Cai K. Hybrid Mesoporous–Microporous Nanocarriers for Overcoming Multidrug Resistance by Sequential Drug Delivery. Mol Pharm 2018; 15:2503-2512. [DOI: 10.1021/acs.molpharmaceut.7b01096] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Liucan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Haidi Guan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| |
Collapse
|
22
|
Chitgupi U, Shao S, Carter KA, Huang WC, Lovell JF. Multicolor Liposome Mixtures for Selective and Selectable Cargo Release. NANO LETTERS 2018; 18:1331-1336. [PMID: 29384679 DOI: 10.1021/acs.nanolett.7b05025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many approaches exist for stimuli-triggered cargo release from nanocarriers, but few can provide for on-demand release of multiple payloads, selectively. Here, we report the synthesis of purpurin-phospholipid (Pur-P), a lipid chromophore that has near-infrared absorbance red-shifted by 30 nm compared to a structurally similar pyropheophorbide-phospholipid (Pyr-P). Liposomes containing small amounts of either Pur-P or Pyr-P exhibited similar physical properties and fluorescence self-quenching. Loaded with distinct cargos, Pur-P and Pyr-P liposomes were mixed into a single colloidal suspension and selectively released cargo depending on irradiation wavelength. Spatiotemporal control of distinct cargo release was achieved by controlling multicolor laser placement. Using basic orange and doxorubicin anthraquinones, multidimensional cytotoxicity gradients were established to gauge efficacy against cancer cells using light-released drug. Wavelength selectivity of cargo release was maintained following intramuscular administration to mice.
Collapse
Affiliation(s)
- Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| |
Collapse
|
23
|
Biodegradable Alginate-Chitosan Hollow Nanospheres for Codelivery of Doxorubicin and Paclitaxel for the Effect of Human Lung Cancer A549 Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4607945. [PMID: 29789794 PMCID: PMC5896339 DOI: 10.1155/2018/4607945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023]
Abstract
A biodegradable alginate coated chitosan hollow nanosphere (ACHN) was prepared by a hard template method and used for codelivery of doxorubicin (DOX) and paclitaxel (PTX) to investigate the effect on human lung cancer A549 cells. PTX was loaded into the nanometer hollow structure of ACHN through adsorption method. DOX was coated on surface of ACHN through electrostatic interaction. Drug release studies exhibited a sustained-release effect. According to X-ray diffraction patterns (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR) analysis, DOX structure in the loading samples (DOX-PTX-ACHN) was of amorphous state while PTX was microcrystalline. Cytotoxicity experiments showed ACHN was nontoxic as carrier material and the combination of DOX and PTX in DOX-PTX-ACHN exhibited a good inhibiting effect on cell proliferation. Cell uptake experiments demonstrated that DOX-PTX-ACHN accumulated in the cytoplasm. Degradation experiments illustrated that ACHN was a biodegradable material. In summary, these results clearly indicate that ACHN can be utilized as a potential biomaterial to transport multiple drugs to be used in combination therapy.
Collapse
|
24
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [PMID: 29261194 DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | | | | | | |
Collapse
|
25
|
Zhuang C, Shi C, Tao F, Cui Y. Honeycomb structural composite polymer network of gelatin and functional cellulose ester for controlled release of omeprazole. Int J Biol Macromol 2017; 105:1644-1653. [DOI: 10.1016/j.ijbiomac.2017.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/04/2017] [Indexed: 01/21/2023]
|
26
|
Farshbaf M, Davaran S, Zarebkohan A, Annabi N, Akbarzadeh A, Salehi R. Significant role of cationic polymers in drug delivery systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1872-1891. [PMID: 29103306 DOI: 10.1080/21691401.2017.1395344] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.
Collapse
Affiliation(s)
- Masoud Farshbaf
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Science , Tabriz University of Medical Science , Tabriz , Iran
| | - Soodabeh Davaran
- b Research Centre for Pharmaceutical Nanotechnology , Tabriz University of Medical Science , Tabriz , Iran
| | - Amir Zarebkohan
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Science , Tabriz University of Medical Science , Tabriz , Iran
| | - Nasim Annabi
- c Biomaterials Innovation Research Centre , Brigham and Women's Hospital, Harvard Medical School , Cambridge , MA , USA.,d Harvard-MIT Division of Health Sciences and Technology , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Northeastern University , Boston , MA , USA
| | - Abolfazl Akbarzadeh
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Science , Tabriz University of Medical Science , Tabriz , Iran
| | - Roya Salehi
- f Drug Applied Research Centre and Department of Medical Nanotechnology, Faculty of Advanced Medical Science , Tabriz University of Medical Science , Tabriz , Iran
| |
Collapse
|
27
|
Wu C, Xu J, Hao Y, Zhao Y, Qiu Y, Jiang J, Yu T, Ji P, Liu Y. Application of a lipid-coated hollow calcium phosphate nanoparticle in synergistic co-delivery of doxorubicin and paclitaxel for the treatment of human lung cancer A549 cells. Int J Nanomedicine 2017; 12:7979-7992. [PMID: 29184399 PMCID: PMC5673048 DOI: 10.2147/ijn.s140957] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In this study, we developed a lipid-coated hollow calcium phosphate (LCP) nanoparticle for the combined application of two chemotherapeutic drugs to human lung cancer A549 cells. Hydrophilic doxorubicin (DOX) was incorporated into the hollow structure of hollow calcium phosphate (HCP), and a lipid bilayer containing hydrophobic paclitaxel (PTX) was subsequently coated on the surface of HCP. The study on combinational effects demonstrated that the combination of DOX and PTX at a mass ratio of 12:1 showed a synergistic effect against A549 cells. The particle size, zeta potential, and encapsulation efficiency were measured to obtain optimal values: particle size was 335.0 3.2 nm, zeta potential −41.1 mV, and encapsulation efficiency 80.40%±2.24%. An in vitro release study indicated that LCP produced a sustained drug release. A549 cells had a better uptake of LCP with good biocompatibility. Furthermore, in vitro cytotoxicity experiment, apoptosis analysis, in vivo anti-tumor efficacy and protein expression analysis of Bax, Bcl-2, and Caspase-3 demonstrated that the co-delivery system based on LCP had significant synergistic anti-tumor activity. All conclusions suggested that LCP is a promising platform for co-delivery of multiple anti-tumor drugs.
Collapse
Affiliation(s)
- Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Jie Xu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Yanna Hao
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Ying Zhao
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Yang Qiu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Jie Jiang
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Tong Yu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Peng Ji
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Ying Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
28
|
Zhuang C, Tao F, Cui Y. Eco-friendly biorefractory films of gelatin and TEMPO-oxidized cellulose ester for food packaging application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3384-3395. [PMID: 27996090 DOI: 10.1002/jsfa.8189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/28/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND In recent years, many types of food-packaging films and composites have been prepared using gelatin because of its good film-forming ability, non-toxic nature and cost-effectiveness. However, the relatively weak thermal stability, poor mechanical properties and easily-degradable quality limit the potential application of gelatin as a practical material. Microcrystalline cellulose (MCC), which comprises one of the most abundant biomass resources, has been regarded as a safe and reliable food additive because it has the same ingredients as the cellulose in people's daily intake. Food-packaging films with the excellent properties provided by gelatin and oxidized-cellulose represent a topic of great interest. RESULTS MCC was modified by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation and chosen as the base of the macromolecule cross-linker (TMN). After modification of gelatin film by TMN, the minimum amount of free -NH2 in solution was 4.8 × 10-4 mol g-1 ). The thermal property obviously increased (from 322.31 o C to 352.63 o C) and was crucial for usage in the food industry. The highest water contact value 123.09° (η = 25%) indicated a better surface hydrophobicity. The higher Eab (58.88%) and lower Em (77.16%) demonstrated that a more flexible and shatter-proof material was obtained. Water vapor uptake studies suggested increased moisture absorption and greater swelling ability. CONCLUSION The film material obtained in the present study was safe, stable, eco-friendly and biorefractory and could also be decomposed completely by the environment after disposal as a result of the properties of the ingredients gelatin and cellulose. The incorporation of a cellulosic cross-linker to gelatin-based films was an ideal choice with respect to developing a packaging for the food industry. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Zhuang
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan, PR China
| | - Furong Tao
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan, PR China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan, PR China
| |
Collapse
|
29
|
Deng B, Xia M, Qian J, Li R, Li L, Shen J, Li G, Xie Y. Calcium Phosphate-Reinforced Reduction-Sensitive Hyaluronic Acid Micelles for Delivering Paclitaxel in Cancer Therapy. Mol Pharm 2017; 14:1938-1949. [DOI: 10.1021/acs.molpharmaceut.7b00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bing Deng
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxin Xia
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin Qian
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Li
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lujia Li
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Pharmacy
Department, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jianliang Shen
- Department
of Nanomedicine, Houston Methodist Research Institute, Houston 77030, United States
| | - Guowen Li
- Pharmacy
Department, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yan Xie
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
30
|
|
31
|
Jiang J, Liu Y, Wu C, Qiu Y, Xu X, Lv H, Bai A, Liu X. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells. Drug Dev Ind Pharm 2017; 43:1304-1313. [PMID: 28402175 DOI: 10.1080/03639045.2017.1318895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.
Collapse
Affiliation(s)
- Jie Jiang
- a Pharmacy School, Jinzhou Medical University , Jinzhou , PR China
| | - Ying Liu
- a Pharmacy School, Jinzhou Medical University , Jinzhou , PR China
| | - Chao Wu
- a Pharmacy School, Jinzhou Medical University , Jinzhou , PR China
| | - Yang Qiu
- a Pharmacy School, Jinzhou Medical University , Jinzhou , PR China
| | - Xiaoyan Xu
- a Pharmacy School, Jinzhou Medical University , Jinzhou , PR China
| | - Huiling Lv
- a Pharmacy School, Jinzhou Medical University , Jinzhou , PR China
| | - Andi Bai
- a Pharmacy School, Jinzhou Medical University , Jinzhou , PR China
| | - Xuan Liu
- a Pharmacy School, Jinzhou Medical University , Jinzhou , PR China
| |
Collapse
|
32
|
Qiu Y, Wu C, Jiang J, Hao Y, Zhao Y, Xu J, Yu T, Ji P. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:835-843. [DOI: 10.1016/j.msec.2016.10.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/02/2016] [Accepted: 10/30/2016] [Indexed: 11/26/2022]
|
33
|
Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging. J Control Release 2016; 243:303-322. [DOI: 10.1016/j.jconrel.2016.10.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022]
|
34
|
Zhou Z, Kennell C, Lee JY, Leung YK, Tarapore P. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:403-410. [PMID: 27520723 DOI: 10.1016/j.nano.2016.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/05/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022]
Abstract
In this study, a development of a novel calcium phosphate-polymer hybrid nanoparticle system is reported.The nanoparticle system can co-encapsulate and co-deliver a combination of therapeutic agents with different physicochemical properties (i.e., inhibitors for microRNA-221 and microRNA-222 (miRi-221/222) and paclitaxel (pac)).miRi-221/222 are hydrophilic and were encapsulated with calcium phosphate by co-precipitation in a water-in-oil emulsion.The precipitates were then coated with an anionic lipid, dioleoylphosphatidic acid (DOPA), to co-encapsulate hydrophobic paclitaxel outside the hydrophilic precipitates and inside the same nanoparticle.The nanoparticles formed by following this approach had a size of about ≤100nm and contained both lipid-coated calcium phosphate/miRi and paclitaxel.This nanoparticle system was found to simultaneously deliver paclitaxel and miRi-221/222 to their intracellular targets, leading to inhibit proliferative mechanisms of miR-221/222 and thus significantly enhancing the therapeutic efficacy of paclitaxel.
Collapse
Affiliation(s)
- Zilan Zhou
- Chemical Engineering Program, Department of Biomedical, Environmental, and Chemical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Carly Kennell
- Chemical Engineering Program, Department of Biomedical, Environmental, and Chemical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Joo-Youp Lee
- Chemical Engineering Program, Department of Biomedical, Environmental, and Chemical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Yuet-Kin Leung
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Pheruza Tarapore
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
35
|
Huang Y, Wang YJ, Wang Y, Yi S, Fan Z, Sun L, Lin D, Anreddy N, Zhu H, Schmidt M, Chen ZS, Zhang M. Exploring naturally occurring ivy nanoparticles as an alternative biomaterial. Acta Biomater 2015. [PMID: 26219859 DOI: 10.1016/j.actbio.2015.07.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arabinoglactan protein (AGP)-rich nanoparticles obtained from the sticky exudates of Hedera helix (English ivy), have shown promising potential to be used in nanomedicine owing to their excellent aqueous solubility, low intrinsic viscosity, biocompatibility, and biodegradability. In this study, the feasibilities of utilizing ivy nanoparticles (INPs) as nano-carriers for delivering chemotherapeutic drugs in cancer therapy and as nano-fillers to develop novel scaffolds for tissue engineering in regenerative medicine are evaluated. Via electrostatic and hydrophobic interactions, pH-responsive nanoconjugates are formed between the INPs and the doxorubicin (DOX) with an entrapment ratio of 77.9±3.9%. While the INPs show minimal cytotoxicity, the formed INP-DOX conjugates exhibit substantially stronger cytotoxic activity than free DOX against multiple cancer cell lines, suggesting a synergistic effect is established upon conjugation. The anti-cancer effects of the INP-DOX conjugates are further evaluated via in vivo xenograft assays by subcutaneously implanting DOX resistant cell line, SW620/Ad-300, into nude mice. The tumor volumes in mice treated with the INP-DOX conjugates are significantly less than those of the mice treated with free DOX. In addition, the INPs are further exploited as nano-fillers to develop fibrous scaffolds with collagen, via mimicking the porous matrix where the INPs are embedded under natural condition. Enhanced adhesion of smooth muscle cells (SMCs) and accelerated proliferation of mouse aortic SMCs are observed in this newly constructed scaffold. Overall, the results obtained from the present study suggest great potential of the INPs to be used as biocompatible nanomaterials in nanomedicine. The AGP-rich INP renders a glycoprotein architecture that is amenable for modification according to the functional designs, capable of being developed as versatile nanomaterials for extensive biomedical applications. STATEMENT OF SIGNIFICANCE Naturally occurring organic nanomaterials have drawn increasing interest for their potential biomedical applications in recent years. In this study, a new type of naturally occurring nanoparticles obtained from the sticky exudates on the adventitious roots of English ivy (H. helix), was explored for its potential biomedical application. In particular, the feasibilities of utilizing ivy nanoparticles (INPs) as nano-carriers for delivering chemotherapeutic drugs in cancer therapy and as nano-fillers to develop novel scaffolds for tissue engineering in regenerative medicine were evaluated both in vitro and in vivo. Overall, the results obtained from the present study suggest the great potential of the INPs to be used as biocompatible nanomaterials in nanomedicine. This study may open a totally new frontier for exploring the biomedical application of naturally occurring nanomaterials.
Collapse
Affiliation(s)
- Yujian Huang
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yongzhong Wang
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Sijia Yi
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Zhen Fan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Leming Sun
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Derrick Lin
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Nagaraju Anreddy
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hua Zhu
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Michael Schmidt
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Mingjun Zhang
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Qi C, Zhu YJ, Sun TW, Wu J, Chen F. Microwave-Assisted Hydrothermal Rapid Synthesis of Amorphous Calcium Phosphate Mesoporous Microspheres Using Adenosine 5'-Diphosphate and Application in pH-Responsive Drug Delivery. Chem Asian J 2015; 10:2503-11. [PMID: 26248600 DOI: 10.1002/asia.201500667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/03/2015] [Indexed: 01/16/2023]
Abstract
Herein we report a rapid and green strategy for the preparation of amorphous calcium phosphate mesoporous microspheres (ACP-MSs) using adenosine 5'-diphosphate disodium salt (ADP) as an organic phosphorus source by a microwave-assisted hydrothermal method. The effects of the pH value, the reaction time, and temperature on the crystal phase and morphology of the product are investigated. The ADP biomolecules used in this strategy play an important role in the formation of ACP-MSs. The as-prepared ACP-MSs are efficient for anticancer drug delivery by using doxorubicin (Dox) as a model drug, and the Dox-loaded ACP-MSs show a high ability to damage cancer cells. Moreover, the ACP-MSs drug delivery system exhibits a pH-responsive drug-release behavior due to the degradation of ACP-MSs at a low pH value, thus, it is promising for applications in pH-responsive drug delivery.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jin Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
37
|
Li N, Zhang P, Huang C, Song Y, Garg S, Luan Y. Co-delivery of doxorubicin hydrochloride and verapamil hydrochloride by pH-sensitive polymersomes for the reversal of multidrug resistance. RSC Adv 2015. [DOI: 10.1039/c5ra15313a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A promising co-delivery system was proposed for effectively reversing multidrug resistance of cancer cells and simultaneously improving the anticancer effect of the drug.
Collapse
Affiliation(s)
- Nuannuan Li
- School of Pharmaceutical Science
- Shandong University
- Jinan
- P. R. China
| | - Pei Zhang
- School of Pharmaceutical Science
- Shandong University
- Jinan
- P. R. China
| | - Chunzhi Huang
- School of Pharmaceutical Science
- Shandong University
- Jinan
- P. R. China
| | - Yunmei Song
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide
- Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide
- Australia
| | - Yuxia Luan
- School of Pharmaceutical Science
- Shandong University
- Jinan
- P. R. China
| |
Collapse
|