1
|
Srot V, Houari S, Kapun G, Bussmann B, Predel F, Pokorny B, Bužan E, Salzberger U, Fenk B, Kelsch M, van Aken PA. Ingenious Architecture and Coloration Generation in Enamel of Rodent Teeth. ACS NANO 2024; 18:11270-11283. [PMID: 38629732 PMCID: PMC11064225 DOI: 10.1021/acsnano.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Teeth exemplify architectures comprising an interplay of inorganic and organic constituents, resulting in sophisticated natural composites. Rodents (Rodentia) showcase extraordinary adaptations, with their continuously growing incisors surpassing human teeth in functional and structural optimizations. In this study, employing state-of-the-art direct atomic-scale imaging and nanoscale spectroscopies, we present compelling evidence that the release of material from ameloblasts and the subsequent formation of iron-rich enamel and surface layers in the constantly growing incisors of rodents are complex orchestrated processes, intricately regulated and independent of environmental factors. The synergistic fusion of three-dimensional tomography and imaging techniques of etched rodent́s enamel unveils a direct correlation between the presence of pockets infused with ferrihydrite-like material and the acid resistant properties exhibited by the iron-rich enamel, fortifying it as an efficient protective shield. Moreover, observations using optical microscopy shed light on the role of iron-rich enamel as a microstructural element that acts as a path for color transmission, although the native color remains indistinguishable from that of regular enamel, challenging the prevailing paradigms. The redefinition of "pigmented enamel" to encompass ferrihydrite-like infusion in rodent incisors reshapes our perception of incisor microstructure and color generation. The functional significance of acid-resistant iron-rich enamel and the understanding of the underlying coloration mechanism in rodent incisors have far-reaching implications for human health, development of potentially groundbreaking dental materials, and restorative dentistry. These findings enable the creation of an entirely different class of dental biomaterials with enhanced properties, inspired by the ingenious designs found in nature.
Collapse
Affiliation(s)
- Vesna Srot
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Sophia Houari
- Unité
de Formation et de Recherche d’Odontologie, Université Paris Cité, Paris 75006, France
- UR2496,
Biomedical Research in Odontology, Université
Paris Cité, Montrouge 92120, France
| | - Gregor Kapun
- National
Institute of Chemistry, Ljubljana 1000, Slovenia
- Centre
of Excellence on Nanoscience and Nanotechnology−Nanocenter, Ljubljana 1000, Slovenia
| | - Birgit Bussmann
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Felicitas Predel
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Boštjan Pokorny
- Faculty
of Environmental Protection, Velenje 3320, Slovenia
- Slovenian
Forestry Institute, Ljubljana 1000, Slovenia
| | - Elena Bužan
- Faculty
of Environmental Protection, Velenje 3320, Slovenia
- Faculty
of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper 6000, Slovenia
| | - Ute Salzberger
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Bernhard Fenk
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Marion Kelsch
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Peter A. van Aken
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| |
Collapse
|
2
|
Chaupard M, Degrouard J, Li X, Stéphan O, Kociak M, Gref R, de Frutos M. Nanoscale Multimodal Analysis of Sensitive Nanomaterials by Monochromated STEM-EELS in Low-Dose and Cryogenic Conditions. ACS NANO 2023; 17:3452-3464. [PMID: 36745677 DOI: 10.1021/acsnano.2c09571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) provides spatially resolved chemical information down to the atomic scale. However, studying radiation-sensitive specimens such as organic-inorganic composites remains extremely challenging. Here, we analyzed metal-organic framework nanoparticles (nanoMOFs) at low-dose (10 e-/Å2) and liquid nitrogen temperatures, similar to cryo-TEM conditions usually employed for high-resolution imaging of biological specimens. Our results demonstrate that monochromated STEM-EELS enables damage-free analysis of nanoMOFs, providing in a single experiment, signatures of intact functional groups comparable with infrared, ultraviolet, and X-ray data, with an energy resolution down to 7 meV. The signals have been mapped at the nanoscale (<10 nm) for each of these energy spectral ranges, including the chemical features observed for high energy losses (X-ray range). By controlling beam irradiation and monitoring spectral changes, our work provides insights into the possible pathways of chemical reactions occurring under electron exposure. These results demonstrate the possibilities for characterizing at the nanoscale the chemistry of sensitive systems such as organic and biological materials.
Collapse
Affiliation(s)
- Maeva Chaupard
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
- Institut des Sciences Moléculaires d'Orsay, CNRS, UMR 8214, Université Paris-Saclay, F-91405 Orsay, France
| | - Jéril Degrouard
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| | - Xiaoyan Li
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| | - Odile Stéphan
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| | - Mathieu Kociak
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay, CNRS, UMR 8214, Université Paris-Saclay, F-91405 Orsay, France
| | - Marta de Frutos
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
3
|
de Frutos M, Rodríguez-Navarro AB, Li X, Checa AG. Nanoscale Analysis of the Structure and Composition of Biogenic Calcite Reveals the Biomineral Growth Pattern. ACS NANO 2023; 17:2829-2839. [PMID: 36696398 DOI: 10.1021/acsnano.2c11169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The vast majority of calcium carbonate biocrystals differ from inorganic crystals in that they display a patent nanoroughness consisting of lumps of crystalline material (calcite/aragonite) surrounded by amorphous pellicles. Scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) was used to map the calcite secreted by a barnacle chemically and structurally with ultrahigh resolution (down to 1 nm). The material is composed of irregular lumps of calcite (up to two hundred nm in diameter) surrounded by relatively continuous cortexes (up to 20 nm thick) of amorphous calcium carbonate (ACC) and/or nanocalcite plus biomolecules, with a surplus of calcium relative to carbonate. We develop a model by which the separation of the crystalline and amorphous phases takes place upon crystallization of the calcite from a precursor ACC. The organic biomolecules are expelled from the crystal lattice and concentrate in the form of pellicles, where they stabilize minor amounts of ACC/nanocalcite. In this way, we change the previously established conception of biomineral structure and growth.
Collapse
Affiliation(s)
- Marta de Frutos
- Laboratoire de Physique des Solides (LPS), CNRS UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| | | | - Xiaoyan Li
- Laboratoire de Physique des Solides (LPS), CNRS UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| | - Antonio G Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, ES-18071 Granada, Spain
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, 18100 Armilla, Spain
| |
Collapse
|
4
|
Bazin D, Reguer S, Vantelon D, Haymann JP, Letavernier E, Frochot V, Daudon M, Esteve E, Colboc H. XANES spectroscopy for the clinician. CR CHIM 2022. [DOI: 10.5802/crchim.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Bazin D, Bouderlique E, Daudon M, Frochot V, Haymann JP, Letavernier E, Tielens F, Weil R. Scanning electron microscopy—a powerful imaging technique for the clinician. CR CHIM 2022. [DOI: 10.5802/crchim.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
7
|
Moon JH, Lee MY, Park BC, Jeon YS, Kim S, Kim T, Ko MJ, Cho KH, Nam KT, Kim YK. Inorganic Hollow Nanocoils Fabricated by Controlled Interfacial Reaction and Their Electrocatalytic Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103575. [PMID: 34561965 DOI: 10.1002/smll.202103575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The fabrication of 3D hollow nanostructures not only allows the tactical provision of specific physicochemical properties but also broadens the application scope of such materials in various fields. The synthesis of 3D hollow nanocoils (HNCs), however, is limited by the lack of an appropriate template or synthesis method, thereby restricting the wide-scale application of HNCs. Herein, a strategy for preparing HNCs by harnessing a single sacrificial template to modulate the interfacial reaction at a solid-liquid interface that allows the shape-regulated transition is studied. Furthermore, the triggering of the Kirkendall effect in 3D HNCs is demonstrated. Depending on the final state of the transition metal ions reduced during the electrochemical preparation of HNCs, the surface states of the binding anions and the composition of the HNCs can be tuned. In a single-component CrPO4 HNC with a clean surface, the Kirkendall effect of the coil shape is analyzed at various points throughout the reaction. The rough-surface multicomponent MnOx P0.21 HNCs are complexed with ligand-modified BF4 -Mn3 O4 nanoparticles. The fabricated nanocomposite exhibits an overpotential decrease of 25 mV at neutral pH compared to pure BF4 -Mn3 O4 nanoparticles because of the increased active surface area.
Collapse
Affiliation(s)
- Jun Hwan Moon
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Moo Young Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bum Chul Park
- Brain Korea Center for Smart Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Sang Jeon
- Institute of Engineering Research, Korea University, Seoul, 02841, Republic of Korea
| | - Seunghyun Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taesoon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Min Jun Ko
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kang Hee Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea Center for Smart Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
- Institute of Engineering Research, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
8
|
Jokisaari JR, Hu X, Mukherjee A, Uskoković V, Klie RF. Hydroxyapatite as a scavenger of reactive radiolysis species in graphene liquid cells for in situelectron microscopy. NANOTECHNOLOGY 2021; 32:485707. [PMID: 34407513 DOI: 10.1088/1361-6528/ac1ebb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Liquid cell electron microscopy is an imaging technique allowing for the investigation of the interaction of liquids and solids at nanoscopic length scales. Suchin situobservations are increasingly in-demand in an array of fields, from biological sciences to medicine to batteries. Graphene liquid cells (GLCs), in particular, have generated a great interest as a low-scattering window material with the potential for increasing the quality of both imaging and spectroscopy. However, preserving the stability of the liquid and of the sample in the GLC remains a considerable challenge. In the present work we encapsulate water and hydroxyapatite (HAP), a pH-sensitive biological material, in GLCs to observe the interactions between the graphene, HAP, and the electron beam. HAP was chosen for several reasons. One is its ubiquity in biological specimens such as bones and teeth, and the second is the presence of phosphate ions in common buffer solutions. Finally, there is its sensitivity to changes in pH, which result from beam-induced hydrolysis in liquid cells. A dynamic process of dissolution and recrystallization of HAP was observed, which correlated with the production of H+ions by the beam during imaging. In addition, a large increase in the stability of the GLC under irradiation was noted. Specifically, no stable hydrogen bubbles were detected under the electron fluxes routinely exceeding 170 e-Å-2s-1. With the measured threshold dose for the bubble formation in pure water equaling 9 e-Å-2s-1, it was concluded that the presence of HAP increases the resistance of water against radiolysis in the GLC by more than an order of magnitude. These results confirm the possibility of using biological materials, such as HAP, as stabilizers in liquid cell electron microscopy. They outline a potential route for stabilization of specimens in liquid cells through the addition of a scavenger of reactive species generated by the beam-induced hydrolysis of water. These improvements are essential for enhancing both the resolution of imaging and the available imaging time, as well as avoiding the beam-induced artifacts.
Collapse
Affiliation(s)
- Jacob R Jokisaari
- Department of Physics, University of Illinois, Chicago, IL, United States of America
| | - Xuan Hu
- Department of Physics, University of Illinois, Chicago, IL, United States of America
| | - Arijita Mukherjee
- Department of Physics, University of Illinois, Chicago, IL, United States of America
| | - Vuk Uskoković
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, United States of America
- TardigradeNano LLC, Irvine, CA, United States of America
| | - Robert F Klie
- Department of Physics, University of Illinois, Chicago, IL, United States of America
| |
Collapse
|
9
|
Brassolatti P, Bossini PS, de Andrade ALM, Luna GLF, da Silva JV, Almeida-Lopes L, Napolitano MA, de Avó LRDS, Leal ÂMDO, Anibal FDF. Comparison of two different biomaterials in the bone regeneration (15, 30 and 60 days) of critical defects in rats. Acta Cir Bras 2021; 36:e360605. [PMID: 34287608 PMCID: PMC8291905 DOI: 10.1590/acb360605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To evaluate and compare two types of different scaffolds in critical bone defects in rats. METHODS Seventy male Wistar rats (280 ± 20 grams) divided into three groups: control group (CG), untreated animals; biomaterial group 1 (BG1), animals that received the scaffold implanted hydroxyapatite (HA)/poly(lactic-co-glycolic) acid (PLGA); and biomaterial group 2 (BG2), animals that received the scaffolds HA/PLGA/Bleed. The critical bone defect was induced in the medial region of the skull calotte with the aid of an 8-mm-diameter trephine drill. The biomaterial was implanted in the form of 1.5 mm thick scaffolds, and samples were collected after 15, 30 and 60 days. Non-parametric Mann-Whitney test was used, with the significance level of 5% (p ≤ 0.05). RESULTS Histology revealed morphological and structural differences of the neoformed tissue between the experimental groups. Collagen-1 (Col-1) findings are consistent with the histological ones, in which BG2 presented the highest amount of fibers in its tissue matrix in all evaluated periods. In contrast, the results of receptor activator of nuclear factor kappa-Β ligand (Rank-L) immunoexpression were higher in BG2 in the periods of 30 and 60 days, indicating an increase of the degradation of the biomaterial and the remodeling activity of the bone. CONCLUSIONS The properties of the HA/PLGA/Bleed scaffold were superior when compared to the scaffold composed only by HA/PLGA.
Collapse
Affiliation(s)
- Patricia Brassolatti
- PhD in Biotechnology. Postgraduate Program in Evolutionary Genetics
and Molecular Biology – Department of Morphology and Pathology – Universidade
Federal de São Carlos – Sao Carlos (SP), Brazil
| | - Paulo Sérgio Bossini
- PhD in Physiotherapy. NUPEN - Research and Education Center in
Health Science and DMC Equipment Import and Export-Co. Ltda – Sao Carlos (SP),
Brazil
| | - Ana Laura Martins de Andrade
- PhD in Physiotherapy. Department of Physiotherapy – Universidade
Federal de São Carlos – Sao Carlos (SP), Brazil
| | - Genoveva Lourdes Flores Luna
- PhD in Biotechnology. Metabolic Endocrine Research Laboratory –
Department of Medicine – Universidade Federal University de São Carlos – Sao Carlos
(SP), Brazil
| | - Juliana Virginio da Silva
- Graduate student in Biotechnology. Institute of Physics of Sao
Carlos– Universidade de São Paulo – Sao Carlos (SP), Brazil
| | - Luciana Almeida-Lopes
- PhD in Science and Materials Engineering. NUPEN - Research and
Education Center in Health Science and DMC Equipment Import and Export-Co. Ltda –
Sao Carlos (SP), Brazil
| | | | | | | | - Fernanda de Freitas Anibal
- Associate Professor. Department of Morphology and Pathology –
Universidade Federal de São Carlos – Sao Carlos (SP), Brazil
| |
Collapse
|
10
|
Zhao S, Cui W, Rajendran NK, Su F, Rajan M. Investigations of gold nanoparticles-mediated carbon nanotube reinforced hydroxyapatite composite for bone regenerations. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Gay C, Letavernier E, Verpont MC, Walls M, Bazin D, Daudon M, Nassif N, Stéphan O, de Frutos M. Nanoscale Analysis of Randall's Plaques by Electron Energy Loss Spectromicroscopy: Insight in Early Biomineral Formation in Human Kidney. ACS NANO 2020; 14:1823-1836. [PMID: 31909991 DOI: 10.1021/acsnano.9b07664] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Idiopathic kidney stones originate mainly from calcium phosphate deposits at the tip of renal papillae, known as Randall's plaques (RPs), also detected in most human kidneys without stones. However, little is known about the mechanisms involved in RP formation. The localization and characterization of such nanosized objects in the kidney remain a real challenge, making their study arduous. This study provides a nanoscale analysis of the chemical composition and morphology of incipient RPs, characterizing in particular the interface between the mineral and the surrounding organic compounds. Relying on data gathered from a calculi collection, the morphology and chemical composition of incipient calcifications in renal tissue were determined using spatially resolved electron energy-loss spectroscopy. We detected microcalcifications and individual nanocalcifications found at some distance from the larger ones. Strikingly, concerning the smaller ones, we show that two types of nanocalcifications coexist: calcified organic vesicles and nanometric mineral granules mainly composed of calcium phosphate with carbonate in their core. Interestingly, some of these nanocalcifications present similarities with those reported in physiological bone or pathological cardiovascular biominerals, suggesting possible common formation mechanisms. However, the high diversity of these nanocalcifications suggests that several mechanisms may be involved (nucleation on a carbonate core or on organic compounds). In addition, incipient RPs also appear to present specific features at larger scales, revealing secondary calcified structures embedded in a fibrillar organic material. Our study proves that analogies exist between physiological and pathological biominerals and provides information to understand the physicochemical processes involved in pathological calcification formation.
Collapse
Affiliation(s)
- Clément Gay
- Laboratoire de Physique des Solides, CNRS UMR 8502 , Université de Paris-Saclay , F-91405 , Orsay , France
| | - Emmanuel Letavernier
- Sorbonne Université , UPMC Univ Paris 06, UMR S 1155, F-75020 , Paris , France
- INSERM , UMR S 1155, F-75020 , Paris , France
- Physiology Unit, APHP , Hôpital Tenon , F-75020 , Paris , France
| | - Marie-Christine Verpont
- Sorbonne Université , UPMC Univ Paris 06, UMR S 1155, F-75020 , Paris , France
- INSERM , UMR S 1155, F-75020 , Paris , France
| | - Michael Walls
- Laboratoire de Physique des Solides, CNRS UMR 8502 , Université de Paris-Saclay , F-91405 , Orsay , France
| | - Dominique Bazin
- Laboratoire de Chimie Physique, UMR 8000-CNRS , Université de Paris-Saclay , F-91405 , Orsay , France
| | - Michel Daudon
- Sorbonne Université , UPMC Univ Paris 06, UMR S 1155, F-75020 , Paris , France
- INSERM , UMR S 1155, F-75020 , Paris , France
- Physiology Unit, APHP , Hôpital Tenon , F-75020 , Paris , France
| | - Nadine Nassif
- Sorbonne Université , CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 Place Jussieu , F-75005 , Paris , France
| | - Odile Stéphan
- Laboratoire de Physique des Solides, CNRS UMR 8502 , Université de Paris-Saclay , F-91405 , Orsay , France
| | - Marta de Frutos
- Laboratoire de Physique des Solides, CNRS UMR 8502 , Université de Paris-Saclay , F-91405 , Orsay , France
| |
Collapse
|
12
|
Vishnu J, K Manivasagam V, Gopal V, Bartomeu Garcia C, Hameed P, Manivasagam G, Webster TJ. Hydrothermal treatment of etched titanium: A potential surface nano-modification technique for enhanced biocompatibility. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102016. [DOI: 10.1016/j.nano.2019.102016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 01/11/2023]
|
13
|
Kim E, Agarwal S, Kim N, Hage FS, Leonardo V, Gelmi A, Stevens MM. Bioinspired Fabrication of DNA-Inorganic Hybrid Composites Using Synthetic DNA. ACS NANO 2019; 13:2888-2900. [PMID: 30741535 PMCID: PMC6439439 DOI: 10.1021/acsnano.8b06492] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/06/2019] [Indexed: 05/19/2023]
Abstract
Nucleic acid nanostructures have attracted significant interest as potential therapeutic and diagnostic platforms due to their intrinsic biocompatibility and biodegradability, structural and functional diversity, and compatibility with various chemistries for modification and stabilization. Among the fabrication approaches for such structures, the rolling circle techniques have emerged as particularly promising, producing morphologically round, flower-shaped nucleic acid particles: typically hybrid composites of long nucleic acid strands and inorganic magnesium pyrophosphate (Mg2PPi). These constructs are known to form via anisotropic nucleic acid-driven crystallization in a sequence-independent manner, rendering monodisperse and densely packed RNA or DNA-inorganic composites. However, it still remains to fully explore how flexible polymer-like RNA or DNA strands (acting as biomolecular additives) mediate the crystallization process of Mg2PPi and affect the structure and properties of the product crystals. To address this, we closely examined nanoscale details to mesoscopic features of Mg2PPi/DNA hybrid composites fabricated by two approaches, namely rolling circle amplification (RCA)-based in situ synthesis and long synthetic DNA-mediated crystallization. Similar to the DNA constructs fabricated by RCA, the rapid crystallization of Mg2PPi was retarded on a short-range order when we precipitated the crystals in the presence of presynthesized long DNA, which resulted in effective incorporation of biomolecular additives such as DNA and enzymes. These findings further provide a more feasible way to encapsulate bioactive enzymes within DNA constructs compared to in situ RCA-mediated synthesis, i.e., by not only protecting them from possible denaturation under the reaction conditions but also preventing nonselective association of proteins arising from the RCA reaction mixtures.
Collapse
Affiliation(s)
- Eunjung Kim
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Shweta Agarwal
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nayoung Kim
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Fredrik Sydow Hage
- SuperSTEM
Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, United Kingdom
| | - Vincent Leonardo
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Amy Gelmi
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
14
|
Vittori M, Srot V, Bussmann B, Predel F, van Aken PA, Štrus J. Structural optimization and amorphous calcium phosphate mineralization in sensory setae of a terrestrial crustacean (Isopoda: Oniscidea). Micron 2018; 112:26-34. [DOI: 10.1016/j.micron.2018.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/27/2022]
|
15
|
Kłosowski MM, Carzaniga R, Shefelbine SJ, Porter AE, McComb DW. Nanoanalytical electron microscopy of events predisposing to mineralisation of turkey tendon. Sci Rep 2018; 8:3024. [PMID: 29445112 PMCID: PMC5813010 DOI: 10.1038/s41598-018-20072-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/10/2018] [Indexed: 12/05/2022] Open
Abstract
The macro- and micro-structures of mineralised tissues hierarchy are well described and understood. However, investigation of their nanostructure is limited due to the intrinsic complexity of biological systems. Preceding transmission electron microscopy studies investigating mineralising tissues have not resolved fully the initial stages of mineral nucleation and growth within the collagen fibrils. In this study, analytical scanning transmission electron microscopy and electron energy-loss spectroscopy were employed to characterise the morphology, crystallinity and chemistry of the mineral at different stages of mineralization using a turkey tendon model. In the poorly mineralised regions, calcium ions associated with the collagen fibrils and ellipsoidal granules and larger clusters composed of amorphous calcium phosphate were detected. In the fully mineralised regions, the mineral had transformed into crystalline apatite with a plate-like morphology. A change in the nitrogen K-edge was observed and related to modifications of the functional groups associated with the mineralisation process. This transformation seen in the nitrogen K-edge might be an important step in maturation and mineralisation of collagen and lend fundamental insight into how tendon mineralises.
Collapse
Affiliation(s)
- Michał M Kłosowski
- Department of Materials and Engineering, Imperial College London, London, UK.
| | | | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, USA
| | - Alexandra E Porter
- Department of Materials and Engineering, Imperial College London, London, UK
| | - David W McComb
- Department of Materials Science and Engineering, The Ohio State University, Columbus, USA.
| |
Collapse
|
16
|
Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, Trajanović M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.127] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Wang X, Shah FA, Palmquist A, Grandfield K. 3D Characterization of Human Nano-osseointegration by On-Axis Electron Tomography without the Missing Wedge. ACS Biomater Sci Eng 2016; 3:49-55. [DOI: 10.1021/acsbiomaterials.6b00519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyue Wang
- Department
of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Furqan A. Shah
- Department
of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden
- BIOMATCELL
VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| | - Anders Palmquist
- Department
of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden
- BIOMATCELL
VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| | - Kathryn Grandfield
- Department
of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
18
|
Kłosowski MM, Carzaniga R, Abellan P, Ramasse Q, McComb DW, Porter AE, Shefelbine SJ. Electron Microscopy Reveals Structural and Chemical Changes at the Nanometer Scale in the Osteogenesis Imperfecta Murine Pathology. ACS Biomater Sci Eng 2016; 3:2788-2797. [DOI: 10.1021/acsbiomaterials.6b00300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Michał M. Kłosowski
- Department
of Materials and Engineering, Royal School of Mines, South Kensington
Campus, Imperial College London, London SW7 2AZ, U.K
| | - Raffaella Carzaniga
- Cancer
Research U.K., Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, U.K
| | - Patricia Abellan
- SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Daresbury, Warrington WA4 4AD, U.K
| | - Quentin Ramasse
- SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Daresbury, Warrington WA4 4AD, U.K
| | - David W. McComb
- Department
of Materials Science and Engineering, Center for Electron Microscopy
and Analysis, The Ohio State University, 1305 Kinnear Road, Columbus, Ohio 43212, United States
| | - Alexandra E. Porter
- Department
of Materials and Engineering, Royal School of Mines, South Kensington
Campus, Imperial College London, London SW7 2AZ, U.K
| | - Sandra J. Shefelbine
- Department
of Mechanical and Industrial Engineering, Northeastern University, 334 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Payne SA, Katti DR, Katti KS. Probing electronic structure of biomineralized hydroxyapatite inside nanoclay galleries. Micron 2016; 90:78-86. [PMID: 27619364 DOI: 10.1016/j.micron.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 11/17/2022]
Abstract
Hydroxyapatite, the most abundant mineral in the human body, is also an important component in design of biomaterials for bone tissue regeneration. Synthetic hydroxyapatite mineralized in the laboratory often does not exhibit the same biological and morphological properties of biogenic hydroxyapatite in human bone. A biomimetic hydroxyapatite structure is synthesized using biomineralization routes inside the clay galleries of montmorillonite clay. Amino acids are used to modify the clay galleries. These amino acids are used to mineralize hydroxyapatite. The molecular interactions between nanoclay, modifiers inside nanoclay (amino acids) and biomineralized hydroxyapatite result in unique morphology, structure and stoichiometry of the biomineralized hydroxyapatite. Prior studies have indicated that this biomineralized hydroxyapatite inside nanoclay galleries is an effective component of tissue engineering bone scaffolds that elicits an optimal biological response from human mesenchymal stem cells. Here, a detailed electron energy-loss spectroscopy (EELS) study is reported that elucidates the differences in hydroxyapatite, biomineralized hydroxyapatite and β-tricalcium phosphate (β-TCP). Comparison of EELS low-loss transitions and energy loss near-edge structure (ELNES) of P-L2,3 edges for these three compounds is done to determine if there are differences in their electronic structures. These changes observed experimentally are compared with prior predictions and simulations using molecular dynamics studies. The simulations predict attractive and repulsive interactions between phosphate, modified MMT clay and aminovaleric acid (amino acid) molecules. Kramers-Kronig analysis is performed on the loss spectra obtained to yield the real and imaginary parts of the dielectric function of the apatites (ε1 and ε 2). We have also used the ε2 spectra obtained to calculate the AC conductivity spectra for the apatites. This study represents a unique experimental probe into molecular interactions in complex biomineralized hydroxyapatite structures. The small changes observed in the energy loss spectra appear to play important biological roles in biomineralized hydroxyapatite such as the ability to differentiate human mesenchymal stem cells into osteoblasts without growth media.
Collapse
Affiliation(s)
- Scott A Payne
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Dinesh R Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Kalpana S Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
20
|
Nitiputri K, Ramasse QM, Autefage H, McGilvery CM, Boonrungsiman S, Evans ND, Stevens MM, Porter AE. Nanoanalytical Electron Microscopy Reveals a Sequential Mineralization Process Involving Carbonate-Containing Amorphous Precursors. ACS NANO 2016; 10:6826-35. [PMID: 27383526 PMCID: PMC5404715 DOI: 10.1021/acsnano.6b02443] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A direct observation and an in-depth characterization of the steps by which bone mineral nucleates and grows in the extracellular matrix during the earliest stages of maturation, using relevant biomineralization models as they grow into mature bone mineral, is an important research goal. To better understand the process of bone mineralization in the extracellular matrix, we used nanoanalytical electron microscopy techniques to examine an in vitro model of bone formation. This study demonstrates the presence of three dominant CaP structures in the mineralizing osteoblast cultures: <80 nm dense granules with a low calcium to phosphate ratio (Ca/P) and crystalline domains; calcium phosphate needles emanating from a focus: "needle-like globules" (100-300 nm in diameter) and mature mineral, both with statistically higher Ca/P compared to that of the dense granules. Many of the submicron granules and globules were interspersed around fibrillar structures containing nitrogen, which are most likely the signature of the organic phase. With high spatial resolution electron energy loss spectroscopy (EELS) mapping, spatially resolved maps were acquired showing the distribution of carbonate within each mineral structure. The carbonate was located in the middle of the granules, which suggested the nucleation of the younger mineral starts with a carbonate-containing precursor and that this precursor may act as seed for growth into larger, submicron-sized, needle-like globules of hydroxyapatite with a different stoichiometry. Application of analytical electron microscopy has important implications in deciphering both how normal bone forms and in understanding pathological mineralization.
Collapse
Affiliation(s)
- Kharissa Nitiputri
- Department of Materials, Imperial College London, London SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ UK
| | | | - Hélène Autefage
- Department of Materials, Imperial College London, London SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ UK
| | | | - Suwimon Boonrungsiman
- Department of Materials, Imperial College London, London SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ UK
| | - Nicholas D. Evans
- Department of Bioengineering and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ UK
| | | |
Collapse
|