1
|
Huang Y, Chu C, Mai Y, Zhao Y, Cao L, Ji S, Zhu B, Shen Q. Treatment of peritoneal fibrosis: Therapeutic prospects of bioactive Agents from Astragalus membranaceus. Front Pharmacol 2024; 15:1347234. [PMID: 38835665 PMCID: PMC11148558 DOI: 10.3389/fphar.2024.1347234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Peritoneal dialysis is one of the renal replacement treatments for patients with end-stage renal disease. Peritoneal dialysis-related peritoneal fibrosis is a pathological change in peritoneal tissue of peritoneal dialysis patients with progressive, non-suppurative inflammation accompanied by fibrous tissue hyperplasia, resulting in damage to the original structure and function, leading to peritoneal function failure. Currently, there is no specific drug in the clinic. Therefore, it is necessary to find a drug with good effects and few adverse reactions. Astragalus membranaceus (AMS) is the dried root of the Astragalus membranaceus (Fisch.) Bge. AMS and its active ingredients play a significant role in anti-inflammation, anti-fibrosis, regulation of immune function and regulation of blood pressure. Studies have shown that it can alleviate peritoneal fibrosis by reducing inflammatory response, inhibiting oxidative stress, degrading extracellular matrix deposition, regulating apoptosis, and regulating Transforming Growth Factor-β. The author summarized the relationship between AMS and its active ingredients by referring to relevant literature at home and abroad, in order to provide some theoretical basis for further clinical research.
Collapse
Affiliation(s)
- Ying Huang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chenling Chu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Clinical Medicine and Stomatology, School of Hangzhou Normal University, Hangzhou, China
| | - Yuanyuan Mai
- Basic Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Luxi Cao
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuiyu Ji
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bin Zhu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Quanquan Shen
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, China
| |
Collapse
|
2
|
Feng C, Huang C, Huang J, Yang X, Liu Y, Shuai Z, Dong J, Ren T, Wang B. Preparation of healing-promoting and fibrosis-inhibiting asymmetric poly(ethylene glycol-b-L-phenylalanine)/cRGD-modified hyaluronate sponges and their applications in hemorrhage and nasal mucosa repair. Int J Biol Macromol 2024; 258:128911. [PMID: 38141717 DOI: 10.1016/j.ijbiomac.2023.128911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Acute or chromic bleeding, such as epistaxis, requires hemostatic materials to assist hemostasis. Even in complex cases, hemostatic materials must have other functions, including the promotion of healing and prevention of adhesion. Herein, a series of fibrosis-suppressive functional cRGD-modified crosslinking hyaluronic acid sponges were prepared. The in vitro hemostatic efficiency and mechanism were determined using blood clotting time, blood coagulation index, lactate dehydrogenase (LDH) and thromboxane B2 (TX-B2) ELISA, and proteomics. Among the prepared sponges, both poly(ethylene-b-L-Phe) (PEBP)-and cRGD contained SPN4 and exhibited the highest platelet concentration and activation efficiency as well as the most effective coagulative effect. In addition, no significant cytotoxicity was observed for the sponges in rat airway epithelial cells. The in vivo hemostatic and adhesion-preventive effects of the sponges were evaluated using rat models of liver injury and sidewall defect-cecum abrasion. PEBP-containing sponges effectively prevented postoperative adhesion and cRGD-modified sponges exhibited excellent hemostatic effects. Finally, the comprehensive repair effects of the sponges were evaluated using a rabbit maxillary sinus mucosal injury model, based on CT, MRI examination, and pathological staining. SPN4 exhibited the best comprehensive reparative effects, including the promotion of mucosal repair and infection inhibition. Thus, SPN4 is a promising multifunctional hemostatic material.
Collapse
Affiliation(s)
- Chengmin Feng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Changlin Huang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Jing Huang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Otolaryngology Head and Neck Surgery, School of Clinical Medicine, North Sichuan Medical College, 637000 Nanchong, China
| | - Xiaomei Yang
- Department of Otolaryngology Head and Neck Surgery, School of Clinical Medicine, North Sichuan Medical College, 637000 Nanchong, China
| | - Yuting Liu
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Zheyu Shuai
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Jun Dong
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Tongyan Ren
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Bing Wang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
3
|
Hu X, Wu H, Yong X, Wang Y, Yang S, Fan D, Xiao Y, Che L, Shi K, Li K, Xiong C, Zhu H, Qian Z. Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions. MedComm (Beijing) 2023; 4:e425. [PMID: 38045828 PMCID: PMC10691302 DOI: 10.1002/mco2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone-regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue-engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of BiotherapySichuan UniversityChengduSichuanChina
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Shuhao Yang
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Diyi Fan
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Yibo Xiao
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | | | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University Hospital of Sichuan UniversityChengduSichuanChina
| | - Zhiyong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Qin C, Ren T, Liu Y, Shao H, Mi F, Wang B. Efficacy of positive space acquiring membrane and antimicrobial membrane combined with granular bone substitute implantation in guiding oral bone regeneration. J Biomater Appl 2023; 38:562-572. [PMID: 37665085 DOI: 10.1177/08853282231200716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Augmentation of the alveolar bone is important before oral implantation. For large bone defects, it becomes necessary to apply guided bone regeneration (GBR) materials, accompanied by filling defect sites with autologous or allogeneic bone, or bone substitutes such as acellular bone powder. In this study, we tested a granular bone substitute and GBR membrane combination therapy in treating MC3T3-E1 and L929 cells in vitro and rat calvarial and alveolar defects in vivo. The recovery conditions of bone defects were monitored by micro-CT, and 3D reconstruction of the CT images was applied to evaluate the bone augmentation semi-quantitatively. Test GBR materials could support the proliferation of MC3T3-E1 cells, poly (p-dioxanone-co-L-phenylalanine) (PDPA)-based membrane could induce apoptosis of L929 cells. Among GBR membranes applied groups, the regeneration condition of defected calvarial defects of PDPA based membrane applied group was the best and this may be caused by its excellent positive space acquiring effect. However, in a complex bacteriogenic environment, the oral bone regeneration-guided efficacy of the PDPA membrane decreased in the post-repair stage with the aggravation of infections. By contrast, the antimicrobial membrane combined with the PDPA membrane exhibited continually increasing GBR efficacy at the later stage of repair owing to its multifunctional properties, which are infection-inhibiting and positive space acquiring. Therefore, multifunctional GBR membranes are preferable for GBR in complex oral environments, and further research should be conducted to determine their efficacy in other models.
Collapse
Affiliation(s)
- Chuanlan Qin
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Tongyan Ren
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yiming Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Huaying Shao
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Fanglin Mi
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Bing Wang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
5
|
Xia W, Wang Q, Lin S, Wang Y, Zhang J, Wang H, Yang X, Hu Y, Liang H, Lu Y, Zhu Z, Liu D. A high-salt diet promotes hypertrophic scarring through TRPC3-mediated mitochondrial Ca 2+ homeostasis dysfunction. Heliyon 2023; 9:e18629. [PMID: 37588604 PMCID: PMC10425910 DOI: 10.1016/j.heliyon.2023.e18629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Diet High in salt content have been associated with cardiovascular disease and chronic inflammation. We recently demonstrated that transient receptor potential canonical 3 (TRPC3) channels regulate myofibroblast transdifferentiation in hypertrophic scars. Here, we examined how high salt activation of TRPC3 participates in hypertrophic scarring during wound healing. In vitro, we confirmed that high salt increased the TRPC3 protein expression and the marker of myofibroblast alpha smooth muscle actin (α-SMA) in wild-type mice (WT) primary cultured dermal fibroblasts but not Trpc3-/- mice. Activation of TRPC3 by high salt elevated cytosolic Ca2+ influx and mitochondrial Ca2+ uptake in dermal fibroblasts in a TRPC3-dependent manner. High salt activation of TRPC3 enhanced mitochondrial respiratory dysfunction and excessive ROS production by inhibiting pyruvate dehydrogenase action, that activated ROS-triggered Ca2+ influx and the Rho kinase/MLC pathway in WT mice but not Trpc3-/- mice. In vivo, a persistent high-salt diet promoted myofibroblast transdifferentiation and collagen deposition in a TRPC3-dependent manner. Therefore, this study demonstrates that high salt enhances myofibroblast transdifferentiation and promotes hypertrophic scar formation through enhanced mitochondrial Ca2+ homeostasis, which activates the ROS-mediated pMLC/pMYPT1 pathway. TRPC3 deficiency antagonizes high salt diet-induced hypertrophic scarring. TRPC3 may be a novel target for hypertrophic scarring during wound healing.
Collapse
Affiliation(s)
- Weijie Xia
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Qianran Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Shaoyang Lin
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Yuanyuan Wang
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Junbo Zhang
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Hailin Wang
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Yuangang Lu
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| |
Collapse
|
6
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
7
|
Wang B, Qin C, Liu Y, Zhang Y, Feng C, Mi F, Zhu H. Positive space acquiring asymmetric membranes for guiding alveolar bone regeneration under infectious conditions. BIOMATERIALS ADVANCES 2023; 145:213252. [PMID: 36563510 DOI: 10.1016/j.bioadv.2022.213252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
To obtain multifunctional materials suitable for guiding alveolar bone regeneration under infectious conditions, we prepared asymmetric membranes comprising space acquiring layer that involves fibroblast inhibitor poly(p-dioxanone-co-L-phenylalanine) (PDPA), an isolating dense layer that forms barrier between two layers and an osteogenesis inducing electrospinning layer which involves hydroxyapatite or hydroxyapatite & minocycline. Then the composition, crystallization, morphology, and hydrophilicity of asymmetric membranes were analyzed. Minocycline incorporated membranes controlled the expansion of Porphyromonas gingivalis (P. gingivalis) in vitro. Hydroxyapatite-incorporated asymmetric membranes promoted the expression of osteogenesis related genes RUNX2, OPN, ALP of MC3T3-E1 cells in vitro. The mineralization of MC3T3-E1 cells cultured with hydroxyapatite-incorporated asymmetric membranes were also promoted in vitro. Asymmetric membranes especially hydroxyapatite-incorporated ones guided the regeneration of the mandibular bone defect in vivo. Bone regeneration guided under infectious conditions was evaluated in a P. gingivalis infected alveolar bone defect model. Specifically, space acquiring layer containing asymmetric membranes effectively controlled connective tissue hyperplasia at defect sites. The excellent guided bone regeneration achieved by applying a single space acquiring layer membrane further indicates the importance of acquiring space actively to induce bone regeneration. Hydroxyapatite-minocycline incorporated symmetric membranes could simultaneously suppress alveolar bone reabsorption caused by infection and guide regeneration of defects. Therefore, the hydroxyapatite-minocycline incorporated asymmetric membrane may be more suitable to be applied in guiding regeneration of bone defects under complex infectious conditions.
Collapse
Affiliation(s)
- Bing Wang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
| | - Chuanlan Qin
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Yiming Liu
- Department of Stomatology, North Sichuan Medical College & Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuqiu Zhang
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Chengmin Feng
- Department of Otorhinolaryngology & Head Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fanglin Mi
- Department of Stomatology, North Sichuan Medical College & Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Hong Zhu
- Department of Immunology, School of Basic and Forensic Medicine, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
8
|
Wen D, Gao Y, Ho C, Yu L, Zhang Y, Lyu G, Hu D, Li Q, Zhang Y. Focusing on Mechanoregulation Axis in Fibrosis: Sensing, Transduction and Effecting. Front Mol Biosci 2022; 9:804680. [PMID: 35359592 PMCID: PMC8963247 DOI: 10.3389/fmolb.2022.804680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis, a pathologic process featured by the excessive deposition of connective tissue components, can affect virtually every organ and has no satisfactory therapy yet. Fibrotic diseases are often associated with organ dysfunction which leads to high morbidity and mortality. Biomechanical stmuli and the corresponding cellular response havebeen identified in fibrogenesis, as the fibrotic remodeling could be seen as the incapacity to reestablish mechanical homeostasis: along with extracellular matrix accumulating, the physical property became more “stiff” and could in turn induce fibrosis. In this review, we provide a comprehensive overview of mechanoregulation in fibrosis, from initialing cellular mechanosensing to intracellular mechanotransduction and processing, and ends up in mechanoeffecting. Our contents are not limited to the cellular mechanism, but further expand to the disorders involved and current clinical trials, providing an insight into the disease and hopefully inspiring new approaches for the treatment of tissue fibrosis.
Collapse
Affiliation(s)
- Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guozhong Lyu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dahai Hu
- Burns Centre of PLA, Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Yifan Zhang,
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Yifan Zhang,
| |
Collapse
|
9
|
Khot S, Rawal SU, Patel MM. Dissolvable-soluble or biodegradable polymers. DRUG DELIVERY DEVICES AND THERAPEUTIC SYSTEMS 2021:367-394. [DOI: 10.1016/b978-0-12-819838-4.00024-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Wang B, Feng C, Dang J, Zhu Y, Yang X, Zhang T, Zhang R, Li J, Tang J, Shen C, Shen L, Dong J, Zhang X. Preparation of Fibroblast Suppressive Poly(ethylene glycol)- b-poly(l-phenylalanine)/Poly(ethylene glycol) Hydrogel and Its Application in Intrauterine Fibrosis Prevention. ACS Biomater Sci Eng 2020; 7:311-321. [PMID: 33455202 DOI: 10.1021/acsbiomaterials.0c01390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrauterine adhesions (IUA) often occur as a result of trauma to the basal layer after curettage, postpartum hemorrhage, or surgical miscarriage. Endometrial fibrosis is the primary pathological feature of IUA. The characteristic features of IUA include excessive deposition and reorganization of the extracellular matrix, replacing the normal endometrium. To prevent uterine fibrosis after injury, we prepared and evaluated a type of fibroblast suppressive hydrogel. Poly(ethylene glycol)-b-poly(l-phenylalanine) (PEBP) copolymers were successfully synthesized by ring opening polymerization of l-Phenylalanine N-carboxyanhydride, initiated by methoxy-poly(ethylene glycol)-amine. Injectable PEBP/PEG hydrogels were subsequently formed through π-π accumulations between PEBP macromolecules and hydrogen bonds among PEBP, PEG, and H2O molecules. PEBP/PEG hydrogel could suppress the proliferation of fibroblasts due to the action of l-Phe, released sustainably from PEBP/PEG gels. Lastly, the in vivo preventive effect of PEBP/PEG hydrogel on fibrosis was evaluated in a rat uterine curettage model. It was found that PEBP/PEG hydrogel suppressed uterine fibrosis caused by curettage and promoted embryo implantation in injured uterine by regulating the expression and interactions of transforming growth factor beta 1 (TGF-β1) and Muc-4. PEBP/PEG hydrogels have the potential for application in uterine adhesion prevention owing to their fibrosis preventive and pregnancy promotiing effects on uterine tissue after injury.
Collapse
Affiliation(s)
- Bing Wang
- Medical Imaging Key Laboratory of Sichuan Province & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Chengmin Feng
- Otorhinolaryngology, Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiafeng Dang
- Gynecology and Obstetrics, Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Yanghui Zhu
- School of Pharmacy, North Sichuan Medical College, 637000 Nanchong, P. R. China
| | - Xiaomei Yang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Ting Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Ruqin Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Jiawen Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Jing Tang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Chengyi Shen
- Medical Imaging Key Laboratory of Sichuan Province & Institute of Morphological Research, North Sichuan Medical College, Nanchong, P. R. China
| | - Lunhua Shen
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jun Dong
- Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province & Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
11
|
Qin H, Zhang LL, Xiong XL, Jiang ZX, Xiao CP, Zhang LL, Wang YJ, Wu YT, Qiu YY, Zhou LS, Yan SQ. Li-Dan-He-Ji Improves Infantile Cholestasis Hepatopathy Through Inhibiting Calcium-Sensing Receptor-Mediated Hepatocyte Apoptosis. Front Pharmacol 2020; 11:156. [PMID: 32180721 PMCID: PMC7059769 DOI: 10.3389/fphar.2020.00156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Infantile cholestatic hepatopathy (ICH) is a clinical syndrome characterized by the accumulation of cytotoxic bile acids in infancy, leading to serious liver cirrhosis or liver failure. The aetiology of ICH is complicated and some of them is unknown. Regardless of the aetiology, the finial pathology of ICH is hepatocyte apoptosis caused by severe and persistent cholestasis. It is already known that activation of calcium-sensing receptor (CaSR) could lead to the apoptosis of cardiomyocytes. However, the mechanism by CaSR-mediated cholestasis-related hepatocyte apoptosis is not fully understood. Li-Dan-He-Ji (LDHJ), a Traditional Chinese Medicine prescription, was developed to treat ICH. Another aim of this study was to investigate the possible mechanisms of LDHJ in cholestasis-related hepatocyte apoptosis. Using the primary hepatocytes, we first investigated the molecular mechanism of CaSR-mediated hepatocyte apoptosis in cholestasis. Then we prepared LDHJ granules and used ultra-high-performance liquid chromatography to identify the predominant drugs; confirmed the stability of the main substances; and for cell experiments screened forsythoside-A, emodin and chlorogenic acid as the three active substances of LDHJ granules. In the young rats with ANIT-induced intrahepatic cholestasis and the primary hepatocytes with TCDC-induced cholestasis-related hepatocyte apoptosis, the levels of liver injury and cholestasis-related biomarkers, calcium-sensing receptor (CaSR), hepatocyte apoptosis, Bax/Bcl-2 ratio, Cytochrome-C, caspase-3, phosphorylated-c-Jun NH2-terminal kinase (p-JNK)/JNK, and p-P38/P38 were all increased, while the levels of p-extracellular signal-regulated kinase (p-ERK)/ERK were decreased. However, LDHJ granules and its three active substances effectively reversed these changes. Furthermore, the three active substances reduced the increases in the intracellular calcium concentration ([Ca2+]i) and ROS levels and attenuated the dissipation of the mitochondria membrane potential in the TCDC-induced primary hepatocytes. The opposite results were obtained from the TCDC-induced primary hepatocytes treated with an agonist of CaSR (GdCl3) plus forsythoside-A, emodin or chlorogenic acid. Based on the results from in vivo and in vitro studies, LDHJ functions as an antagonist of CaSR to regulate hepatocyte apoptosis in cholestasis through the mitochondrial pathway and mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Huan Qin
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling-Ling Zhang
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Department of Pediatrics, Wuhan NO.1 Hospital, Wuhan, China
| | - Xiao-Li Xiong
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Xia Jiang
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui-Ping Xiao
- Department of Social Services, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Li Zhang
- First Clinical College of Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu-Ji Wang
- Department of Statistics and Medical Records, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Tao Wu
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Yan Qiu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Li-Shan Zhou
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su-Qi Yan
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Wen A, Mei X, Feng C, Shen C, Wang B, Zhang X. Electrosprayed nanoparticles of poly(p-dioxanone-co-melphalan) macromolecular prodrugs for treatment of xenograft ovarian carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110759. [PMID: 32279799 DOI: 10.1016/j.msec.2020.110759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 01/18/2023]
Abstract
Ovarian cancer is considered to be the most fatal reproductive cancers. Melphalan is used to treat ovarian cancer as an intraperitoneal chemotherapy agent. However, elucidating its pharmacokinetic behavior and preparing it for administration are challenging since it undergoes spontaneous hydrolysis. In this study, melphalan is transformed into a macromolecular prodrug by copolymerizing with p-dioxanone. The hydrophobicity of copolymer chains protects melphalan from hydrolysis. Poly(p-dioxanone-co-melphalan; PDCM) is electrosprayed and converted into nanoparticles (PDCM NPs) with diameters of ~300-350 nm to facilitate its intracellular delivery. UPLC-MS and HPLC are applied to verify and monitor the release of melphalan from PDCM NPs. PDCM NPs could suppress the proliferation of SKOV-3 cells. The IC50 of 4.3% melphalan-containing PDCM-3 NP was 70 mg/L, 72 h post administration. These suppression characteristics not only affected by the degradation and then the extracellular release of melphalan from PDCM NPs, but also the uptake via phagocytosis phenomenon in SKOV-3 cells. As revealed by flow cytometry, phagocytosis is a first-order process. Once phagocytosed, PDCM NPs are digested by lysosomes, causing a rapid release of melphalan into the cytoplasm, which ultimately causes suppression of SKOV-3 cell proliferation. Finally, the in vivo antitumor effects of PDCM NPs are verified in xenograft ovarian carcinoma. After a 20-day treatment, the tumor growth rate of the PDCM-3 NP group was (266 ± 178%) which was lower than those in the free melphalan group (367 ± 150%) and control group (648 ± 149%). Besides, significant tissue necrosis and growth suppression were observed in animals administered injections of PDCM NPs. Furthermore, the in vivo tracing results of Nile red-labeled PDCM NPs demonstrated that PDCM-3 NPs might be phagocytosed by macrophages and then taken to adjacent lymph nodes, which is a way of prevention or early treatment of lymphatic metastasis of tumors.
Collapse
Affiliation(s)
- Aiping Wen
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Mei
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Chengmin Feng
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging & Institute of Morphological Research, North Sichuan Medical College, Nanchong, China
| | - Bing Wang
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging & Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
13
|
Wang B, Feng C, Dang J, Niu L, Shen C, Yang X, Zhang T, Zhang X. Anti-Adhesive, Platelet Gathering Effects of c-RGD Modified Poly(p-dioxanone-co-l-Phe) Electrospun Membrane and Its Comprehensive Application in Intestinal Anastomosis. Macromol Biosci 2019; 20:e1900344. [PMID: 31854121 DOI: 10.1002/mabi.201900344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/05/2019] [Indexed: 11/06/2022]
Abstract
Intestinal resection and anastomosis are performed in over a million people with various bowel diseases annually. Excessive fibrosis and anastomotic site leakage are the main complications of anastomosis surgery, despite great improvements in operative technique and equipment in recent years. In this study, cRGD modified poly(p-dioxanone-co-l-Phe) (PDPA) membranes are designed and applied in intestinal anastomosis to simultaneously solve the two aforementioned complications. cRGD is modified onto PDPA membranes through both physical absorption and π-π accumulation between d-Phe of cRGD and l-Phe of PDPA. Although cRGD modification enhanced the biocompatibility of PDPA membranes, cRGD modified PDPA membrane suppresses fibroblast proliferation both in vitro and in vivo as a result of degradation and subsequent release of fibroblast suppressive l-Phe from PDPA. Meanwhile, platelets are entrapped by cRGD modified PDPA membranes through the specific binding of cRGD and platelet GPIIbIIIa . cRGD modified PDPA membranes are applied in rat intestinal anastomosis, and both adhesion and stenosis are successfully prevented at anastomotic sites. At the same time, bursting pressure, which represents healing intensity at anastomotic sites, is promoted. The gathering and activation of platelets on PDPA membranes induce secretion of autologous PDGF and VEGF to facilitate angiogenesis and subsequent healing of anastomotic sites.
Collapse
Affiliation(s)
- Bing Wang
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Chengmin Feng
- Department of Clinical Medicine, North Sichuan Medical College & Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jiafeng Dang
- Department of Clinical Medicine, North Sichuan Medical College & Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Lijing Niu
- Department of Pathology, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging & Institute of Morphological Research, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaomei Yang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Ting Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging & Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| |
Collapse
|
14
|
Niu L, Feng C, Shen C, Wang B, Zhang X. PLGA/PLCA casting and PLGA/PDPA electrospinning bilayer film for prevention of postoperative adhesion. J Biomed Mater Res B Appl Biomater 2018; 107:2030-2039. [PMID: 30548816 DOI: 10.1002/jbm.b.34294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/14/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023]
Abstract
Postoperative adhesion is a common complication and preventing adhesions during or immediately after operation is particularly important. The application of solid barrier materials represents the most successful clinical strategy to prevent postoperative adhesion. However, a simple physical barrier effect might be insufficient in preventing adhesion satisfactorily. Multilayered structures can be designed with an outer layer as the barrier and an inner layer to respond to relative drug release. In this article, bilayer film composed of a PLGA/PLCA casting layer as barrier and PLGA/PDPA electrospinning layer to respond to the release of anti-fibrosis drug l-Phe was designed and synthesized. The adhesion prevention effect of the above PLGA/PLCA/PDPA bilayer film was examined and compared with single PLGA/PLCA casting film and single PLGA/PDPA electrospinning film by applying rabbit sidewall defect-cecum abrasion model. As demonstrated by histological observation and immunohistochemical analysis, the bilayer film was the most effective of the three films in postoperative adhesion prevention in terms of both physical barrier effect and anti-fibrosis effect of the PDPA macromolecular prodrug. Besides anti-fibrosis effect, PDPA could also suppress excess proliferation of vascular endothelial cells and microvessel caused by long-term stimulation of implantation materials to the surrounding tissues. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2030-2039, 2019.
Collapse
Affiliation(s)
- Lijing Niu
- Department of Pathology, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Chengmin Feng
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging and Institute of Morphological Research, North Sichuan Medical College, Nanchong, China
| | - Bing Wang
- Sichuan Key Laboratory of Medical Imaging and Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|