1
|
McMorran JG, Neptune A, Gregory DE. Mechanical function of the annulus fibrosus is preserved following quasi-static compression resulting in endplate fracture. Clin Biomech (Bristol, Avon) 2025; 122:106425. [PMID: 39724800 DOI: 10.1016/j.clinbiomech.2024.106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Vertebral fractures in young populations are associated with intervertebral disc disorders later in life. However, damage to the annulus fibrosus has been observed in rapidly loaded spines even without the subsequent occurrence of a fracture. Therefore, it may not be the fracture event that compromises the disc, but rather the manner in which the disc is loaded. The purpose of this study was to quantify the mechanical properties of the annulus fibrosus following quasi-static compressive loading of the motion segment either to sub-fracture or fracture-inducing magnitude. METHODS Porcine cervical motion segments were axial compressed at 0.1 mm/s, either until endplate fracture occurred ('fracture group'), or until segments reached 75 % of average fracture stress as determined from the fracture group ('sub-fracture group'). An unloaded control group was also included. Post-loading, three samples of the annulus were excised. The first was mounted in a 180o peel test configuration in order to quantify lamellar adhesion. The other two samples were excised from the superficial and midspan region of the annulus and were exposed to uniaxial tension to 50 % strain. FINDINGS Lamellar adhesion and tensile annulus mechanics did not differ between the fracture and sub-fracture group, nor between the unloaded controls. INTERPRETATION Given the lack of differences in annular mechanical properties across the three conditions, it was concluded that under very slow, quasi-static compressive loading conditions, the annulus appeared undamaged even in the group that sustained a fracture; this is likely because a significant viscoelastic response was not generated in the disc under these slow loading conditions.
Collapse
Affiliation(s)
- John G McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Andra Neptune
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| |
Collapse
|
2
|
Vieira L, Mordechai HS, Sharabi M, Tipper JL, Tavakoli J. Stress relaxation behavior of the transition zone in the intervertebral disc. Acta Biomater 2024; 189:366-376. [PMID: 39322045 DOI: 10.1016/j.actbio.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The stress relaxation of the TZ region, located at the interface of the Annulus Fibrosus (AF) and Nucleus Pulposus (NP) of the disc, and how its stress is relaxed compared to the adjacent regions is unknown. The current study aimed to identify the TZ stress relaxation properties under different strain magnitudes (0.2, 0.4, and 0.6 mm/mm) and compared the TZ stress relaxation characteristics to the NP and inner AF (IAF) regions at a specific strain magnitude (0.6 mm/mm). The results of the current study revealed that the TZ region exhibited different stress relaxation properties under various strain magnitudes with significantly higher initial (p < 0.008) and reduced stresses (marginally; p = 0.06) at higher strains. Our experimental stress relaxation data revealed a significantly higher equilibrium stress for the IAF compared to the TZ and NP regions (p < 0.001) but not between the TZ and NP regions (p = 0.7). We found that NP radial stress relaxed significantly faster (p < 0.04) than the TZ and NP. Additionally, the current study proposed a simple mathematical model and identified that, consistent with experimental data, the overall effect of region on both the level of decayed stress and the rate at which stress is relaxed was significant (p < 0.006). The current study found a similar stress relaxation characteristic between the NP and TZ regions, while IAF exhibited different stress relaxation properties. It is possible that this mismatch in stress relaxation acts as a shape transformation mechanism triggered by viscoelastic behavior. STATEMENT OF SIGNIFICANCE: Our understanding of the biomechanical properties of the transition zone (TZ) in the IVD, a region at the interface of the Nucleus Pulposus (NP) and Annulus Fibrosus (AF), is sparse. Unfortunately, there are no current studies that investigate the TZ stress relaxation properties and how stress is relaxed in the TZ compared to the adjacent regions. For the first time, the current study characterized the stress relaxation properties of the TZ and described how the TZ stress is relaxed compared to its adjacent regions.
Collapse
Affiliation(s)
- Lydia Vieira
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
| | - Haim S Mordechai
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 407000, Israel
| | - Mirit Sharabi
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 407000, Israel.
| | - Joanne L Tipper
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia; Department of Biomedical Engineering, School of Engineering, RMIT University, VIC 3000, Australia.
| | - Javad Tavakoli
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia; Department of Biomedical Engineering, School of Engineering, RMIT University, VIC 3000, Australia.
| |
Collapse
|
3
|
McMorran JG, Neptune A, Gregory DE. Mechanical consequences to the annulus fibrosus following rapid internal pressurization and endplate fracture under restrained-expansion conditions. Med Eng Phys 2024; 130:104194. [PMID: 39160012 DOI: 10.1016/j.medengphy.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/08/2024] [Indexed: 08/21/2024]
Abstract
Intervertebral disc herniation is not a common injury in the adolescent population, but the correlation between trauma and herniation warrants concern. Previous research demonstrated the capacity for rapid internal pressurization to reduce the mechanical integrity of the intervertebral disc's annulus fibrosus, even in the absence of fracture. The purpose of this study was to modify previous internal pressurization procedures towards a more transferable injury model, then investigate the capacity for these procedures to damage the mechanical integrity of the annulus fibrosus. Porcine cervical motion segments with intact facet joints were confined between a vice and force plate under 300 N of static compression, then a single, manual, rapid internal pressurization was delivered. Posterolateral annulus samples were extracted and situated in a 180° peel test configuration, exposing the interlamellar matrix of samples to separations of 0.5 mm/s, until complete separation of the sample occurred. Multilayer tensile testing was performed on superficial and mid-span samples of annulus by applying uniaxial tension of 1 %/s to 50 % strain. Compared to unpressurized controls, rapid pressurization causing fracture resulted in reduced lamellar adhesion and increased toe-region stress and strain properties in the annulus. Morphological assessment reported similar fracture patterns between endplate fractures achieved in the present experiment and endplate fractures documented in human patients. Mechanical plus morphological results suggest that rapid internal pressurization resulting in endplate fracture may represent a potent mechanism for subsequent damage to the intervertebral disc.
Collapse
Affiliation(s)
| | - Andra Neptune
- Department of Kinesiology and Physical Education, Canada
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| |
Collapse
|
4
|
Middendorf JM, Barocas VH. An Approach to Quantify Anisotropic Multiaxial Failure of the Annulus Fibrosus. J Biomech Eng 2024; 146:014501. [PMID: 37851527 PMCID: PMC10680983 DOI: 10.1115/1.4063822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Tears in the annulus fibrosus (AF) of the intervertebral disk (IVD) occur due to multiaxial loading on the spine. However, most existing AF failure studies measure uniaxial stress, not the multiaxial stress at failure. Delamination theory, which requires advanced structural knowledge and knowledge about the interactions between the AF fibers and matrix, has historically been used to understand and predict AF failure. Alternatively, a simple method, the Tsai-Hill yield criteria, could describe multiaxial failure of the AF. This yield criteria uses the known tissue fiber orientation and an equation to establish the multiaxial failure stresses that cause failure. This paper presents a method to test the multiaxial failure stress of the AF experimentally and evaluate the potential for the Tsai-Hill model to predict these failure stresses. Porcine AF was cut into a dogbone shape at three distinct angles relative to the primary lamella direction (parallel, transverse, and oblique). Then, each dogbone was pulled to complete rupture. The Cauchy stress in the material's fiber coordinates was calculated. These multiaxial stress parameters were used to optimize the coefficients of the Tsai-Hill yield. The coefficients obtained for the Tsai-Hill model vary by an order of magnitude between the fiber and transverse directions, and these coefficients provide a good description of the AF multiaxial failure stress. These results establish both an experimental approach and the use of the Tsai-Hill model to explain the anisotropic failure behavior of the tissue.
Collapse
Affiliation(s)
- Jill M Middendorf
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
5
|
Sun Z, Mi C. On the identification of the ultra-structural organization of elastic fibers and their effects on the integrity of annulus fibrosus. J Biomech 2023; 157:111728. [PMID: 37499432 DOI: 10.1016/j.jbiomech.2023.111728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Due to the complicated structure of the elastic fiber network in annulus fibrosus, existing in-silico studies either simplified or just overlooked its distribution pattern. Nonetheless, experimental and simulation results have proven that elastic fibers are of great importance to maintaining the structural integrity of annulus fibrosus and therefore to ensuring the load-bearing ability of intervertebral discs. Such needs call for a fine model. This work aims at developing a biphasic annulus fibrosus model by incorporating the accurate distribution pattern of collagen and elastic fibers. Both the structural parameters and intrinsic mechanical parameters were successfully identified using single lamella and inter-lamella microscopy anatomy and micromechanical testing data. The proposed model was then used to implement finite element simulations on various anterior and posterolateral multi-lamellae annulus fibrosus specimens. In general, simulation results agree well with available experimental and simulation data. On this basis, the effects of elastic fibers on the integrity of annulus fibrosus were further investigated. It was found that elastic fibers significantly influence the free swelling, radial stretching and circumferential shear performances of annulus fibrosus. Nonetheless, no significant effects were found for the circumferential stretching capability. The proposed biphasic model considers for the first time the distribution characteristics of elastic fibers at two scales, including both the principal orientations of all fiber families and the detailed distribution pattern within each family. Better understandings on the functions of collagen and elastic fibers can therefore be realized. To further enhance its prediction capability, the current model can be extended in the future by taking the fiber-matrix interaction as well as progressive damages into consideration.
Collapse
Affiliation(s)
- Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Changwen Mi
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
6
|
Structure-function characterization of the transition zone in the intervertebral disc. Acta Biomater 2023; 160:164-175. [PMID: 36804822 DOI: 10.1016/j.actbio.2023.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Understanding the structure-function relationship in the intervertebral disk (IVD) is crucial for the development of novel tissue engineering strategies to regenerate IVD and the establishment of accurate computational models for low back pain research. A large number of studies have improved our knowledge of the mechanical and structural properties of the nucleus pulposus (NP) and annulus fibrosus (AF), two of the main regions in the IVD. However, few studies have focused on the AF-NP interface (transition zone; TZ). Therefore, the current study aims to, for the first time, characterize the cyclic and failure mechanical properties of the TZ region under physiological loading (1, 3, and 5%s-1 strain rates) and investigate the structural integration mechanisms between the NP, TZ, and AF regions. The results of the current study reveal significant effects of region (NP, TZ, and AF) and strain rates (1, 3, and 5%s-1) on stiffness (p < 0.001). In addition, energy absorption is significantly higher for the AF compared to the TZ and NP (p <0.001) as well as between the TZ and NP (p <0.001). The current research finds adaptation, direct penetration, and entanglement between TZ and AF fibers as three common mechanisms for structural integration between the TZ and AF regions. STATEMENT OF SIGNIFICANCE: Despite a large number of studies that have mechanically, structurally, and biologically characterized the nucleus pulposus (NP) and annulus fibrosus (AF) regions, few studies have focused on the NP-AF interface region (known as Transition Zone; TZ) in the IVD; hence, our understanding of the TZ structure-function relationship is still incomplete. Of particular importance, the cyclic mechanical properties of the TZ, compared to the adjacent regions (NP and AF), are yet to be explored and the precise nature of the structural integration between the NP and AF via the TZ region is not yet known. The current study explores both the mechanical and structural properties of the TZ region to ultimately identify the mechanism of integration between the NP and AF.
Collapse
|
7
|
Eyssartier C, Billard P, Robert M, Thoreux P, Sauret C. Which typical floor movements of men's artistic gymnastics result in the most extreme lumbar lordosis and ground reaction forces? Sports Biomech 2022:1-16. [PMID: 36377511 DOI: 10.1080/14763141.2022.2140702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022]
Abstract
Back pain is prevalent among gymnast populations and extreme flexion or extension of the lumbar spine along with high ground reaction forces (GRFs) are known to increase intervertebral stress. The aim of this study was to determine which postures and dynamic conditions among common floor movements provide the greatest risk of injury in men's artistic gymnastics (MAG). For this purpose, lumbar spine curvatures, obtained through a full-body subject-specific kinematic model fed by motion capture data, and GRFs on feet and hands were compared between typical floor movements of MAG (pike jump, round off back handspring, front handspring, forward and backward tucked somersaults) performed by six adolescent gymnasts. The round off back handspring and the pike jump resulted respectively in the largest lumbar extension and flexion, and the forward tucked somersault take-off in the highest GRF. At ground impacts, the largest lumbar flexion was during the backward tucked somersault landing and only the back handspring hands ground contact phase led to lumbar extension. Such identification of high-risk conditions should enable better back pain management in gymnastics through more tailored training adaptations, particularly in case of pathologies or musculoskeletal specificities.
Collapse
Affiliation(s)
- C Eyssartier
- Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC-Institut de Biomécanique Humaine Georges Charpak, HESAM Université, Paris, France
- Fédération Française de Gymnastique, Paris, France
| | - P Billard
- Fédération Française de Gymnastique, Paris, France
| | - M Robert
- Fédération Française de Gymnastique, Paris, France
| | - P Thoreux
- Hôpital Hôtel-Dieu, AP-HP, Paris, France
- Université Sorbonne Paris Nord, Arts et Métiers Institute of Technology, IBHGC-Institut de Biomécanique Humaine Georges Charpak, HESAM Université, Paris, France
| | - C Sauret
- Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC-Institut de Biomécanique Humaine Georges Charpak, HESAM Université, Paris, France
- Centre d'Etudes et de Recherche sur l'Appareillage des Handicapés, Institution Nationale des Invalides, France
| |
Collapse
|
8
|
Cyril D, Giugni A, Bangar SS, Mirzaeipoueinak M, Shrivastav D, Sharabi M, Tipper JL, Tavakoli J. Elastic Fibers in the Intervertebral Disc: From Form to Function and toward Regeneration. Int J Mol Sci 2022; 23:8931. [PMID: 36012198 PMCID: PMC9408956 DOI: 10.3390/ijms23168931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite extensive efforts over the past 40 years, there is still a significant gap in knowledge of the characteristics of elastic fibers in the intervertebral disc (IVD). More studies are required to clarify the potential contribution of elastic fibers to the IVD (healthy and diseased) function and recommend critical areas for future investigations. On the other hand, current IVD in-vitro models are not true reflections of the complex biological IVD tissue and the role of elastic fibers has often been ignored in developing relevant tissue-engineered scaffolds and realistic computational models. This has affected the progress of IVD studies (tissue engineering solutions, biomechanics, fundamental biology) and translation into clinical practice. Motivated by the current gap, the current review paper presents a comprehensive study (from the early 1980s to 2022) that explores the current understanding of structural (multi-scale hierarchy), biological (development and aging, elastin content, and cell-fiber interaction), and biomechanical properties of the IVD elastic fibers, and provides new insights into future investigations in this domain.
Collapse
Affiliation(s)
- Divya Cyril
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Amelia Giugni
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Saie Sunil Bangar
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Melika Mirzaeipoueinak
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dipika Shrivastav
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mirit Sharabi
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 407000, Israel
| | - Joanne L. Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
9
|
Briar KJ, McMorran JG, Gregory DE. Delamination of the Annulus Fibrosus of the Intervertebral Disc: Using a Bovine Tail Model to Examine Effect of Separation Rate. Front Bioeng Biotechnol 2022; 10:883268. [PMID: 35837552 PMCID: PMC9273995 DOI: 10.3389/fbioe.2022.883268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The intervertebral disc (IVD) is a complex structure, and recent evidence suggests that separations or delamination between layers of the annulus may contribute to degeneration development, a common cause of low back pain The purpose of the present experiment was to quantify the mechanical response of the layer-adjoining interlamellar matrix at different rates of separation. Understanding the rate-dependency of the interlamellar matrix, or the adhesion between adjacent layers of the disc, is important as the spine experiences various loading velocities during activities of daily living. Twelve discs were dissected from four bovine tails (three extracts per tail). Two multi-layered annulus samples were collected from each IVD (total = 24, mean bond width = 3.82 ± 0.96 mm) and randomly assigned to a 180° peel test at one of three delamination rates; 0.05 mm/s, 0.5 mm/s, or 5 mm/s. Annulus extracts were found to have similar maximal adhesion strengths (p = 0.39) and stiffness (p = 0.97) across all rate conditions. However, a significant difference in lamellar adhesion strength variability was observed between the 5 mm/s condition (0.96 N/mm ± 0.31) when compared to the 0.5 mm/s (0.50 N/mm ± 0.19) and 0.05 mm/s (0.37 N/mm ± 0.13) conditions (p < 0.05). Increased variability may be indicative of non-uniform strength due to inconsistent adhesion throughout the interlamellar matrix, which is exacerbated by increased rates of loading. The observed non-uniform strength could possibly lead to a scenario more favourable to the development of microtrauma, and eventual delamination.
Collapse
Affiliation(s)
- K. Josh Briar
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - John G. McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Diane E. Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- *Correspondence: Diane E. Gregory,
| |
Collapse
|
10
|
Sinopoli SI, Gregory DE. A Novel Testing Method to Quantify Mechanical Properties of the Intact Annulus Fibrosus Ring From Rat-Tail Intervertebral Discs. J Biomech Eng 2022; 144:1141607. [PMID: 35698873 DOI: 10.1115/1.4054799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/08/2022]
Abstract
The annulus fibrosus is the ring-like exterior of the intervertebral disc which is composed of concentrically organized layers of collagen fibre bundles. The mechanical properties of the annulus have been studied extensively; however, tests are typically performed on extracted fragments or multilayered samples of the annulus and not on the annulus as a whole. The purpose of this study was two-fold: 1) to develop a novel testing technique to measure the mechanical properties of the intact, isolated annulus; and 2) to perform a preliminary analysis of the rate-dependency of these mechanical properties. Twenty-nine whole annulus ring samples were dissected from 11 skeletally mature Sprague Dawley rat tails and underwent a tensile failure test at either 2%/s (n=16) or 20%/s (n=13). Force and displacement were sampled at 100Hz and were subsequently normalized to stress and strain. Various mechanical properties were derived from the stress-strain curves and statistically compared between the rates. All mechanical variables, with the exception of initial failure stress, were found to be unaffected by rate. Interestingly, initial failure stress was higher for samples tested at the slower rate compared to the higher rate which is atypical for viscoelastic tissues. Although in general rate did not appear to impact the annulus ring response to tensile loading, this novel, intact annular ring testing technique provides an alternative way to quantify mechanical properties of the annulus.
Collapse
Affiliation(s)
| | - Diane E Gregory
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5
| |
Collapse
|
11
|
Tavakoli J, Tipper JL. Detailed mechanical characterization of the transition zone: New insight into the integration between the annulus and nucleus of the intervertebral disc. Acta Biomater 2022; 143:87-99. [PMID: 35259517 DOI: 10.1016/j.actbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/19/2022]
Abstract
The Nucleus Pulposus (NP) and Annulus Fibrous (AF) are two primary regions of the intervertebral disc (IVD). The interface between the AF and NP, where the gradual transition in structure and type of fibers are observed, is known as the Transition Zone (TZ). Recent structural studies have shown that the TZ contains organized fibers that appear to connect the NP to the AF. However, the mechanical characteristics of the TZ are yet to be explored. The current study aimed to investigate the mechanical properties of the TZ at the anterolateral (AL) and posterolateral (PL) regions in both radial and circumferential directions of loading using ovine IVDs (N = 28). Young's and toe moduli, maximum stress, failure strain, strain at maximum stress, and toughness were calculated mechanical parameters. The findings from this study revealed that the mechanical properties of the TZ, including young's modulus (p = 0.001), failure strain (p < 0.001), strain at maximum stress (p = 0.002), toughness (p = 0.027), and toe modulus (p = 0.005), were significantly lower for the PL compared to the AL region. Maximum stress was not significantly different between the PL and AL regions (p = 0.164). We found that maximum stress (p = 0.002), failure strain (p < 0.001), and toughness (p = 0.001) were significantly different in different loading directions. No significant differences for modulus (young's; p = 0.169 and toe; p = 0.352) and strain at maximum stress (p = 0.727) were found between the radial and circumferential loading directions. STATEMENT OF SIGNIFICANCE: To date there has not been a study that has investigated the mechanical characterization of the annulus (AF)-nucleus (NP) interface (transition zone; TZ) in the intervertebral disc (IVD), nor is it known whether the posterolateral (PL) and anterolateral (AL) regions of the TZ exhibit different mechanical properties. Accordingly, the TZ mechanical properties have been rarely used in the development of computational IVD models and relevant tissue-engineered scaffolds. The current research reported the mechanical properties of the TZ region and revealed that its mechanical properties were significantly lower for the PL compared to the AL region. These new findings enhance our knowledge about the nature of AF-NP integration and may help to develop more realistic tissue-engineered or computational IVD models.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, Faculty of Engineering and Information Technology, School of Biomedical Engineering, University of Technology Sydney, NSW, Australia.
| | - Joanne L Tipper
- Centre for Health Technologies, Faculty of Engineering and Information Technology, School of Biomedical Engineering, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
12
|
Bhattacharya S, Dubey DK. Impact of Variations in Water Concentration on the Nanomechanical Behavior of Type I Collagen Microfibrils in Annulus Fibrosus. J Biomech Eng 2022; 144:1120715. [PMID: 34820681 DOI: 10.1115/1.4052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 11/08/2022]
Abstract
Radial variation in water concentration from outer to inner lamellae is one of the characteristic features of annulus fibrosus (AF). In addition, water concentration changes are also associated with intervertebral disc (IVD) degeneration. Such changes alter the chemo-mechanical interactions among the biomolecular constituents at molecular level, affecting the load-bearing nature of IVD. This study investigates mechanistic impacts of water concentration on the collagen type I microfibrils in AF using molecular dynamics simulations. Results show, in axial tension, that increase in water concentration (WC) from 0% to 50% increases the elastic modulus from 2.7 GPa to 3.9 GPa. This is attributed to combination of shift in deformation from backbone straightening to combined backbone stretching- intermolecular sliding and subsequent strengthening of tropocollagen-water (TC-water-TC) interfaces through water bridges and intermolecular electrostatic attractions. Further increase in WC to 75% reduces the modulus to 1.8 GPa due to shift in deformation to polypeptide straightening and weakening of TC-water-TC interface due to reduced electrostatic attraction and increase in the number of water molecules in a water bridge. During axial compression, increase in WC to 50% results in increase in modulus from 0.8 GPa to 4.5 GPa. This is attributed to the combination of the development of hydrostatic pressure and strengthening of the TC-water-TC interface. Further increase in WC to 75% shifts load-bearing characteristic from collagen to water, resulting in a decrease in elastic modulus to 2.8 GPa. Such water-mediated alteration in load-bearing properties acts as foundations toward AF mechanics and provides insights toward understanding degeneration-mediated altered spinal stiffness.
Collapse
Affiliation(s)
- Shambo Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Devendra K Dubey
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
13
|
Tavakoli J, Geargeflia S, Tipper JL, Diwan AD. Magnetic resonance elastography: A non-invasive biomarker for low back pain studies. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Architecture-Promoted Biomechanical Performance-Tuning of Tissue-Engineered Constructs for Biological Intervertebral Disc Replacement. MATERIALS 2021; 14:ma14102692. [PMID: 34065565 PMCID: PMC8160686 DOI: 10.3390/ma14102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022]
Abstract
Background: Biological approaches to intervertebral disc (IVD) restoration and/or regeneration have become of increasing interest. However, the IVD comprises a viscoelastic system whose biological replacement remains challenging. The present study sought to design load-sharing two-component model systems of circular, nested, concentric elements reflecting the nucleus pulposus and annulus fibrosus. Specifically, we wanted to investigate the effect of architectural design variations on (1) model system failure loads when testing the individual materials either separately or homogeneously mixed, and (2) also evaluate the potential of modulating other mechanical properties of the model systems. Methods: Two sets of softer and harder biomaterials, 0.5% and 5% agarose vs. 0.5% agarose and gelatin, were used for fabrication. Architectural design variations were realized by varying ring geometries and amounts while keeping the material composition across designs comparable. Results: Variations in the architectural design, such as lamellar width, number, and order, combined with choosing specific biomaterial properties, strongly influenced the biomechanical performance of IVD constructs. Biomechanical characterization revealed that the single most important parameter, in which the model systems vastly exceeded those of the individual materials, was failure load. The model system failure loads were 32.21- and 84.11-fold higher than those of the agarose materials and 55.03- and 2.14-fold higher than those of the agarose and gelatin materials used for system fabrication. The compressive strength, dynamic stiffness, and viscoelasticity of the model systems were always in the range of the individual materials. Conclusions: Relevant architecture-promoted biomechanical performance-tuning of tissue-engineered constructs for biological IVD replacement can be realized by slight modifications in the design of constructs while preserving the materials’ compositions. Minimal variations in the architectural design can be used to precisely control structure–function relations for IVD constructs rather than choosing different materials. These fundamental findings have important implications for efficient tissue-engineering of IVDs and other load-bearing tissues, as potential implants need to withstand high in situ loads.
Collapse
|
15
|
Tavakoli J, Diwan AD, Tipper JL. The ultrastructural organization of elastic fibers at the interface of the nucleus and annulus of the intervertebral disk. Acta Biomater 2020; 114:323-332. [PMID: 32682056 DOI: 10.1016/j.actbio.2020.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022]
Abstract
There has been no study to describe the ultrastructural organization of elastic fibers at the interface of the nucleus pulposus and annulus fibrosus of the intervertebral disk (IVD), a region called the transition zone (TZ). A previously developed digestion technique was optimized to eliminate cells and non-elastin ECM components except for the elastic fibers from the anterolateral (AL) and posterolateral (PL) regions of the TZ in ovine IVDs. Not previously reported, the current study identified a complex elastic fiber network across the TZ for both AL and PL regions. In the AL region, this network consisted of major thick elastic fibers (≈ 1 µm) that were interconnected with delicate (< 200 nm) elastic fibers. While the same ultrastructural organization was observed in the PL region, interestingly the size of the elastic fibers was smaller (< 100 nm) compared to those that were located in the AL region. Quantitative analysis of the elastic fibers revealed significant differences in the size (p < 0.001) and the orientation of elastic fibers (p = 0.001) between the AL and PL regions, with a higher orientation and larger size of elastic fibers observed in the AL region. The gradual elimination of cells and non-elastin extracellular matrix components identified that elastic fibers in the TZ region in combination with the extracellular matrix created a honeycomb structure that was more compact at the AF interface compared to that located close to the NP. Three different symmetrically organized angles of rotation (0⁰ and ±90⁰) were detected for the honeycomb structure at both interfaces, and the structure was significantly orientated at the TZ-AF compared to the TZ-NP interface (p = 0.003).
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia; SpineLabs, St George & Sutherland Clinical School, The University of New South Wales, NSW, Australia.
| | - Ashish D Diwan
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia; SpineLabs, St George & Sutherland Clinical School, The University of New South Wales, NSW, Australia; Spine Service, Department of Orthopaedic Surgery, St George Hospital Campus, NSW, Australia
| | - Joanne L Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Tavakoli J, Diwan AD, Tipper JL. Elastic fibers: The missing key to improve engineering concepts for reconstruction of the Nucleus Pulposus in the intervertebral disc. Acta Biomater 2020; 113:407-416. [PMID: 32531396 DOI: 10.1016/j.actbio.2020.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
The increasing prevalence of low back pain has imposed a heavy economic burden on global healthcare systems. Intense research activities have been performed for the regeneration of the Nucleus Pulposus (NP) of the IVD; however, tissue-engineered scaffolds have failed to capture the multi-scale structural hierarchy of the native tissue. The current study revealed for the first time, that elastic fibers form a network across the NP consisting of straight and thick parallel fibers that were interconnected by wavy fine fibers and strands. Both straight fibers and twisted strands were regularly merged or branched to form a fine elastic network across the NP. As a key structural feature, ultrathin (53 ± 7 nm), thin (215 ± 20 nm), and thick (890 ± 12 nm) elastic fibers were observed in the NP. While our quantitative analysis for measurement of the thickness of elastic fibers revealed no significant differences (p < 0.633), the preferential orientation of fibers was found to be significantly different (p < 0.001) across the NP. The distribution of orientation for the elastic fibers in the NP represented one major organized angle of orientation except for the central NP. We found that the distribution of elastic fibers in the central NP was different from those located in the peripheral regions representing two symmetrically organized major peaks (±45⁰). No significant differences in the maximum fiber count at the major angles of orientation (±45⁰) were observed for both peripheral (p = 0.427) and central NP (p = 0.788). Based on these new findings a structural model for the elastic fibers in the NP was proposed. The geometrical presentation, along with the distribution of elastic fibers orientation, resulting from the present study identifies the ultrastructural organization of elastic fibers in the NP important towards understanding their mechanical role which is still under investigation. Given the results of this new geometrical analysis, more-accurate multiscale finite element models can now be developed, which will provide new insights into the mechanobiology of the IVD. In addition, the results of this study can potentially be used for the fabrication of bio-inspired tissue-engineered scaffolds and IVD models to truly capture the multi-scale structural hierarchy of IVDs. STATEMENT OF SIGNIFICANCE: Visualization of elastic fibers in the nucleus of the intervertebral disk under high magnification was not reported before. The present research utilized extracellular matrix partial digestion to address significant gaps in understanding of nucleus microstructure that can potentially be used for the fabrication of bio-inspired tissue-engineered scaffolds and disk models to truly capture the multi-scale structural hierarchy of discs.
Collapse
|
17
|
Yang X, Cheng X, Liu Q, Zhang C, Song Y. The response surface method-genetic algorithm for identification of the lumbar intervertebral disc material parameters. Comput Biol Med 2020; 124:103920. [PMID: 32768715 DOI: 10.1016/j.compbiomed.2020.103920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Long-term compressive load on the lumbar intervertebral disc (IVD) might lead to lumbar IVD herniation. Exploring the material parameters of normal and degenerative enucleated IVDs is the basis for studying their mechanical behavior. According to the inverse analysis principle of the parameter estimation, an optimization method was proposed to identify the parameters of the porous material of the lumbar IVD based on finite element inverse analysis. The poroelastic finite element models were established in line with the compression creep experiment. The material parameters were combined by Box-Behnken design (BBD), and the response surface (RS) models were constructed using a quadratic polynomial with cross terms and optimized by genetic algorithm (GA). The results showed that the simulation result of the best material parameter combination had a good agreement with the experiment. Compared with the normal lumbar IVD, the elastic modulus and permeability decreased, and Poisson's ratio increased for the enucleated disk, resulting in a significant difference in mechanical properties. The algorithm used in this study can reduce the parameter identification error compared with only the RS method, and decrease the number of finite element simulations compared with only the GA.
Collapse
Affiliation(s)
- XiuPing Yang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| | - XiaoMin Cheng
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Qing Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - ChunQiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Yang Song
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| |
Collapse
|
18
|
Advanced Strategies for the Regeneration of Lumbar Disc Annulus Fibrosus. Int J Mol Sci 2020; 21:ijms21144889. [PMID: 32664453 PMCID: PMC7402314 DOI: 10.3390/ijms21144889] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Damage to the annulus fibrosus (AF), the outer region of the intervertebral disc (IVD), results in an undesirable condition that may accelerate IVD degeneration causing low back pain. Despite intense research interest, attempts to regenerate the IVD have failed so far and no effective strategy has translated into a successful clinical outcome. Of particular significance, the failure of strategies to repair the AF has been a major drawback in the regeneration of IVD and nucleus replacement. It is unlikely to secure regenerative mediators (cells, genes, and biomolecules) and artificial nucleus materials after injection with an unsealed AF, as IVD is exposed to significant load and large deformation during daily activities. The AF defects strongly change the mechanical properties of the IVD and activate catabolic routes that are responsible for accelerating IVD degeneration. Therefore, there is a strong need to develop effective therapeutic strategies to prevent or reconstruct AF damage to support operational IVD regenerative strategies and nucleus replacement. By the way of this review, repair and regenerative strategies for AF reconstruction, their current status, challenges ahead, and future outlooks were discussed.
Collapse
|
19
|
Effect of aggrecan degradation on the nanomechanics of hyaluronan in extra-fibrillar matrix of annulus fibrosus: A molecular dynamics investigation. J Mech Behav Biomed Mater 2020; 107:103752. [PMID: 32278311 DOI: 10.1016/j.jmbbm.2020.103752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Intervertebral Disc (IVD) Degeneration is one of the primary causes of low back pain among the adult population - the most significant cause being the degradation of aggrecan present in the extra-fibrillar matrix (EFM). Aggrecan degradation is closely associated with loss of water content leading to an alteration in the mechanical behaviour of the IVD. The loss in water content has a significant impact on the chemo-mechanical interplay of IVD biochemical constituents at the fundamental level. This work presents a mechanistic understanding of the effect of hydration, closely associated with aggrecan degradation, on the nanoscale mechanical behaviour of the hyaluronan present in the EFM of the Annulus Fibrosus. For this purpose, explicit three-dimensional molecular dynamics analyses of tensile and compressive tests are performed on a representative atomistic model of the hyaluronan present in the EFM. To account for the degradation of aggrecan, hydration levels are varied from 0 to 75% by weight of water. Analyses show that an increase in the hydration levels decreases the elastic modulus of hyaluronan in tension from ~4.6 GPa to ~2.1 GPa. On the other hand, the increase in hydration level increases the elastic moduli in axial compression from ~1.6 GPa in un-hydrated condition to ~6 GPa in 50% hydrated condition. But as the hydration levels increase to 75%, the elastic modulus reduces to ~3.5 GPa signifying a shift in load-bearing characteristic, from the solid hyaluronan component to the fluid component. Furthermore, analyses show a reduction in the intermolecular energy between hyaluronan and water, under axial tensile loading, indicating a nanoscale intermolecular debonding between hyaluronan and water molecules. This is attributed to the ability of hyaluronan to form stabilizing intra-molecular hydrogen bonds between adjacent residues. Compressive loading, on the other hand, causes intensive coiling of hyaluronan molecule, which traps more water through hydrogen bonding and aids in bearing compressive loads. Overall, study shows that hydration level has a strong influence on the atomistic level interactions between hyaluronan molecules and hyaluronan and water molecules in the EFM which influences the nanoscale mechanics of the Annulus Fibrosus.
Collapse
|
20
|
Sharabi M, Levi-Sasson A, Wolfson R, Wade KR, Galbusera F, Benayahu D, Wilke HJ, Haj-Ali R. The Mechanical Role of the Radial Fiber Network Within the Annulus Fibrosus of the Lumbar Intervertebral Disc: A Finite Elements Study. J Biomech Eng 2018; 141:2709746. [DOI: 10.1115/1.4041769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Indexed: 11/08/2022]
Abstract
The annulus fibrosus (AF) of the intervertebral disc (IVD) consists of a set of concentric layers composed of a primary circumferential collagen fibers arranged in an alternating oblique orientation. Moreover, there exists an additional secondary set of radial translamellar collagen fibers which connects the concentric layers, creating an interconnected fiber network. The aim of this study was to investigate the mechanical role of the radial fiber network. Toward that goal, a three-dimensional (3D) finite element model of the L3–L4 spinal segment was generated and calibrated to axial compression and pure moment loading. The AF model explicitly recognizes the two heterogeneous networks of fibers. The presence of radial fibers demonstrated a pronounced effect on the local disc responses under lateral bending, flexion, and extension modes. In these modes, the radial fibers were in a tensile state in the disc region that subjected to compression. In addition, the circumferential fibers, on the opposite side of the IVD, were also under tension. The local stress in the matrix was decreased in up to 9% in the radial fibers presence. This implies an active fiber network acting collectively to reduce the stresses and strains in the AF lamellae. Moreover, a reduction of 26.6% in the matrix sideways expansion was seen in the presence of the radial fibers near the neutral bending axis of the disc. The proposed biomechanical model provided a new insight into the mechanical role of the radial collagen fibers in the AF structure. This model can assist in the design of future IVD substitutes.
Collapse
Affiliation(s)
- Mirit Sharabi
- The Fleischman Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aviad Levi-Sasson
- The Fleischman Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roza Wolfson
- The Fleischman Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kelly R. Wade
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Ulm 89081, Germany
| | - Fabio Galbusera
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Ulm 89081, Germany
- IRCCS Galeazzi Orthopaedic Institute, Milan 20161, Italy
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Ulm 89081, Germany
| | - Rami Haj-Ali
- Professor The Fleischman Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel e-mail:
| |
Collapse
|
21
|
A method for visualization and isolation of elastic fibres in annulus fibrosus of the disc. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:299-304. [DOI: 10.1016/j.msec.2018.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023]
|