1
|
Giuliani S, Paraboschi I, McNair A, Smith M, Rankin KS, Elson DS, Paleri V, Leff D, Stasiuk G, Anderson J. Monoclonal Antibodies for Targeted Fluorescence-Guided Surgery: A Review of Applicability across Multiple Solid Tumors. Cancers (Basel) 2024; 16:1045. [PMID: 38473402 PMCID: PMC10931077 DOI: 10.3390/cancers16051045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This study aims to review the status of the clinical use of monoclonal antibodies (mAbs) that have completed or are in ongoing clinical trials for targeted fluorescence-guided surgery (T-FGS) for the intraoperative identification of the tumor margins of extra-hematological solid tumors. For each of them, the targeted antigen, the mAb generic/commercial name and format, and clinical indications are presented, together with utility, doses, and the timing of administration. Based on the current scientific evidence in humans, the top three mAbs that could be prepared in a GMP-compliant bank ready to be delivered for surgical purposes are proposed to speed up the translation to the operating room and produce a few readily available "off-the-shelf" injectable fluorescent probes for safer and more effective solid tumor resection.
Collapse
Affiliation(s)
- Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Irene Paraboschi
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milan, Italy;
| | - Angus McNair
- National Institute for Health Research Bristol Biomedical Research Centre, Bristol Centre for Surgical Research, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK;
- Department of Gastrointestinal Surgery, North Bristol NHS Trust, Bristol BS10 5NB, UK
| | - Myles Smith
- The Sarcoma, Melanoma and Rare Tumours Unit, The Royal Marsden Hospital, Institute Cancer of Research, London SW3 6JJ, UK;
| | - Kenneth S. Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- North of England Bone and Soft Tissue Tumour Service, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Daniel S. Elson
- Hamlyn Centre for Robotic Surgery, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK;
| | - Vinidh Paleri
- Head and Neck Unit, The Royal Marsden Hospitals, London SW3 6JJ, UK;
| | - Daniel Leff
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK;
| | - Graeme Stasiuk
- Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, UK;
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| |
Collapse
|
2
|
Foster D, Larsen J. Polymeric Metal Contrast Agents for T 1-Weighted Magnetic Resonance Imaging of the Brain. ACS Biomater Sci Eng 2023; 9:1224-1242. [PMID: 36753685 DOI: 10.1021/acsbiomaterials.2c01386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Imaging plays an integral role in diagnostics and treatment monitoring for conditions affecting the brain; enhanced brain imaging capabilities will improve upon both while increasing the general understanding of how the brain works. T1-weighted magnetic resonance imaging is the preferred modality for brain imaging. Commercially available contrast agents, which are often required to render readable brain images, have considerable toxicity concerns. In recent years, much progress has been made in developing new contrast agents based on the magnetic features of gadolinium, iron, or magnesium. Nanotechnological approaches for these systems allow for the protected integration of potentially harmful metals with added benefits like reduced dosage and improved transport. Polymeric enhancement of each design further improves biocompatibility while allowing for specific brain targeting. This review outlines research on polymeric nanomedicine designs for T1-weighted contrast agents that have been evaluated for performance in the brain.
Collapse
|
3
|
El Moukhtari SH, Garbayo E, Fernández-Teijeiro A, Rodríguez-Nogales C, Couvreur P, Blanco-Prieto MJ. Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. J Control Release 2022; 348:553-571. [PMID: 35705114 DOI: 10.1016/j.jconrel.2022.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Embryonal tumors of the nervous system are neoplasms predominantly affecting the pediatric population. Among the most common and aggressive ones are neuroblastoma (NB) and medulloblastoma (MB). NB is a sympathetic nervous system tumor, which is the most frequent extracranial solid pediatric cancer, usually detected in children under two. MB originates in the cerebellum and is one of the most lethal brain tumors in early childhood. Their tumorigenesis presents some similarities and both tumors often have treatment resistances and poor prognosis. High-risk (HR) patients require high dose chemotherapy cocktails associated with acute and long-term toxicities. Nanomedicine and cell therapy arise as potential solutions to improve the prognosis and quality of life of children suffering from these tumors. Indeed, nanomedicines have been demonstrated to efficiently reduce drug toxicity and improve drug efficacy. Moreover, these systems have been extensively studied in cancer research over the last few decades and an increasing number of anticancer nanocarriers for adult cancer treatment has reached the clinic. Among cell-based strategies, the clinically most advanced approach is chimeric-antigen receptor (CAR) T therapy for both pathologies, which is currently under investigation in phase I/II clinical trials. However, pediatric drug research is especially hampered due not only to ethical issues but also to the lack of efficient pre-clinical models and the inadequate design of clinical trials. This review provides an update on progress in the treatment of the main embryonal tumors of the nervous system using nanotechnology and cell-based therapies and discusses key issues behind the gap between preclinical studies and clinical trials in this specific area. Some directions to improve their translation into clinical practice and foster their development are also provided.
Collapse
Affiliation(s)
- Souhaila H El Moukhtari
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Ana Fernández-Teijeiro
- Pediatric Onco-Hematology Unit, Hospital Universitario Virgen Macarena, School of Medicine, Universidad de Sevilla, Avenida Dr, Fedriani 3, 41009 Sevilla, Spain; Sociedad Española de Hematología y Oncología Pediátricas (SEHOP), Spain
| | - Carlos Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMRCNRS8612,Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
4
|
Yu H, Guo W, Lu X, Xu H, Yang Q, Tan J, Zhang W. Reduced graphene oxide nanocomposite based electrochemical biosensors for monitoring foodborne pathogenic bacteria: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Paraboschi I, Privitera L, Kramer-Marek G, Anderson J, Giuliani S. Novel Treatments and Technologies Applied to the Cure of Neuroblastoma. CHILDREN (BASEL, SWITZERLAND) 2021; 8:482. [PMID: 34200194 PMCID: PMC8226870 DOI: 10.3390/children8060482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumour in childhood, accounting for approximately 15% of all cancer-related deaths in the paediatric population1. It is characterised by heterogeneous clinical behaviour in neonates and often adverse outcomes in toddlers. The overall survival of children with high-risk disease is around 40-50% despite the aggressive treatment protocols consisting of intensive chemotherapy, surgery, radiation therapy and hematopoietic stem cell transplantation2,3. There is an ongoing research effort to increase NB's cellular and molecular biology knowledge to translate essential findings into novel treatment strategies. This review aims to address new therapeutic modalities emerging from preclinical studies offering a unique translational opportunity for NB treatment.
Collapse
Affiliation(s)
- Irene Paraboschi
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London WC1E 6BT, UK; (I.P.); (L.P.)
- Preclinical Molecular Imaging, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK;
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Laura Privitera
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London WC1E 6BT, UK; (I.P.); (L.P.)
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Gabriela Kramer-Marek
- Preclinical Molecular Imaging, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK;
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London WC1E 6BT, UK; (I.P.); (L.P.)
- Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
6
|
Chen M, Zhao M, Hou Y, Zhu B. Expression of lncRNA CCAT2 in children with neuroblastoma and its effect on cancer cell growth. Mol Cell Biochem 2021; 476:1871-1879. [PMID: 33475889 DOI: 10.1007/s11010-020-04042-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
The aim of this study was to determine the expression of long-chain non-coding RNA (lncRNA) colon cancer-associated transcript 2 (CCAT2) in children with neuroblastoma and its effect on cancer cell growth. A polymerase chain reaction assay was carried out to quantify lncRNA CCAT2 miRNA in neuroblastoma cells, corresponding paracancerous cells, SH-SY5Y and SK-N-SH cells, and human umbilical vein endothelial cells (HUVEC), and two groups of children with different lncRNA CCAT2 expression were compared in clinical pathological parameters and prognosis. CCAT2-NC and si-CCAT2 were transfected into SH-SY5Y cells, separately. Then a 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay was carried out to analyze the cell proliferation, migration, and invasion ability, a flow cytometry to detect cell apoptosis, and a Western blotting (WB) assay to quantify p53 and Bcl-2 proteins. lncRNA CCAT2 expression in cancer tissues of children with neuroblastoma was notably higher than that in corresponding paracancerous tissues (P < 0.05), and children with different tissue differentiation, tumor staging, and lymph node metastasis (LNM) showed notably different lncRNA CCAT2 expression (P < 0.05). In addition, children with neuroblastoma in the high lncRNA CCAT2 expression group showed lower 3-year survival rate than those in the low expression group (P < 0.05). Multivariate analysis revealed that tissue differentiation, tumor-node-metastasis staging, LNM, and lncRNA CCAT2 expression were all independent risk factors affecting the prognosis of children with neuroblastoma (all P < 0.05). Compared with HUVEC cells, SH-SY5Y and SK-N-SH cells showed notably up-regulated lncRNA CCAT2, and the expression of it in SH-SY5Y was higher than that in SK-N-SH cells (P < 0.05). Compared with the CCAT2-NC group, the si-CCAT2 group presented notably down-regulated CCAT2 (P < 0.05). Moreover, according to the MTT assay, the si-CCAT2 group showed notably weakened cell viability and proliferation than the CCAT2-NC group (both P < 0.05), and SH-SY5Y cells in the former group were less active than those in the latter group in terms of migration and invasion. The cell apoptosis rate of SH-SY5Y cells in the si-CCAT2 was higher than that in the CCAT2-NC. The results suggested that knock down of lncRNA CCAT2 could improve the apoptosis activity of neuroblastoma cells in children. According to the WB assay, the si-CCAT2 group showed notably higher p53 expression and notably lower Bcl-2 protein expression than the CCAT2-NC group (both P < 0.05). LncRNA CCAT2 can inhibit the proliferation of neuroblastoma cells and promote their apoptosis, which provides a basis for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Ming Chen
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Meng Zhao
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Yan Hou
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China.
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| |
Collapse
|
7
|
Zeng Y, Li H, Li Z, Luo Q, Zhu H, Gu Z, Zhang H, Gong Q, Luo K. Engineered gadolinium-based nanomaterials as cancer imaging agents. APPLIED MATERIALS TODAY 2020; 20:100686. [DOI: 10.1016/j.apmt.2020.100686] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
9
|
Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging-guided surgery (IGS) as well as surgery-assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS-assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS-assisted precision synergistic cancer therapy.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|