1
|
Du P, Tao X, Harati J, Shi Y, Xiao L, Li X, Pan H, Wang PY. Human platelet lysate enhances small lipid droplet accumulation of human MSCs through MAPK phosphorylation. Stem Cell Res Ther 2024; 15:473. [PMID: 39696689 DOI: 10.1186/s13287-024-04085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Human platelet lysate (hPL) has emerged as a promising serum substitute to enhance the self-renewal and multipotency of human mesenchymal stem cells (MSCs). Despite its potential, the specific biological mechanisms by which hPL influences MSC phenotypes remain inadequately understood. METHODS We investigated the biological signaling activated by hPL in two common types of human MSCs: bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs). Cell adhesion and cell-matrix interaction were assessed through immunofluorescence staining and western blotting. The impact of hPL on lipid droplet formation in MSCs was thoroughly examined using oil red O/BODIPY staining, semi-quantitative analysis, and qRT-PCR. RNA sequencing and intracellular inhibition assays were also performed to elucidate the mechanisms by which hPL modulates MSC behavior. RESULTS MSCs cultured in hPL medium demonstrated a reduction in cell size, spreading area, and vinculin puncta, while enhancing cell proliferation and lipid droplet accumulation compared to those cultured in control media. Notably, the lipid droplets in hPL-treated MSCs were significantly smaller than those in adipocyte-like cells differentiated from MSCs, highlighting hPL's distinctive role in lipid production. Gene and protein expression profiles of hPL-treated MSCs differed from those in adipocyte-like cells. An angiogenic factor array revealed that hPL-MSCs had a distinct angiogenic factor profile compared to FBS-MSCs, with VEGF expression closely linked to HIF-1α expression. RNA-seq data identified approximately 1,900 differentially expressed genes (DEGs) between hPL-MSCs and FBS-MSCs, with enrichment in focal adhesion, ECM-receptor interaction, and PI3K-Akt/MAPK signaling pathways. Inhibition of MAPK phosphorylation significantly hampered lipid formation in hPL-MSCs, underscoring the pivotal role of MAPK signaling in hPL-driven adipogenesis. CONCLUSION This study reveals the biological mechanisms by which hPL infleunces MSC behavior and differentiation, offering new insights into its potential application in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xuelian Tao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Liang Xiao
- Department of Surgery and Oncology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Xian Li
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
2
|
Bakht SM, Pardo A, Gomez‐Florit M, Caballero D, Kundu SC, Reis RL, Domingues RMA, Gomes ME. Human Tendon-on-Chip: Unveiling the Effect of Core Compartment-T Cell Spatiotemporal Crosstalk at the Onset of Tendon Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401170. [PMID: 39258510 PMCID: PMC11538684 DOI: 10.1002/advs.202401170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Indexed: 09/12/2024]
Abstract
The lack of representative in vitro models recapitulating human tendon (patho)physiology is among the major factors hindering consistent progress in the knowledge-based development of adequate therapies for tendinopathy.Here, an organotypic 3D tendon-on-chip model is designed that allows studying the spatiotemporal dynamics of its cellular and molecular mechanisms.Combining the synergistic effects of a bioactive hydrogel matrix with the biophysical cues of magnetic microfibers directly aligned on the microfluidic chip, it is possible to recreate the anisotropic architecture, cell patterns, and phenotype of tendon intrinsic (core) compartment. When incorporated with vascular-like vessels emulating the interface between its intrinsic-extrinsic compartments, crosstalk with endothelial cells are found to drive stromal tenocytes toward a reparative profile. This platform is further used to study adaptive immune cell responses at the onset of tissue inflammation, focusing on interactions between tendon compartment tenocytes and circulating T cells.The proinflammatory signature resulting from this intra/inter-cellular communication induces the recruitment of T cells into the inflamed core compartment and confirms the involvement of this cellular crosstalk in positive feedback loops leading to the amplification of tendon inflammation.Overall, the developed 3D tendon-on-chip provides a powerful new tool enabling mechanistic studies on the pathogenesis of tendinopathy as well as for assessing new therapies.
Collapse
Affiliation(s)
- Syeda M. Bakht
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | | | - David Caballero
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Subhas C. Kundu
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
- School of Medicine and Biomedical Sciences (ICBAS), Unit for Multidisciplinary Research in Biomedicine (UMIB)University of PortoRua Jorge Viterbo Ferreira 228Porto4050‐313 PortoPortugal
| |
Collapse
|
3
|
Xie X, Xu J, Ding D, Lin J, Han K, Wang C, Wang F, Zhao J, Wang L. Janus Membranes Patch Achieves High-Quality Tendon Repair: Inhibiting Exogenous Healing and Promoting Endogenous Healing. NANO LETTERS 2024; 24:4300-4309. [PMID: 38534038 DOI: 10.1021/acs.nanolett.4c00818] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The imbalance between endogenous and exogenous healing is the fundamental reason for the poor tendon healing. In this study, a Janus patch was developed to promote endogenous healing and inhibit exogenous healing, leading to improved tendon repair. The upper layer of the patch is a poly(dl-lactide-co-glycolide)/polycaprolactone (PLGA/PCL) nanomembrane (PMCP-NM) modified with poly(2-methylacryloxyethyl phosphocholine) (PMPC), which created a lubricated and antifouling surface, preventing cell invasion and mechanical activation. The lower layer is a PLGA/PCL fiber membrane loaded with fibrin (Fb) (Fb-NM), serving as a temporary chemotactic scaffold to regulate the regenerative microenvironment. In vitro, the Janus patch effectively reduced 92.41% cell adhesion and 79.89% motion friction. In vivo, the patch inhibited tendon adhesion through the TGF-β/Smad signaling pathway and promoted tendon maturation. This Janus patch is expected to provide a practical basis and theoretical guidance for high-quality soft tissue repair.
Collapse
Affiliation(s)
- Xiaojing Xie
- Key Laboratory of Textile Science & Technology of Ministry of Education College of Textiles, Donghua University, Shanghai 201620, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Danzhi Ding
- Key Laboratory of Textile Science & Technology of Ministry of Education College of Textiles, Donghua University, Shanghai 201620, China
| | - Jing Lin
- Key Laboratory of Textile Science & Technology of Ministry of Education College of Textiles, Donghua University, Shanghai 201620, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chaorong Wang
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Fujun Wang
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Atila D, Kumaravel V. Advances in antimicrobial hydrogels for dental tissue engineering: regenerative strategies for endodontics and periodontics. Biomater Sci 2023; 11:6711-6747. [PMID: 37656064 DOI: 10.1039/d3bm00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Dental tissue infections have been affecting millions of patients globally leading to pain, severe tissue damage, or even tooth loss. Commercial sterilizers may not be adequate to prevent frequent dental infections. Antimicrobial hydrogels have been introduced as an effective therapeutic strategy for endodontics and periodontics since they have the capability of imitating the native extracellular matrix of soft tissues. Hydrogel networks are considered excellent drug delivery platforms due to their high-water retention capacity. In this regard, drugs or nanoparticles can be incorporated into the hydrogels to endow antimicrobial properties as well as to improve their regenerative potential, once biocompatibility criteria are met avoiding high dosages. Herein, novel antimicrobial hydrogel formulations were discussed for the first time in the scope of endodontics and periodontics. Such hydrogels seem outstanding candidates especially when designed not only as simple volume fillers but also as smart biomaterials with condition-specific adaptability within the dynamic microenvironment of the defect site. Multifunctional hydrogels play a pivotal role against infections, inflammation, oxidative stress, etc. along the way of dental regeneration. Modern techniques (e.g., 3D and 4D-printing) hold promise to develop the next generation of antimicrobial hydrogels together with their limitations such as infeasibility of implantation.
Collapse
Affiliation(s)
- Deniz Atila
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
5
|
Wang K, Chen D, Wang Z, Yang J, Liu W. An Injectable and Antifouling Supramolecular Polymer Hydrogel with Microenvironment-Regulatory Function to Prevent Peritendinous Adhesion and Promote Tendon Repair. Macromol Biosci 2023; 23:e2300142. [PMID: 37317041 DOI: 10.1002/mabi.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Indexed: 06/16/2023]
Abstract
The imbalance of extrinsic and intrinsic healing of tendon is thought to be the main cause of peritendinous adhesions. In this work, an injectable supramolecular poly(N-(2-hydroxypropyl) acrylamide) (PHPAm) hydrogel is prepared merely via side chain hydrogen-bonding crosslinks. This PHPAm exhibits good antifouling and self-healing properties. The supramolecular hydrogel simultaneously loaded with Prussian blue (PB) nanoparticles and platelet lysate (PL) is explored as a functional physical barrier, which can significantly resist the adhesion of fibrin and fibroblasts, attenuate the local inflammatory response, and enhance the tenocytes activity, thus balancing extrinsic and intrinsic healing. The PHPAm hydrogel is shown to prevent peritendinous adhesions considerably by inhibiting NF-κB inflammatory pathway and TGF-β1/Smad3-mediated fibrosis pathway, thereby significantly improving tendon repair by releasing bioactive factors to regulate the tenocytes behavior. This work provides a new strategy for developing physical barriers to prevent peritendinous adhesions and promote tissue repair effectively.
Collapse
Affiliation(s)
- Kuan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Danyang Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
6
|
Abstract
The low regenerative potential of the human body hinders proper regeneration of dysfunctional or lost tissues and organs due to trauma, congenital defects, and diseases. Tissue or organ transplantation has hence been a major conventional option for replacing the diseased or dysfunctional body parts of the patients. In fact, a great number of patients on waiting lists would benefit tremendously if tissue and organs could be replaced with biomimetic spare parts on demand. Herein, regenerative medicine and advanced biomaterials strive to reach this distant goal. Tissue engineering aims to create new biological tissue or organ substitutes, and promote regeneration of damaged or diseased tissue and organs. This approach has been jointly evolving with the major advances in biomaterials, stem cells, and additive manufacturing technologies. In particular, three-dimensional (3D) bioprinting utilizes 3D printing to fabricate viable tissue-like structures (perhaps organs in the future) using bioinks composed of special hydrogels, cells, growth factors, and other bioactive contents. A third generation of multifunctional biomaterials could also show opportunities for building biomimetic scaffolds, upon which to regenerate stem cells in vivo. Besides, decellularization technology based on isolation of extracellular matrix of tissue and organs from their inhabiting cells is presented as an alternative to synthetic biomaterials. Today, the gained knowledge of functional microtissue engineering and biointerfaces, along with the remarkable advances in pluripotent stem cell technology, seems to be instrumental for the development of more realistic microphysiological 3D in vitro tissue models, which can be utilized for personalized disease modeling and drug development. This chapter will discuss the recent advances in the field of regenerative medicine and biomaterials, alongside challenges, limitations, and potentials of the current technologies.
Collapse
Affiliation(s)
- Şükran Şeker
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Ayşe Eser Elçin
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Yaşar Murat Elçin
- Ankara University Faculty of Science, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey.
- Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
7
|
Markazi R, Soltani-Zangbar MS, Zamani M, Eghbal-Fard S, Motavalli R, Kamrani A, Dolati S, Ahmadi M, Aghebati-Maleki L, Mehdizadeh A, Eslamian F, Pishgahi A, Yousefi M. Platelet lysate and tendon healing: comparative analysis of autologous frozen-thawed PRP and ketorolac tromethamine in the treatment of patients with rotator cuff tendinopathy. Growth Factors 2022; 40:163-174. [PMID: 36026559 DOI: 10.1080/08977194.2022.2093198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Platelet-rich blood derivatives are being nowadays increasingly used in the treatment of tendon-related pathologies as a rich source of growth factors. We sought to ascertain if local application of platelet lysate (PL) to augment rotator cuff repair ameliorates patient outcomes compared to ketorolac tromethamine treated group. A total of forty patients, with clinical diagnosis of Rotator Cuff Tendinopathy were randomized to receive sub acromial injections of PL every week for a total of 3 injections and two injection of ketorolac tromethamine once every two weeks. Subjective assessments included VAS, SPADI and shoulder range of motion were assessed at baseline and at 1 and 6 months after injection. Taking both control and PL groups, it was vividly seen that the outcomes were identical at the initial state, as well as the short-term one; whereas, when considering the 6-month period, there is a seemingly remarkable superiority in PL group in all parameters.
Collapse
Affiliation(s)
- Raha Markazi
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shadi Eghbal-Fard
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Eslamian
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Pishgahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Wen YH, Lee CF, Chen YJ, Chang GJ, Chong KY. Risks in Induction of Platelet Aggregation and Enhanced Blood Clot Formation in Platelet Lysate Therapy: A Pilot Study. J Clin Med 2022; 11:3972. [PMID: 35887736 PMCID: PMC9315595 DOI: 10.3390/jcm11143972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Platelet concentrates (PCs) are widely used in regenerative medicine; as it is produced from freeze-thawing PC, platelet lysate (PL) has a longer shelf life. The thrombotic risk of PL therapy needs to be explored since PL and PC contain cytokines that contribute to platelet aggregation and thrombus formation. Whole blood samples of 20 healthy subjects were collected; PL was produced from PCs with expired shelf life through freeze-thawing. The direct mixing of PL with platelet-rich plasma (PRP) or whole blood was performed. In addition, rotational thromboelastometry (ROTEM) was used to investigate whether PL enhanced coagulation in vitro; the effects of fibrinogen depletion and anticoagulants were evaluated to prevent hypercoagulation. The results showed that PL induced platelet aggregation in both PRP and whole blood. In ROTEM assays, PL was shown to cause a significantly lower clotting onset time (COT) and clot formation time (CFT), and a significantly greater α angle and maximum clot firmness (MCF). Compared with the controls, which were 1:1 mixtures of normal saline and whole blood, fibrinogen depletion of PL showed no significant difference in CFT, α angle and MCF. Moreover, heparin- and rivaroxaban-added PL groups demonstrated no clot formation in ROTEM assays. Platelet lysate-induced hypercoagulability was demonstrated in vitro in the present study, which could be prevented by fibrinogen depletion or the addition of an anticoagulant.
Collapse
Affiliation(s)
- Ying-Hao Wen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- School of Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chen-Fang Lee
- Department of Liver and Transplantation Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Yu-Ju Chen
- Department of Neurology, Mackay Memorial Hospital, Taipei 10449, Taiwan;
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kowit-Yu Chong
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan
| |
Collapse
|
9
|
HIF-1α inhibition attenuates severity of Achilles tendinopathy by blocking NF-κB and MAPK pathways. Int Immunopharmacol 2022; 106:108543. [DOI: 10.1016/j.intimp.2022.108543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
|
10
|
Platelet Lysate as a Promising Medium for Nanocarriers in the Management and Treatment of Ocular Diseases. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Hou J, Yang R, Vuong I, Li F, Kong J, Mao HQ. Biomaterials strategies to balance inflammation and tenogenesis for tendon repair. Acta Biomater 2021; 130:1-16. [PMID: 34082095 DOI: 10.1016/j.actbio.2021.05.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
Adult tendon tissue demonstrates a limited regenerative capacity, and the natural repair process leaves fibrotic scar tissue with inferior mechanical properties. Surgical treatment is insufficient to provide the mechanical, structural, and biochemical environment necessary to restore functional tissue. While numerous strategies including biodegradable scaffolds, bioactive factor delivery, and cell-based therapies have been investigated, most studies have focused exclusively on either suppressing inflammation or promoting tenogenesis, which includes tenocyte proliferation, ECM production, and tissue formation. New biomaterials-based approaches represent an opportunity to more effectively balance the two processes and improve regenerative outcomes from tendon injuries. Biomaterials applications that have been explored for tendon regeneration include formation of biodegradable scaffolds presenting topographical, mechanical, and/or immunomodulatory cues conducive to tendon repair; delivery of immunomodulatory or tenogenic biomolecules; and delivery of therapeutic cells such as tenocytes and stem cells. In this review, we provide the biological context for the challenges in tendon repair, discuss biomaterials approaches to modulate the immune and regenerative environment during the healing process, and consider the future development of comprehensive biomaterials-based strategies that can better restore the function of injured tendon. STATEMENT OF SIGNIFICANCE: Current strategies for tendon repair focus on suppressing inflammation or enhancing tenogenesis. Evidence indicates that regulated inflammation is beneficial to tendon healing and that excessive tissue remodeling can cause fibrosis. Thus, it is necessary to adopt an approach that balances the benefits of regulated inflammation and tenogenesis. By reviewing potential treatments involving biodegradable scaffolds, biological cues, and therapeutic cells, we contrast how each strategy promotes or suppresses specific repair steps to improve the healing outcome, and highlight the advantages of a comprehensive approach that facilitates the clearance of necrotic tissue and recruitment of cells during the inflammatory stage, followed by ECM synthesis and organization in the proliferative and remodeling stages with the goal of restoring function to the tendon.
Collapse
|
12
|
Vilaça A, Domingues RMA, Tiainen H, Mendes BB, Barrantes A, Reis RL, Gomes ME, Gomez‐Florit M. Multifunctional Surfaces for Improving Soft Tissue Integration. Adv Healthc Mater 2021; 10:e2001985. [PMID: 33599399 DOI: 10.1002/adhm.202001985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/14/2021] [Indexed: 12/22/2022]
Abstract
Metallic implants are widely used in diverse clinical applications to aid in recovery from lesions or to replace native hard tissues. However, the lack of integration of metallic surfaces with soft tissue interfaces causes the occurrence of biomaterial-associated infections, which can trigger a complicated inflammatory response and, ultimately, implant failure. Here, a multifunctional implant surface showing nanoscale anisotropy, based on the controlled deposition of cellulose nanocrystals (CNC), and biological activity derived from platelet lysate (PL) biomolecules sequestered and presented on CNC surface, is proposed. The anisotropic radial nanopatterns are produced on polished titanium surfaces by spin-coating CNC at high speed. Furthermore, CNC surface chemistry allows to further sequester and form a coating of bioactive molecules derived from PL. The surface anisotropy provided by CNC guides fibroblasts growth and alignment up to 14 days of culture. Moreover, PL-derived biomolecules polarize macrophages toward the M2-like anti-inflammatory phenotype. These results suggest that the developed multifunctional surfaces can promote soft tissue integration to metallic implants and, at the same time, prevent bacterial invasion, tissue inflammation, and failure of biomedical metallic implants.
Collapse
Affiliation(s)
- Adriana Vilaça
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark − Parque de Ciência e Tecnologia, Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Rui M. A. Domingues
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark − Parque de Ciência e Tecnologia, Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Hanna Tiainen
- Department of Biomaterials Institute of Clinical Dentistry University of Oslo P.O. box 1109 Blindern Oslo 0317 Norway
| | - Bárbara B. Mendes
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark − Parque de Ciência e Tecnologia, Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Alejandro Barrantes
- Oral Research Laboratory Institute of Clinical Dentistry University of Oslo P.O. Box 1143 Blindern Oslo 0317 Norway
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark − Parque de Ciência e Tecnologia, Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Manuela E. Gomes
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark − Parque de Ciência e Tecnologia, Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Manuel Gomez‐Florit
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark − Parque de Ciência e Tecnologia, Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| |
Collapse
|
13
|
El-Gohary R, Diab A, El-Gendy H, Fahmy H, Gado KH. Using intra-articular allogenic lyophilized growth factors in primary knee osteoarthritis: a randomized pilot study. Regen Med 2021; 16:113-115. [PMID: 33754800 DOI: 10.2217/rme-2020-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: Investigating the safety in addition to clinical and structural efficacy of allogenic lyophilized growth factors (L-GFs) in patients with symptomatic primary knee osteoarthritis. Design: A prospective, open-label pilot study. A total of 31-patients randomized into non-intervention and intervention groups. Materials & methods: The intervention group received two intra-articular doses at baseline and after 2-months. Post-injection complications were documented, and the efficacy was assessed by Western Ontario and McMaster Universities Osteoarthritis Index scores and ultrasonography. Results: One dropout from the intervention group. The percentage of improvement of mean Western Ontario and McMaster Universities Osteoarthritis Index-scores and ultrasonography-detected effusion were statistically significant in the intervention group compared with the non-intervention. A brief, mild, post-injection pain was reported by all intervention group. Conclusion: This study provides the safety of intra-articular injection of allogenic L-GFs in knee osteoarthritis. The conclusion of efficacy was limited by small sample size and lack of control injection. Clinical trial registration: NCT04331327 (ClinicalTrials.gov, retrospectively registered).
Collapse
Affiliation(s)
- Rasmia El-Gohary
- Department of Internal Medicine, Faculty of Medicine, Clinical Immunology & Rheumatology Unit, Cairo University, Cairo 11562, Egypt
| | - Amany Diab
- Department of Internal Medicine, Faculty of Medicine, Clinical Immunology & Rheumatology Unit, Cairo University, Cairo 11562, Egypt
| | - Hala El-Gendy
- Department of Internal Medicine, Faculty of Medicine, Clinical Immunology & Rheumatology Unit, Cairo University, Cairo 11562, Egypt
| | - Hossam Fahmy
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Kamel Heshmat Gado
- Department of Internal Medicine, Faculty of Medicine, Clinical Immunology & Rheumatology Unit, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
14
|
Platelet lysates-based hydrogels incorporating bioactive mesoporous silica nanoparticles for stem cell osteogenic differentiation. Mater Today Bio 2021; 9:100096. [PMID: 33665604 PMCID: PMC7903011 DOI: 10.1016/j.mtbio.2021.100096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Scaffolds for bone tissue regeneration should provide the right cues for stem cell adhesion and proliferation, but also lead to their osteogenic differentiation. Hydrogels of modified platelet lysates (PLMA) show the proper mechanical stability for cell encapsulation and contain essential bioactive molecules required for cell maintenance. We prepared a novel PLMA-based nanocomposite for bone repair and regeneration capable of releasing biofactors to induce osteogenic differentiation. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were encapsulated in PLMA hydrogels containing bioactive mesoporous silica nanoparticles previously loaded with dexamethasone and functionalized with calcium and phosphate ions. After 21 d of culture, hBM-MSCs remained viable, presented a stretched morphology, and showed signs of osteogenic differentiation, namely the presence of significant amounts of alkaline phosphatase, bone morphogenic protein-2 and osteopontin, hydroxyapatite, and calcium nodules. Developed for the first time, PLMA/MSNCaPDex nanocomposites were able to guide the differentiation of hBM-MSCs without any other osteogenic supplementation.
Collapse
|
15
|
Jahangir S, Eglin D, Pötter N, Khozaei Ravari M, Stoddart MJ, Samadikuchaksaraei A, Alini M, Baghaban Eslaminejad M, Safa M. Inhibition of hypertrophy and improving chondrocyte differentiation by MMP-13 inhibitor small molecule encapsulated in alginate-chondroitin sulfate-platelet lysate hydrogel. Stem Cell Res Ther 2020; 11:436. [PMID: 33036643 PMCID: PMC7545577 DOI: 10.1186/s13287-020-01930-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells are a promising cell source for chondrogenic differentiation and have been widely used in several preclinical and clinical studies. However, they are prone to an unwanted differentiation process towards hypertrophy that limits their therapeutic efficacy. Matrix metallopeptidase 13 (MMP-13) is a well-known factor regulated during this undesirable event. MMP-13 is a collagen degrading enzyme, which is also highly expressed in the hypertrophic zone of the growth plate and in OA cartilage. Accordingly, we investigated the effect of MMP-13 inhibition on MSC hypertrophy. METHODS In this study, 5-bromoindole-2-carboxylic acid (BICA) was used as an inhibitory agent for MMP-13 expression. After identifying its optimal concentration, BICA was mixed into a hydrogel and the release rate was studied. To prepare the ideal hydrogel, chondroitin sulfate (CS) and platelet lysate (PL) were mixed with sodium alginate (Alg) at concentrations selected based on synergistic mechanical and rheometric properties. Then, four hydrogels were prepared by combining alginate (1.5%w/v) and/or CS (1%w/v) and/or PL (20%v/v). The chondrogenic potential and progression to hypertrophy of human bone marrow-derived mesenchymal stem cell (hBM-MSC)-loaded hydrogels were investigated under free swelling and mechanical loading conditions, in the presence and absence of BICA. RESULTS Viability of hBM-MSCs seeded in the four hydrogels was similar. qRT-PCR revealed that BICA could successfully inhibit MMP-13 expression, which led to an inhibition of Coll X and induction of Coll-II, in both free swelling and loading conditions. The GAG deposition was higher in the group combining BICA and mechanical stimulation. CONCLUSIONS It is concluded that BICA inhibition of MMP-13 reduces MSC hypertrophy during chondrogenesis.
Collapse
Affiliation(s)
- Shahrbanoo Jahangir
- Department of Tissue engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Naomi Pötter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
- Department of orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center Albert-Ludwigs University, Albert-Ludwigs University of Freiburg, Freiburg im Breisgau, Germany
| | - Mojtaba Khozaei Ravari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
- Department of orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center Albert-Ludwigs University, Albert-Ludwigs University of Freiburg, Freiburg im Breisgau, Germany
| | - Ali Samadikuchaksaraei
- Department of Tissue engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland.
| | - Mohammadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Majid Safa
- Department of Tissue engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Mendes BB, Gómez-Florit M, Araújo AC, Prada J, Babo PS, Domingues RMA, Reis RL, Gomes ME. Intrinsically Bioactive Cryogels Based on Platelet Lysate Nanocomposites for Hemostasis Applications. Biomacromolecules 2020; 21:3678-3692. [PMID: 32786530 DOI: 10.1021/acs.biomac.0c00787] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The currently used hemostatic agents are highly effective in stopping hemorrhages but have a limited role in the modulation of the wound-healing environment. Herein, we propose an intrinsically bioactive hemostatic cryogel based on platelet lysate (PL) and aldehyde-functionalized cellulose nanocrystals (a-CNCs). PL has attracted great attention as an inexpensive milieu of therapeutically relevant proteins; however, its application as a hemostatic agent exhibits serious constraints (e.g., structural integrity and short shelf-life). The incorporation of a-CNCs reinforced the low-strength PL matrix by covalent cross-linking its amine groups that exhibit an elastic interconnected porous network after full cryogelation. Upon blood immersion, the PL-CNC cryogels absorbed higher volumes of blood at a faster rate than commercial hemostatic porcine gelatin sponges. Simultaneously, the cryogels released biomolecules that increased stem cell proliferation, metabolic activity, and migration as well as downregulated the expression of markers of the fibrinolytic process. In an in vivo liver defect model, PL-CNC cryogels showed similar hemostatic performance in comparison with gelatin sponges and normal material-induced tissue response upon subcutaneous implantation. Overall, owing to their structure and bioactive composition, the proposed PL-CNC cryogels provide an alternative off-the-shelf hemostatic and antibacterial biomaterial with the potential to deliver therapeutically relevant proteins in situ.
Collapse
Affiliation(s)
- Bárbara B Mendes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Ana C Araújo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Justina Prada
- UTAD, CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Pedro S Babo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| |
Collapse
|
17
|
Abstract
Tendon injuries constitute a significant healthcare problem with variable clinical outcomes. The complex interplay of tissue homeostasis, degeneration, repair, and regeneration makes the development of successful delivery therapeutic strategies challenging. Platelet-rich hemoderivatives, a source of supra-physiologic concentrations of human therapeutic factors, are a promising application to treat tendon injuries from the perspective of tendon tissue engineering, although the outcomes remain controversial.
Collapse
|
18
|
Şeker Ş, Elçin AE, Elçin YM. Autologous protein-based scaffold composed of platelet lysate and aminated hyaluronic acid. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:127. [PMID: 31768643 DOI: 10.1007/s10856-019-6334-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
This study describes a protein-based scaffold using platelet rich plasma (PRP), aminated hyaluronic acid (HA-NH2) and Genipin for potential use in regenerative applications as an autologous tissue engineering scaffold. Human PRP was subjected to three freeze-thaw cycles for obtaining platelet lysates (PL). HA-NH2 was synthesized from hyaluronic acid. PL/HA-NH2 scaffolds were fabricated using different concentrations of genipin (0.05, 0.1 and 0.2%) and HA-NH2 (10, 20 and 30 mg/mL). Mechanical, physical, and chemical properties of the scaffolds were comprehensively investigated. The compressive test findings revealed that crosslinking with 0.1 and 0.2% genipin improved the mechanical properties of the scaffolds. SEM evaluations showed that the scaffolds exhibited an interconnected and macroporous structure. Besides, porosimetry analysis indicated a wide distribution of the scaffold pore-size. Rheological findings demonstrated that the G' values were higher than the G″ values, indicating that PL/HA-NH2 scaffolds had typical viscoelastic properties. In vitro biocompatibility studies showed that the scaffolds were both cytocompatible and hemocompatible. Alamar Blue test indicated that human adipose mesenchymal stem cells (hASCs) were able to attach, spread and proliferate on the scaffolds for 21 days-duration. Our findings clearly indicate that PL/HA-NH2 can be a promising autologous candidate scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- Şükran Şeker
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey.
- Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
19
|
Burnouf T, Barro L, Nebie O, Wu YW, Goubran H, Knutson F, Seghatchian J. Viral safety of human platelet lysate for cell therapy and regenerative medicine: Moving forward, yes, but without forgetting the past. Transfus Apher Sci 2019; 58:102674. [PMID: 31735652 DOI: 10.1016/j.transci.2019.102674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Growth factor-rich pooled human platelet lysate (HPL), made from human platelet concentrates, is one new blood-derived bioproduct that is attracting justified interest as a xeno-free supplement of growth media for human cell propagation for cell therapy. HPL can also find potentially relevant applications in the field of regenerative medicine. Therefore, the therapeutic applications of HPL go far beyond the standard clinical applications of the traditional blood products typically used in patients suffering from life-threatening congenital or acquired deficiencies in cellular components or proteins due to severe genetic diseases or trauma. A wider population of patients, suffering from various pathologies than has traditionally been the case, is thus, now susceptible to receiving a human blood-derived product. These patients would, therefore, be exposed to the possible, but avoidable, side effects of blood products, including transfusion-transmitted infections, most specifically virus transmissions. Unfortunately, not all manufacturers, suppliers, and users of HPL may have a strong background in the blood product industry. As such, they may not be fully aware of the various building blocks that should contribute to the viral safety of HPL as is already the case for any licensed blood products. The purpose of this manuscript is to reemphasize all the measures, including in regulatory aspects, capable of assuring that HPL exhibits a sufficient pathogen safety margin, especially when made from large pools of human platelet concentrates. It is vital to remember the past to avoid that the mistakes, which happened 30 to 40 years ago and led to the contamination of many blood recipients, be repeated due to negligence or ignorance of the facts.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Research Center of Biomedical Devices, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre, Division of Oncology, College of Medicine, University of Saskatchewan, Canada
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK
| |
Collapse
|
20
|
Calejo I, Costa-Almeida R, Reis RL, Gomes ME. Enthesis Tissue Engineering: Biological Requirements Meet at the Interface. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:330-356. [DOI: 10.1089/ten.teb.2018.0383] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isabel Calejo
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
21
|
Postantibiotic and Sub-MIC Effects of Exebacase (Lysin CF-301) Enhance Antimicrobial Activity against Staphylococcus aureus. Antimicrob Agents Chemother 2019; 63:AAC.02616-18. [PMID: 30936103 DOI: 10.1128/aac.02616-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/24/2019] [Indexed: 12/13/2022] Open
Abstract
CF-301 (exebacase) is a recombinantly produced bacteriophage-derived lysin (cell wall hydrolase) and is the first agent of this class to enter clinical development in the United States for treating bacteremia including endocarditis due to Staphylococcus aureus Whereas rapid bactericidal activity is the hallmark in vitro and in vivo response to CF-301 at exposures higher than the MIC, prolonged antimicrobial activity, mediated by cell wall damage, is predicted at concentrations less than the MIC. In the current study, a series of in vitro pharmacodynamic parameters, including the postantibiotic effect (PAE), postantibiotic sub-MIC effect (PA-SME), and sub-MIC effect (SME), were studied to determine how short-duration and sub-MIC CF-301 exposures affect the growth of surviving staphylococci and extend its antimicrobial activity. Mean PAE, PA-SME, and SME values up to 4.8, 9.3, and 9.8 h, respectively, were observed against 14 staphylococcal strains tested in human serum; growth delays were extended by 6 h in the presence of daptomycin. Exposures to CF-301 at sub-MIC levels as low as 0.001× to 0.01× MIC (∼1 to 10 ng/ml) resulted in aberrant cell wall ultrastructure, increased membrane permeability, dissipation of membrane potential, and inhibition of virulence phenotypes, including agglutination and biofilm formation. A mouse thigh infection model designed to study the PAE was used to confirm our findings and demonstrate in vivo growth delays of ≥19.3 h. Our findings suggest that at CF-301 concentrations less than the MIC during therapeutic use, sustained reductions in bacterial fitness and virulence may substantially enhance efficacy.
Collapse
|
22
|
Costa-Almeida R, Calejo I, Altieri R, Domingues RMA, Giordano E, Reis RL, Gomes ME. Exploring platelet lysate hydrogel-coated suture threads as biofunctional composite living fibers for cell delivery in tissue repair. ACTA ACUST UNITED AC 2019; 14:034104. [PMID: 30844766 DOI: 10.1088/1748-605x/ab0de6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To engineer functional tissue substitutes, it is required a multi-component, multi-scale approach that combines both physical, chemical and biological cues. Fiber-based techniques have been explored in the field of tissue engineering to produce structures recapitulating tissue architecture and mechanical properties. In this work, we engineered biofunctional composite living fibers (CLF) as multi-compartment fibers with a mechanically competent core and a hydrogel layer. For this purpose, commercial silk suture threads were coated with a platelet lysate (PL) hydrogel by first embedding the threads in a thrombin solution and then incubating in PL. The fabrication set-up was optimized and the biological performance was studied by encapsulating human adipose-derived stem cells (hASCs). The developed coating process rendered CLF with a homogenous PL hydrogel layer covering suture threads. Encapsulated hASCs were viable up to 14 d in culture and were able to align at the surface of the core fiber and deposit collagen types I and III. In summary, the study shows that PL-hASCs hydrogel coated suture threads represent a simple multi-compartment and multifunctional system, with PL hydrogel offering biofunctionality to guide the biological activities of encapsulated cells in addition to the replication of tissue-level mechanical support provided by the suture threads.
Collapse
Affiliation(s)
- Raquel Costa-Almeida
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
23
|
Almeida LDF, Babo PS, Silva CR, Rodrigues MT, Hebling J, Reis RL, Gomes ME. Hyaluronic acid hydrogels incorporating platelet lysate enhance human pulp cell proliferation and differentiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:88. [PMID: 29904797 DOI: 10.1007/s10856-018-6088-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
The restoration of dentine-pulp complex remains a challenge for dentists; nonetheless, it has been poorly addressed. An ideal system should modulate the host response, as well as enable the recruitment, proliferation and differentiation of relevant progenitor cells. Herein was proposed a photocrosslinkable hydrogel system based on hyaluronic acid (HA) and platelet lysate (PL). PL is a cocktail of growth factors (GFs) and cytokines involved in wound healing orchestration, obtained by the cryogenic processing of platelet concentrates, and was expected to provide the HA hydrogels specific biochemical cues to enhance pulp cells' recruitment, proliferation and differentiation. Stable HA hydrogels incorporating PL (HAPL) were prepared after photocrosslinking of methacrylated HA (Met-HA) previously dissolved in PL, triggered by the Ultra Violet activated photoinitiator Irgacure 2959. Both the HAPL and plain HA hydrogels were shown to be able to recruit cells from a cell monolayer of human dental pulp stem cells (hDPSCs) isolated from permanent teeth. The hDPCs were also seeded directly over the hydrogels (5 × 104 cells/hydrogel) and cultured in osteogenic conditions. Cell metabolism and DNA quantification were higher, in all time-points, for PL supplemented hydrogels (p < 0,05). Alkaline phosphatase (ALPL) activity and calcium quantification peaks were observed for the HAPL group at 21 days (p < 0,05). The gene expression for ALPL and COLIA1 was up-regulated at 21 days to HAPL, compared with HA group (p < 0,05). Within the same time point, the gene expression for RUNX2 did not differ between the groups. Overall, data demonstrated that the HA hydrogels incorporating PL increased the cellular metabolism and stimulate the mineralized matrix deposition by hDPSCs, providing clear evidence of the potential of the proposed system for the repair of damaged pulp/dentin tissue and endodontics regeneration.
Collapse
Affiliation(s)
- Leopoldina D F Almeida
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa, PB, Brazil
- Department of Orthodontics and Pediatric Dentistry, Araraquara Dental School, State of São Paulo University, Araraquara, SP, Brazil
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4805-017, Portugal
| | - Pedro S Babo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4805-017, Portugal
| | - Cristiana R Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4805-017, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4805-017, Portugal
| | - Josimeri Hebling
- Department of Orthodontics and Pediatric Dentistry, Araraquara Dental School, State of São Paulo University, Araraquara, SP, Brazil
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4805-017, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017, Barco, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4805-017, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017, Barco, Guimarães, Portugal.
| |
Collapse
|