1
|
Wang C, Liu J, Min S, Liu Y, Liu B, Hu Y, Wang Z, Mao F, Wang C, Ma X, Wen P, Zheng Y, Tian Y. The effect of pore size on the mechanical properties, biodegradation and osteogenic effects of additively manufactured magnesium scaffolds after high temperature oxidation: An in vitro and in vivo study. Bioact Mater 2023; 28:537-548. [PMID: 37457041 PMCID: PMC10344631 DOI: 10.1016/j.bioactmat.2023.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The effects of pore size in additively manufactured biodegradable porous magnesium on the mechanical properties and biodegradation of the scaffolds as well as new bone formation have rarely been reported. In this work, we found that high temperature oxidation improves the corrosion resistance of magnesium scaffold. And the effects of pore size on the mechanical characteristics and biodegradation of scaffolds, as well as new bone formation, were investigated using magnesium scaffolds with three different pore sizes, namely, 500, 800, and 1400 μm (P500, P800, and P1400). We discovered that the mechanical characteristics of the P500 group were much better than those of the other two groups. In vitro and in vivo investigations showed that WE43 magnesium alloy scaffolds supported the survival of mesenchymal stem cells and did not cause any local toxicity. Due to their larger specific surface area, the scaffolds in the P500 group released more magnesium ions within reasonable range and improved the osteogenic differentiation of bone mesenchymal stem cells compared with the other two scaffolds. In a rabbit femoral condyle defect model, the P500 group demonstrated unique performance in promoting new bone formation, indicating its great potential for use in bone defect regeneration therapy.
Collapse
Affiliation(s)
- Chaoxin Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jinge Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuyuan Min
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Bingchuan Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Yuanyu Hu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Zhengguang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Fengbiao Mao
- Institute of Medicine Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Caimei Wang
- Beijing AKEC Medical Co., Ltd., Beijing, 102200, China
| | - Xiaolin Ma
- Beijing AKEC Medical Co., Ltd., Beijing, 102200, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
2
|
Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds. Proc Natl Acad Sci U S A 2022; 119:e2206684119. [PMID: 36191194 PMCID: PMC9564829 DOI: 10.1073/pnas.2206684119] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leaf photosynthesis, coral mineralization, and trabecular bone growth depend on triply periodic minimal surfaces (TPMSs) with hyperboloidal structure on every surface point with varying Gaussian curvatures. However, translation of this structure into tissue-engineered bone grafts is challenging. This article reports the design and fabrication of high-resolution three-dimensional TPMS scaffolds embodying biomimicking hyperboloidal topography with different Gaussian curvatures, composed of body inherent β-tricalcium phosphate, by stereolithography-based three-dimensional printing and sintering. The TPMS bone scaffolds show high porosity and interconnectivity. Notably, compared with conventional scaffolds, they can reduce stress concentration, leading to increased mechanical strength. They are also found to support the attachment, proliferation, osteogenic differentiation, and angiogenic paracrine function of human mesenchymal stem cells (hMSCs). Through transcriptomic analysis, we theorize that the hyperboloid structure induces cytoskeleton reorganization of hMSCs, expressing elongated morphology on the convex direction and strengthening the cytoskeletal contraction. The clinical therapeutic efficacy of the TPMS scaffolds assessed by rabbit femur defect and mouse subcutaneous implantation models demonstrate that the TPMS scaffolds augment new bone formation and neovascularization. In comparison with conventional scaffolds, our TPMS scaffolds successfully guide the cell fate toward osteogenesis through cell-level directional curvatures and demonstrate drastic yet quantifiable improvements in bone regeneration.
Collapse
|
3
|
Abstract
Compared with non-degradable materials, biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects, and have attracted extensive attention from researchers. In the treatment of bone defects, scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role, which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue. Traditional biodegradable materials include polymers, ceramics and metals, which have been used in bone defect repairing for many years. Although these materials have more or fewer shortcomings, they are still the cornerstone of our development of a new generation of degradable materials. With the rapid development of modern science and technology, in the twenty-first century, more and more kinds of new biodegradable materials emerge in endlessly, such as new intelligent micro-nano materials and cell-based products. At the same time, there are many new fabrication technologies of improving biodegradable materials, such as modular fabrication, 3D and 4D printing, interface reinforcement and nanotechnology. This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing, especially the newly emerging materials and their fabrication technology in recent years, and look forward to the future research direction, hoping to provide researchers in the field with some inspiration and reference.
Collapse
Affiliation(s)
- Shuai Wei
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| | - Jian-Xiong Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| | - Lai Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong, 226001 China
| | - Xiao-Song Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong, 226001 China
| | - Xin-Long Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| |
Collapse
|
4
|
Xing H, Li R, Wei Y, Ying B, Li D, Qin Y. Improved Osteogenesis of Selective-Laser-Melted Titanium Alloy by Coating Strontium-Doped Phosphate With High-Efficiency Air-Plasma Treatment. Front Bioeng Biotechnol 2020; 8:367. [PMID: 32478042 PMCID: PMC7235326 DOI: 10.3389/fbioe.2020.00367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/02/2020] [Indexed: 01/21/2023] Open
Abstract
Surface treatment and bioactive metal ion incorporation are effective methods for the modification of titanium alloys to be used as biomaterials. However, few studies have demonstrated the use of air-plasma treatment in orthopedic biomaterial development. Additionally, no study has performed a direct comparison between unmodified titanium alloys and air-plasma-treated alloys with respect to their biocompatibility and osteogenesis. In this study, the biological activities of unmodified titanium alloys, air-plasma-treated titanium alloys, and air-plasma-treated strontium-doped/undoped calcium phosphate (CaP) coatings were compared. The strontium-doped CaP (Sr-CaP) coating on titanium alloys were produced by selective laser melting (SLM) technology as well as micro-arc oxidation (MAO) and air-plasma treatment. The results revealed that rapid air-plasma treatment improved the biocompatibility of titanium alloys and that Sr-CaP coating together with air-plasma treatment significantly enhanced both the biocompatibility and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Overall, this study demonstrated that low temperature air-plasma treatment is a fast and effective surface modification which improves the biocompatibility of titanium alloys. Additionally, air-plasma-treated Sr-CaP coatings have numerous practical applications and may provide researchers with new tools to assist in the development of orthopedic implants.
Collapse
Affiliation(s)
- Haiyuan Xing
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, China
| | - Ruiyan Li
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, China
| | - Yongjie Wei
- Key Laboratory of Automobile Materials of MOE, Department of Materials Science and Engineering, Jilin University, Changchun, China
| | - Boda Ying
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, China
| | - Dongdong Li
- Key Laboratory of Automobile Materials of MOE, Department of Materials Science and Engineering, Jilin University, Changchun, China
| | - Yanguo Qin
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
5
|
Xiao D, Zhang J, Zhang C, Barbieri D, Yuan H, Moroni L, Feng G. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Acta Biomater 2020; 106:22-33. [PMID: 31926336 DOI: 10.1016/j.actbio.2019.12.034] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Calcium phosphate (CaP) ceramics have been widely used for bone regeneration because of their ability to induce osteogenesis. Surface properties, including chemical composition and surface structure, are known to play a crucial role in osteoconduction and osteoinduction. This review systematically analyzes the effects of surface properties, in particular the surface structure, of CaP scaffolds on cell behavior and new bone formation. We also summarize the possible signaling pathways involved in the osteogenic differentiation of bone-related cells when cultured on surfaces with various structures in vitro. The significant immune response initiated by surface structure involved in osteogenic differentiation of cells is also discussed in this review. Taken together, the new biological principle for advanced biomaterials is not only to directly stimulate osteogenic differentiation of bone-related cells but also to modulate the immune response in vivo. Although the reaction mechanism responsible for bone formation induced by CaP surface structure is not clear yet, the insights on surface structure-mediated osteogenic differentiation and osteoimmunomodulation could aid the optimization of CaP-based biomaterials for bone regeneration. STATEMENT OF SIGNIFICANCE: CaP ceramics have similar inorganic composition with natural bone, which have been widely used for bone tissue scaffolds. CaP themselves are not osteoinductive; however, osteoinductive properties could be introduced to CaP materials by surface engineering. This paper systematically summarizes the effects of surface properties, especially surface structure, of CaP scaffolds on bone formation. Additionally, increasing evidence has proved that the bone healing process is not only affected by the osteogenic differentiation of bone-related cells, but also relevant to the the cooperation of immune system. Thus, we further review the possible signaling pathways involved in the osteogenic differentiation and immune response of cells cultured on scaffold surface. These insights into surface structure-mediated osteogenic differentiation and osteoimmunomodulated-based strategy could aid the optimization of CaP-based biomaterials.
Collapse
|
6
|
Nanostructured titanium surfaces fabricated by hydrothermal method: Influence of alkali conditions on the osteogenic performance of implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1-10. [DOI: 10.1016/j.msec.2018.08.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022]
|
7
|
BARROS VM, MARTINEZ LFP, SÁ MAD, VASCONCELLOS WA, MOREIRA AN. Avaliação topográfica e in vitro de superfícies de titânio revestidas com vidro bioativo. REVISTA DE ODONTOLOGIA DA UNESP 2018. [DOI: 10.1590/1807-2577.04918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo Objetivo Avaliar e comparar a rugosidade superficial e a atividade dos osteoblastos em contato com uma nova superfície bioativa e nanoestruturada de titânio grau 4 revestida com vidro bioativo contendo fosfato de cálcio, sintetizada pelo método sol-gel. Material e método Sessenta e três discos de titânio, medindo 4 mm de diâmetro por 2 mm de altura, foram preparados e divididos em três grupos: microtexturizado (Ticp - controle); revestido com vidro bioativo e seco a vácuo a 37 °C por 10 dias (BGTi37), e revestido com vidro bioativo e aquecido a 600 °C por cinco horas (BGTi600). Três espécimes de cada grupo foram utilizados para avaliação da topografia superficial e 18 espécimes, para cultura celular. Resultado O revestimento de vidro bioativo diminuiu a rugosidade média quando comparado ao titânio microtexturizado. A proporção de células viáveis, a produção de fosfatase alcalina e o grau de mineralização da matriz óssea em contato com os espécimes de titânio do grupo BGTi600 foram significativamente menores em relação aos grupos controle e do titânio microtexturizado. Conclusão Apesar de sua marcante menor rugosidade, a superfície BGTi37 apresentou comportamento biológico semelhante a uma superfície de titânio microtexturizada e moderadamente rugosa. A outra superfície experimental (BGTi600), a de menor rugosidade entre todas as testadas, apresentou os piores resultados de ativação dos osteoblastos.
Collapse
|
8
|
Yuan Z, Liu P, Liang Y, Tao B, He Y, Hao Y, Yang W, Hu Y, Cai K. Investigation of osteogenic responses of Fe-incorporated micro/nano-hierarchical structures on titanium surfaces. J Mater Chem B 2018; 6:1359-1372. [DOI: 10.1039/c7tb03071a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fe incorporated micro/nano topographical titanium substrates are fabricated to synergistically regulate osteogenic responses in vitro and osseointegration in vivo.
Collapse
Affiliation(s)
- Zhang Yuan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Yanan Liang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Yansha Hao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| |
Collapse
|
9
|
Xing H, Wang X, Xiao S, Zhang G, Li M, Wang P, Shi Q, Qiao P, E L, Liu H. Osseointegration of layer-by-layer polyelectrolyte multilayers loaded with IGF1 and coated on titanium implant under osteoporotic condition. Int J Nanomedicine 2017; 12:7709-7720. [PMID: 29089765 PMCID: PMC5656347 DOI: 10.2147/ijn.s148001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Titanium implant is a widely used method for dental prosthesis restoration. Nevertheless, in patients with systemic diseases, including osteoporosis, diabetes, and cancer, the success rate of the implant is greatly reduced. This study investigates a new implant material loaded with insulin-like growth factor 1 (IGF1), which could potentially improve the implant success rate, accelerate the occurrence of osseointegration, and provide a new strategy for implant treatment in osteoporotic patients. Materials and methods Biofunctionalized polyelectrolyte multilayers (PEMs) with polyethylenimine as the excitation layer and gelatin/chitosan loaded with IGF1 were prepared on the surface of titanium implant by layer-by-layer self-assembly technique. The physical and chemical properties of the biofunctionalized PEMs, the biological characteristics of bone marrow mesenchymal stem cells (BMMSCs), and bone implant contact correlation test indexes were detected and analyzed in vitro and in vivo using osteoporosis rat model. Results PEMs coatings loaded with IGF1 (TNS-PEM-IGF1-100) implant promoted the early stage of BMMSCs adhesion. Under the action of body fluids, the active coating showed sustained release of growth factors, which in turn promoted the proliferation and differentiation of BMMSCs and the extracellular matrix. At 8 weeks from implant surgery, the new bone around the implants was examined using micro-CT and acid fuchsin/methylene blue staining. The new bone formation increased with time in each group, while the TNS-PEM-IGF1-100 group showed the highest thickness and continuity. Conclusion TNS-PEM-IGF1-100 new implants can promote osseointegration in osteoporotic conditions both in vivo and in vitro and provide a new strategy for implant repair in osteoporotic patients.
Collapse
Affiliation(s)
- Helin Xing
- Institute of Stomatology, Chinese PLA General Hospital, Beijing
| | - Xing Wang
- Hospital of Stomatology, Shanxi Medical University, Taiyuan
| | - Saisong Xiao
- Department of Anesthesia, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guilan Zhang
- Institute of Stomatology, Chinese PLA General Hospital, Beijing
| | - Meng Li
- Institute of Stomatology, Chinese PLA General Hospital, Beijing
| | - Peihuan Wang
- Institute of Stomatology, Chinese PLA General Hospital, Beijing
| | - Quan Shi
- Institute of Stomatology, Chinese PLA General Hospital, Beijing
| | - Pengyan Qiao
- Institute of Stomatology, Chinese PLA General Hospital, Beijing
| | - Lingling E
- Institute of Stomatology, Chinese PLA General Hospital, Beijing
| | - Hongchen Liu
- Institute of Stomatology, Chinese PLA General Hospital, Beijing
| |
Collapse
|
10
|
|
11
|
Fernández-Castillejo S, Formentín P, Catalán Ú, Pallarès J, Marsal LF, Solà R. Silicon microgrooves for contact guidance of human aortic endothelial cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:675-681. [PMID: 28462069 PMCID: PMC5372752 DOI: 10.3762/bjnano.8.72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/27/2017] [Indexed: 05/09/2023]
Abstract
Background: Micro- and nanoscale substrates have been fabricated in order to study the influence of the topography on the cellular response. The aim of this work was to prepare different collagen-coated silicon substrates displaying grooves and ridges to mimic the aligned and elongated endothelium found in linear vessels, and to use them as substrates to study cell growth and behaviour. Results: The influence of groove-shaped substrates on cell adhesion, morphology and proliferation were assessed, by comparing them to flat silicon substrates, used as control condition. Using human aortic endothelial cells, microscopy images demonstrate that the cellular response is different depending on the silicon surface, when it comes to cell adhesion, morphology (alignment, circularity and filopodia presence) and proliferation. Moreover, these structures exerted no cytotoxic effect. Conclusion: The results suggest that topographical patterning influences cell response. Silicon groove substrates can be used in developing medical devices with microscale features to mimic the endothelium in lineal vessels.
Collapse
Affiliation(s)
- Sara Fernández-Castillejo
- Unit of Lipids and Atherosclerosis Research, Department of Medicine and Surgery, Universitat Rovira I Virgili, Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - Pilar Formentín
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira I Virgili, Països Catalans 26, 43007 Tarragona, Spain
| | - Úrsula Catalán
- Unit of Lipids and Atherosclerosis Research, Department of Medicine and Surgery, Universitat Rovira I Virgili, Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - Josep Pallarès
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira I Virgili, Països Catalans 26, 43007 Tarragona, Spain
| | - Lluís F Marsal
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira I Virgili, Països Catalans 26, 43007 Tarragona, Spain
| | - Rosa Solà
- Unit of Lipids and Atherosclerosis Research, Department of Medicine and Surgery, Universitat Rovira I Virgili, Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| |
Collapse
|
12
|
Liu A, Sun M, Yang X, Ma C, Liu Y, Yang X, Yan S, Gou Z. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution. J Biomater Appl 2016; 31:650-660. [PMID: 27585972 DOI: 10.1177/0885328216664839] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Some Ca-Mg-silicate ceramics have been widely investigated to be highly bioactive and biodegradable, whereas their osteogenic potential and especially biomechanical response in the early stage in vivo are scarcely demonstrated. Herein, the osteogenesis capacity and mechanical evolution of the akermanite (Ca2MgSi2O7) porous materials manufactured by ceramic ink writing three-dimensional printing technique were investigated systematically in a critical size femur defect model, in comparison with the clinically available β-tricalcium phosphate porous bioceramic. Such three-dimensional printed akermanite scaffolds possess fully interconnected pores of ∼280 × 280 µm in size and over 50% porosity with appreciable compressive strength (∼71 MPa), that is 7-fold higher than that of the β-tricalcium phosphate porous bioceramics (∼10 MPa). After 6 weeks and 12 weeks of implantation, the percentage of newly formed bone and more new bone was observed in the akermanite group as compared with the β-tricalcium phosphate group (p < 0.01). Moreover, significant higher mRNA expressions of osteogenic genes were detected in the akermanite group by PCR analysis (p < 0.01). The in vivo mechanical strength decreased during the process of implantation, but maintained a relative high level (∼14 MPa) which was still higher than that of the host cancellous bone (5-10 MPa) at 12 weeks post-implantation. On the contrary, the β-tricalcium phosphate scaffold always exhibited a very low mechanical strength (∼8 MPa). These results suggest that the three-dimensional printed akermanite scaffolds are promising for the bone tissue regeneration and repair of load-bearing bone defects.
Collapse
Affiliation(s)
- An Liu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miao Sun
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, China
| | - Chiyuan Ma
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanming Liu
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu Yang
- Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shigui Yan
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Babo PS, Klymov A, teRiet J, Reis RL, Jansen JA, Gomes ME, Walboomers XF. A Radially Organized Multipatterned Device as a Diagnostic Tool for the Screening of Topographies in Tissue Engineering Biomaterials. Tissue Eng Part C Methods 2016; 22:914-22. [DOI: 10.1089/ten.tec.2016.0224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Pedro S. Babo
- 3B's Research Group (Biomaterials, Biodegradables and Biomimetics), University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexey Klymov
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost teRiet
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rui L. Reis
- 3B's Research Group (Biomaterials, Biodegradables and Biomimetics), University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - John A. Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manuela E. Gomes
- 3B's Research Group (Biomaterials, Biodegradables and Biomimetics), University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - X. Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Klymov A, Te Riet J, Mulder P, Gardeniers JGE, Jansen JA, Walboomers XF. Nanometer-grooved topography stimulates trabecular bone regeneration around a concave implant in a rat femoral medulla model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2283-2290. [PMID: 27389148 DOI: 10.1016/j.nano.2016.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 05/18/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022]
Abstract
In the present study, a method was developed to reproduce two nanogrooved patterns (groove width/ridge width/depth: 150/150/50 nm and 200/800/70 nm) into cylindrical epoxy resin implants, which were subsequently coated with 20 nm of titanium. Also, implants with a conventional surface roughness (Rq=1.6 μm) were produced. After cytocompatibility analysis of the produced surfaces, implants were installed into the femoral condyle of rats for 4 and 8 weeks. The histomorphometrical analysis of bone volume in a 100 μm wide zone close to the implant surface showed that only for the 200/800 grooves the amount of bone increased significantly between 4 and 8 weeks of implantation. In addition, at the late time point only implants with the 200/800 pattern revealed a significantly higher bone volume compared to the rough controls. In conclusion, the 200/800 grooved pattern can positively influence bone volume adjacent to the implant surface, and should be evaluated and optimized in further (pre-)clinical studies.
Collapse
Affiliation(s)
- Alexey Klymov
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost Te Riet
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Mulder
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Johannes G E Gardeniers
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, the Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|