1
|
Salehi Moghaddam A, Bahrami M, Sarikhani E, Tutar R, Ertas YN, Tamimi F, Hedayatnia A, Jugie C, Savoji H, Qureshi AT, Rizwan M, Maduka CV, Ashammakhi N. Engineering the Immune Response to Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414724. [PMID: 40232044 PMCID: PMC12097135 DOI: 10.1002/advs.202414724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/29/2025] [Indexed: 04/16/2025]
Abstract
Biomaterials are increasingly used as implants in the body, but they often elicit tissue reactions due to the immune system recognizing them as foreign bodies. These reactions typically involve the activation of innate immunity and the initiation of an inflammatory response, which can persist as chronic inflammation, causing implant failure. To reduce these risks, various strategies have been developed to modify the material composition, surface characteristics, or mechanical properties of biomaterials. Moreover, bioactive materials have emerged as a new class of biomaterials that can induce desirable tissue responses and form a strong bond between the implant and the host tissue. In recent years, different immunomodulatory strategies have been incorporated into biomaterials as drug delivery systems. Furthermore, more advanced molecule and cell-based immunomodulators have been developed and integrated with biomaterials. These emerging strategies will enable better control of the immune response to biomaterials and improve the function and longevity of implants and, ultimately, the outcome of biomaterial-based therapies.
Collapse
Affiliation(s)
- Abolfazl Salehi Moghaddam
- Department of BioengineeringP.C. Rossin College of Engineering & Applied ScienceLehigh UniversityBethlehemPA18015USA
| | - Mehran Bahrami
- Department of Mechanical Engineering & MechanicsLehigh UniversityBethlehemPA18015USA
| | - Einollah Sarikhani
- Department of Nano and Chemical EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Rumeysa Tutar
- Department of ChemistryFaculty of Engineering, Istanbul University‐CerrahpaşaIstanbul, Avcılar34320Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseri38039Turkey
- ERNAM – Nanotechnology Research and Application CenterErciyes UniversityKayseri38039Turkey
| | - Faleh Tamimi
- College of Dental MedicineQatar University HealthQatar UniversityP.O. Box 2713DohaQatar
| | - Ali Hedayatnia
- Azrieli Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Institute of Biomedical Engineering, Department of Pharmacology and PhysiologyFaculty of MedicineMontrealQuebecH3T 1J4Canada
- Montreal TransMedTech InstituteiTMTMontrealQuebecH3T 1J4Canada
| | - Clotilde Jugie
- Azrieli Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteiTMTMontrealQuebecH3T 1J4Canada
| | - Houman Savoji
- Azrieli Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Institute of Biomedical Engineering, Department of Pharmacology and PhysiologyFaculty of MedicineMontrealQuebecH3T 1J4Canada
- Montreal TransMedTech InstituteiTMTMontrealQuebecH3T 1J4Canada
| | - Asma Talib Qureshi
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Muhammad Rizwan
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMI49931USA
- Health Research InstituteMichigan Technological UniversityHoughtonMI49931USA
| | - Chima V. Maduka
- BioFrontiers InstituteUniversity of ColoradoBoulderCO80303USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Colleges of Engineering and Human MedicineMichigan State UniversityEast LansingMI48824USA
- Department of BioengineeringSamueli School of EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| |
Collapse
|
2
|
Qi H, Zhang B, Lian F. 3D-printed bioceramic scaffolds for bone defect repair: bone aging and immune regulation. Front Bioeng Biotechnol 2025; 13:1557203. [PMID: 40242352 PMCID: PMC12000889 DOI: 10.3389/fbioe.2025.1557203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
The management of bone defects, particularly in aging populations, remains a major clinical challenge. The immune microenvironment plays an important role in the repair of bone defects and a favorable immune environment can effectively promote the repair of bone defects. However, aging is closely associated with chronic low-grade systemic inflammation, which adversely affects bone healing. Persistent low-grade systemic inflammation critically regulates bone repair through all stages. This review explores the potential of 3D-printed bioceramic scaffolds in bone defect repair, focusing on their capacity to modulate the immune microenvironment and counteract the effects of bone aging. The scaffolds not only provide structural support for bone regeneration but also serve as effective carriers for anti-osteoporosis drugs, offering a novel therapeutic strategy for treating osteoporotic bone defects. By regulating inflammation and improving the immune response, 3D-printed bioceramic scaffolds may significantly enhance bone repair, particularly in the context of age-related bone degeneration. This approach underscores the potential of advanced biomaterials in addressing the dual challenges of bone aging and immune dysregulation, offering promising avenues for the development of effective treatments for bone defects in the elderly. We hope the concepts discussed in this review could offer novel therapeutic strategies for bone defect repair, and suggest promising avenues for the future development and optimization of bioceramic scaffolds.
Collapse
Affiliation(s)
- Haoran Qi
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Lian
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| |
Collapse
|
3
|
Liu Z, Zhao MC, Yin D, Zhao YC, Atrens A. Bio-functional niobium-based metallic biomaterials: Exploring their physicomechanical properties, biological significance, and implant applications. Acta Biomater 2025; 192:1-27. [PMID: 39681153 DOI: 10.1016/j.actbio.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
The significance of biomedical applications of bio-functional niobium (Nb)-based metallic biomaterials is underscored by their potential utilization in implant application. Nb-based metallic materials present reliable physicomechanical and biological properties, thus represent materials highly suitable for implant application. This review provides an overview on the advances of pure niobium and Nb-based metallic materials as implant materials over the past 20 years, and highlights the advantages of Nb-based metallic biomaterials for implant application in terms of their physicomechanical properties, corrosion resistance in biological media, magnetic resonance imaging (MRI) compatibility, cell compatibility, blood compatibility, osteogenesis, and bioactivity. An introduction is provided for the production and processing techniques for Nb-based metallic biomaterials, including traditional melting processes like vacuum arc remelting, additive manufacturing like selective laser melting (SLM), electron beam melting (EBM), spark plasma sintering (SPS), and severe plastic deformation like equal channel angular pressing (ECAP), multi-axial forging (MAF), high pressure torsion (HPT), as well as their physicomechanical properties and implant application. Also suggested are the critical issues, challenges, and prospects in the further development of Nb-based metallic biomaterials for implant applications. STATEMENT OF SIGNIFICANCE: Nb-based biomaterials have gained significant interest for bioimplantable scaffolds because of their appropriate mechanical characteristics and biocompatibility. No prior work has been published specifically reviewing bio-functional Nb-based biomaterials for exploring their physicomechanical properties, biological significance, and implant applications. This review provides an overview on the advances of niobium and Nb-based materials as implant materials over the past 20 years, and highlights the advantages of Nb-based biomaterials for implant application. An introduction is provided for the production and processing techniques for Nb-based biomaterials, as well as their physicomechanical properties and implant application. Also suggested are the critical issues, challenges, and prospects in the further development of Nb-based biomaterials for implant applications.
Collapse
Affiliation(s)
- Ziyuan Liu
- College of Mechanical Engineering, University of South China, Hengyang 421001, PR China; School of Materials Science and Engineering, Central South University, Changsha 410083, PR China
| | - Ming-Chun Zhao
- School of Materials Science and Engineering, Central South University, Changsha 410083, PR China
| | - Dengfeng Yin
- School of Materials Science and Engineering, Central South University, Changsha 410083, PR China
| | - Ying-Chao Zhao
- College of Mechanical Engineering, University of South China, Hengyang 421001, PR China.
| | - Andrej Atrens
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane QLD4072, Australia
| |
Collapse
|
4
|
Liu D, Liu J, Zhao P, Peng Z, Geng Z, Zhang J, Zhang Z, Shen R, Li X, Wang X, Li S, Wang J, Wang X. 3D Bioprinted Tissue-Engineered Bone with Enhanced Mechanical Strength and Bioactivities: Accelerating Bone Defect Repair through Sequential Immunomodulatory Properties. Adv Healthc Mater 2024:e2401919. [PMID: 39155410 DOI: 10.1002/adhm.202401919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Indexed: 08/20/2024]
Abstract
In this study, a new-generation tissue-engineered bone capable of temporally regulating the immune response, balancing proinflammatory and anti-inflammatory activities, and facilitating bone regeneration and repair to address the challenges of delayed healing and nonunion in large-sized bone defects, is innovatively developed. Using the innovative techniques including multiphysics-assisted combined decellularization, side-chain biochemical modification, and sterile freeze-drying, a novel photocurable extracellular matrix hydrogel, methacrylated bone-derived decellularized extracellular matrix (bdECM-MA), is synthesized. After incorporating the bdECM-MA with silicon-substituted calcium phosphate and bone marrow mesenchymal stem cells, the tissue-engineered bone is fabricated through digital light processing 3D bioprinting. This study provides in vitro confirmation that the engineered bone maintains high cellular viability while achieving MPa-level mechanical strength. Moreover, this engineered bone exhibits excellent osteogenesis, angiogenesis, and immunomodulatory functions. One of the molecular mechanisms of the immunomodulatory function involves the inhibition of the p38-MAPK pathway. A pioneering in vivo discovery is that the natural biomaterial-based tissue-engineered bone demonstrates sequential immunomodulatory properties that activate proinflammatory and anti-inflammatory responses in succession, significantly accelerating the repair of bone defects. This study provides a new research basis and an effective method for developing autogenous bone substitute materials and treating large-sized bone defects.
Collapse
Affiliation(s)
- Daqian Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, P. R. China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, 148 Baojian Road, Harbin, 150001, P. R. China
| | - Jingsong Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, 199 Dazhi Street, Harbin, 150001, P. R. China
| | - Pengcheng Zhao
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zhibin Peng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China
| | - Zhibin Geng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, P. R. China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, 148 Baojian Road, Harbin, 150001, P. R. China
| | - Jingwei Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, P. R. China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, 148 Baojian Road, Harbin, 150001, P. R. China
| | - Zhuoran Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Ruifang Shen
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Xiang Li
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyu Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, 199 Dazhi Street, Harbin, 150001, P. R. China
| | - Shuangzuo Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, P. R. China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, 148 Baojian Road, Harbin, 150001, P. R. China
| | - Jiankai Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, 199 Dazhi Street, Harbin, 150001, P. R. China
| | - Xintao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, P. R. China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, 148 Baojian Road, Harbin, 150001, P. R. China
| |
Collapse
|
5
|
Wang B, Huang Y, Cai Q, Du Z, Li X. Biomaterials for diabetic bone repair: Influencing mechanisms, multi-aspect progress and future prospects. COMPOSITES PART B: ENGINEERING 2024; 274:111282. [DOI: 10.1016/j.compositesb.2024.111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
6
|
Tolmacheva N, Bhattacharyya A, Noh I. Calcium Phosphate Biomaterials for 3D Bioprinting in Bone Tissue Engineering. Biomimetics (Basel) 2024; 9:95. [PMID: 38392140 PMCID: PMC10886915 DOI: 10.3390/biomimetics9020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Three-dimensional bioprinting is a promising technology for bone tissue engineering. However, most hydrogel bioinks lack the mechanical and post-printing fidelity properties suitable for such hard tissue regeneration. To overcome these weak properties, calcium phosphates can be employed in a bioink to compensate for the lack of certain characteristics. Further, the extracellular matrix of natural bone contains this mineral, resulting in its structural robustness. Thus, calcium phosphates are necessary components of bioink for bone tissue engineering. This review paper examines different recently explored calcium phosphates, as a component of potential bioinks, for the biological, mechanical and structural properties required of 3D bioprinted scaffolds, exploring their distinctive properties that render them favorable biomaterials for bone tissue engineering. The discussion encompasses recent applications and adaptations of 3D-printed scaffolds built with calcium phosphates, delving into the scientific reasons behind the prevalence of certain types of calcium phosphates over others. Additionally, this paper elucidates their interactions with polymer hydrogels for 3D bioprinting applications. Overall, the current status of calcium phosphate/hydrogel bioinks for 3D bioprinting in bone tissue engineering has been investigated.
Collapse
Affiliation(s)
- Nelli Tolmacheva
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Amitava Bhattacharyya
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Medical Electronics Research Center, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
7
|
Ciszyński M, Dominiak S, Dominiak M, Gedrange T, Hadzik J. Allogenic Bone Graft in Dentistry: A Review of Current Trends and Developments. Int J Mol Sci 2023; 24:16598. [PMID: 38068918 PMCID: PMC10706024 DOI: 10.3390/ijms242316598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In an effort to prepare non-autologous bone graft or biomaterial that would possess characteristics comparable to autologous bone, many different allogenic bone derivatives have been created. Although different existing processing methods aim to achieve the very same results, the specific parameters applied during different stages material preparation can result in significant differences in the material's mechanical and biological properties The properties, including osteoconductive, osteoinductive, and even osteogenic potential, can differ vastly depending on particular preparation and storage techniques used. Osteogenic properties, which have long been thought to be characteristic to autogenic bone grafts only, now seem to also be achievable in allogenic materials due to the possibility to seed the host's stem cells on a graft before its implantation. In this article, we aim to review the available literature on allogenic bone and its derivatives as well as the influence of different preparation methods on its performance.
Collapse
Affiliation(s)
| | | | | | | | - Jakub Hadzik
- Department of Dental Surgery, Faculty of Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| |
Collapse
|
8
|
Chen S, Wang H, Liu D, Bai J, Haugen HJ, Li B, Yan H. Early osteoimmunomodulation by mucin hydrogels augments the healing and revascularization of rat critical-size calvarial bone defects. Bioact Mater 2023; 25:176-188. [PMID: 36817825 PMCID: PMC9932297 DOI: 10.1016/j.bioactmat.2023.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/08/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The design principle of osteogenic bone grafts has shifted from immunological inertness to limiting foreign body response to combined osteoimmunomodulatory activity to promote high-quality endogenous bone regeneration. Recently developed immunomodulatory mucin hydrogels have been shown to elicit very low complement activation and suppress macrophage release and activation after implantation in vivo. However, their immunoregulatory activity has not yet been studied in the context of tissue repair. Herein, we synthesized mucin-monetite composite materials and investigated their early osteoimmunomodulation using a critical-size rat bone defect model. We demonstrated that the composites can polarize macrophages towards the M2 phenotype at weeks 1 and 2. The early osteoimmunomodulation enhanced early osteogenesis and angiogenesis and ultimately promoted fracture healing and engraftment (revascularization of the host vasculature) at weeks 6 and 12. Overall, we demonstrated the applicability of mucin-based immunomodulatory biomaterials to enhance tissue repair in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Song Chen
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jianzhong Bai
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, Oslo, 0376, Norway
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China,Corresponding author.
| | - Hongji Yan
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institute and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden,Department of Neuroscience, Karolinska Institute, 171 77, Stockholm, Sweden,Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden,Corresponding author. AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden.
| |
Collapse
|
9
|
Belluomo R, Khodaei A, Amin Yavari S. Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects. Acta Biomater 2023; 156:234-249. [PMID: 36028198 DOI: 10.1016/j.actbio.2022.08.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
Bone tissue exhibits critical factors for metastatic cancer cells and represents an extremely pleasant spot for further growth of tumors. The number of metastatic bone lesions and primary tumors that arise directly from cells comprised in the bone milieu is constantly increasing. Bioceramics have recently received significant attention in bone tissue engineering and local drug delivery applications. Additionally, additive manufacturing of bioceramics offers unprecedented advantages including the possibilities to fill irregular voids after the resection and fabricate patient-specific implants. Herein, we investigated the recent advances in additively manufactured bioceramics and ceramic-based composites that were used in the local bone tumor treatment and reconstruction of bone tumor defects. Furthermore, it has been extensively explained how to bi-functionalize ceramics-based biomaterials and what current limitations impede their clinical application. We have also discussed the importance of further development into ceramic-based biomaterials and molecular biology of bone tumors to: (1) discover new potential therapeutic targets to enhance conventional therapies, (2) local delivering of bio-molecular agents in a customized and "smart" way, and (3) accomplish a complete elimination of tumor cells in order to prevent tumor recurrence formation. We emphasized that by developing the research focus on the introduction of novel 3D-printed bioceramics with unique properties such as stimuli responsiveness, it will be possible to fabricate smart bioceramics that promote bone regeneration while minimizing the side-effects and effectively eradicate bone tumors while promoting bone regeneration. In fact, by combining all these therapeutic strategies and additive manufacturing, it is likely to provide personalized tumor-targeting therapies for cancer patients in the foreseeable future. STATEMENT OF SIGNIFICANCE: To increase the survival rates of cancer patients, different strategies such as surgery, reconstruction, chemotherapy, radiotherapy, etc have proven to be essential. Nonetheless, these therapeutic protocols have reached a plateau in their effectiveness due to limitations including drug resistance, tumor recurrence after surgery, toxic side-effects, and impaired bone regeneration following tumor resection. Hence, novel approaches to specifically and locally attack cancer cells, while also regenerating the damaged bony tissue, have being developed in the past years. This review sheds light to the novel approaches that enhance local bone tumor therapy and reconstruction procedures by combining additive manufacturing of ceramic biomaterials and other polymers, bioactive molecules, nanoparticles to affect bone tumor functions, metabolism, and microenvironment.
Collapse
Affiliation(s)
- Ruggero Belluomo
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Su N, Villicana C, Yang F. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types. Biomaterials 2022; 286:121604. [PMID: 35667249 PMCID: PMC9881498 DOI: 10.1016/j.biomaterials.2022.121604] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Tissue engineering strategies for treating bone loss to date have largely focused on targeting stem cells or vascularization. Immune cells, including macrophages and T cells, can also indirectly enhance bone healing via cytokine secretion to interact with other bone niche cells. Bone niche cues and local immune environment vary depending on anatomical location, size of defects and disease types. As such, it is critical to evaluate the role of the immune system in the context of specific bone niche and different disease types. This review focuses on immunomodulation research for bone applications using biomaterials and cell-based strategies, with a unique perspective from different disease types. We first reviewed applications for prolonging orthopaedic implant lifetime and enhancing fracture healing, two clinical challenges where immunomodulatory strategies were initially developed for orthopedic applications. We then reviewed recent research progress in harnessing immunomodulatory strategies for regenerating critical-sized, long bone or cranial bone defects, and treating osteolytic bone diseases. Remaining gaps in knowledge, future directions and opportunities were also discussed.
Collapse
Affiliation(s)
- Ni Su
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cassandra Villicana
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA.,: Corresponding Author Fan Yang, Ph D, Department of Orthopaedic Surgery and Bioengineering, Stanford University School of Medicine, 240 Pasteur Dr, Palo Alto, CA 94304, Biomedical Innovation Building, 1st floor, Room 1200, , Phone: (650) 646-8558
| |
Collapse
|
11
|
Li W, Dai F, Zhang S, Xu F, Xu Z, Liao S, Zeng L, Song L, Ai F. Pore Size of 3D-Printed Polycaprolactone/Polyethylene Glycol/Hydroxyapatite Scaffolds Affects Bone Regeneration by Modulating Macrophage Polarization and the Foreign Body Response. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20693-20707. [PMID: 35500207 DOI: 10.1021/acsami.2c02001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
3D-printed porous bioactive ceramic scaffolds have been widely used in bone defect repair. However, material implantation is often accompanied by a foreign body response (FBR), which may affect host tissue regeneration. The physical properties of biomaterials, including shape, pore size, and porosity, control the relevant immune responses during tissue regeneration. To the best of our knowledge, the effect of the pore size of 3D-printed scaffolds on the immune response and bone-biomaterial integration has not been studied in vivo. Polycaprolactone/polyethylene glycol/hydroxyapatite (PCL/PEG/HA) bioactive scaffolds with different pore sizes, including 209.9 ± 77.1 μm (P200), 385.5 ± 28.6 μm (P400), and 582.1 ± 27.2 μm (P600), were prepared with a pneumatic extrusion 3D printer. Compared with other pore sizes, P600 significantly reduced the FBR and induced more M2 macrophage infiltration, vascular ingrowth, and new bone formation. Immunohistochemical staining revealed that the MyD88 protein might be involved in macrophage polarization-related signal transduction in response to the pore size. Based on these results, bone regeneration requires the active participation of the immune response, and the P600 PCL/PEG/HA scaffold is a preferable candidate for the repair of bone defects.
Collapse
Affiliation(s)
- Wenfeng Li
- The Department of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fang Dai
- The Department of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang 330006, China
| | - Shan Zhang
- School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
| | - Fancheng Xu
- The Department of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhiyong Xu
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Shousheng Liao
- The Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Liangtao Zeng
- The Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Li Song
- The Department of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang 330006, China
| | - Fanrong Ai
- School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
- Nanchang Municipal Key Laboratory of 3D Bioprinting Technology and Equipment, Nanchang 330031, China
| |
Collapse
|
12
|
[Osteoimmunomodulatory effects of inorganic biomaterials in the process of bone repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:517-522. [PMID: 35426295 PMCID: PMC9011079 DOI: 10.7507/1002-1892.202112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review the osteoimmunomodulatory effects and related mechanisms of inorganic biomaterials in the process of bone repair. METHODS A wide range of relevant domestic and foreign literature was reviewed, the characteristics of various inorganic biomaterials in the process of bone repair were summarized, and the osteoimmunomodulatory mechanism in the process of bone repair was discussed. RESULTS Immune cells play a very important role in the dynamic balance of bone tissue. Inorganic biomaterials can directly regulate the immune cells in the body by changing their surface roughness, surface wettability, and other physical and chemical properties, constructing a suitable immune microenvironment, and then realizing dynamic regulation of bone repair. CONCLUSION Inorganic biomaterials are a class of biomaterials that are widely used in bone repair. Fully understanding the role of inorganic biomaterials in immunomodulation during bone repair will help to design novel bone immunomodulatory scaffolds for bone repair.
Collapse
|
13
|
He M, Wang Q, Feng Y, Gao X, He C, Li J, Zhao W, Tian W, Zhao C. Spatiotemporal Management of the Osteoimmunomodulation of Fibrous Scaffolds by Loading a Novel Amphiphilic Nanomedicine. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13991-14003. [PMID: 35311248 DOI: 10.1021/acsami.1c20809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Implanted bone scaffolds or their biodegradation products may disturb the sequential functions of distinct macrophage phenotypes and cause improper timing of macrophage activation, resulting in delayed or dysfunctional bone regeneration. Although spatiotemporal manipulation of the immune response has been recognized as a promising strategy to address this issue, developing satisfactory drug delivery systems with the function of proper timing control on the macrophage phenotype transformation from pro-inflammatory M1 to anti-inflammatory M2 phenotype still remains a challenge. Here, we propose an amphiphilic nanomedicine with dual anti-inflammatory functions and inflammation-responsive drug release properties to spatiotemporally manage the osteoimmunomodulation of the bone scaffold. The nanomedicine enables the modified scaffold to manipulate the immune response in a staged manner, not only avoiding the overinhibition of M1 macrophages in the initial phase but also facilitating its polarization to M2 phenotype, as well as exhibiting full-course inhibition on later biodegradation-induced inflammation. The described immunomodulatory manner attempts to conform to the principle of osteoimmunomodulation, consequently resulting in better in vivo osteogenesis compared with traditional drug delivery systems. We anticipate that this strategy might aid the development of advanced immunomodulatory bone biomaterials.
Collapse
Affiliation(s)
- Min He
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunbo Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xinghui Gao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chao He
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiangge Li
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
14
|
Ramirez-GarciaLuna JL, Rangel-Berridi K, Olasubulumi OO, Rosenzweig DH, Henderson JE, Gawri R, Martineau PA. Enhanced Bone Remodeling After Fracture Priming. Calcif Tissue Int 2022; 110:349-366. [PMID: 34668029 DOI: 10.1007/s00223-021-00921-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
The immune system is an active component of bone repair. Mast cells influence the recruitment of macrophages, osteoclasts and blood vessels into the repair tissue. We hypothesized that if mast cells and other immune cells are sensitized to recognize broken bone, they will mount an increased response to subsequent fractures that may be translated into enhanced healing. To test this, we created a bone defect on the left leg of anesthetized mice and 2 weeks later, a second one on the right leg. Bone repair in the right legs was then compared to control mice that underwent the creation of bilateral window bone defects at the same time. Mice were euthanized at 14 and 56 days. Mineralized tissue quantity and morphometric parameters were assessed using micro-CT and histology. The activity of osteoblasts, osteoclasts, vascular endothelial cells, mast cells, and macrophages was evaluated using histochemistry. Our main findings were (1) no significant differences in the amount of bone produced at 14- or 56 days post-operative between groups; (2) mice exposed to subsequent fractures showed significantly better bone morphometric parameters after 56 days post-operative; and (3) significant increases in the content of blood vessels, osteoclasts, and the number of macrophages in the subsequent fracture group. Our results provide strong evidence that a transient increase in the inflammatory state of a healing injury promotes faster bone remodelling and increased neo-angiogenesis. This phenomenon is also characterized by changes in mast cell and macrophage content that translate into more active recruitment of mesenchymal stromal cells.
Collapse
Affiliation(s)
- Jose L Ramirez-GarciaLuna
- Bone Engineering Labs, Injury, Repair & Recovery Program, Research Institute, McGill University Health Centre, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
- Experimental Surgery, Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC, H3G 2M1, Canada
| | - Karla Rangel-Berridi
- Bone Engineering Labs, Injury, Repair & Recovery Program, Research Institute, McGill University Health Centre, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
- Biofabrication and Bioengineering Labs, Injury, Repair & Recovery Program, Research Institute, McGill University Health Centre, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
- Experimental Surgery, Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC, H3G 2M1, Canada
| | - Ore-Oluwa Olasubulumi
- Bone Engineering Labs, Injury, Repair & Recovery Program, Research Institute, McGill University Health Centre, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Derek H Rosenzweig
- Biofabrication and Bioengineering Labs, Injury, Repair & Recovery Program, Research Institute, McGill University Health Centre, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
- Experimental Surgery, Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC, H3G 2M1, Canada
| | - Janet E Henderson
- Bone Engineering Labs, Injury, Repair & Recovery Program, Research Institute, McGill University Health Centre, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
- Experimental Surgery, Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC, H3G 2M1, Canada
- Experimental Medicine, Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC, H3G 2M1, Canada
| | - Rahul Gawri
- Regenerative Orthopaedics and Innovation Laboratory, Injury, Repair & Recovery Program, Research Institute-McGill University Health Centre, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada.
- Experimental Surgery, Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC, H3G 2M1, Canada.
| | - Paul A Martineau
- Bone Engineering Labs, Injury, Repair & Recovery Program, Research Institute, McGill University Health Centre, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
- Regenerative Orthopaedics and Innovation Laboratory, Injury, Repair & Recovery Program, Research Institute-McGill University Health Centre, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
- Experimental Surgery, Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC, H3G 2M1, Canada
| |
Collapse
|
15
|
Chen H, Agrawal DK, Thankam FG. Biomaterials-Driven Sterile Inflammation. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:22-34. [PMID: 33213285 PMCID: PMC8892963 DOI: 10.1089/ten.teb.2020.0253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Performance of the biomaterials used for regenerative medicine largely depends on biocompatibility; however, the biological mechanisms underlying biocompatibility of a biomaterial within the host system is poorly understood. In addition to the classical immune response against non-self-entities, the sterile inflammatory response could limit the compatibility of biological scaffolds. Whereas the immediate to short-term host response to a biomaterial implant have been characterized, the long-term progression of host-biomaterial relationship has not been described. This article explores the novel concept of biomaterials-driven sterile inflammation (BSI) in long-term biodegradable implants and throws light for possible explanation for the onset of BSI and the associated damage-associated molecular patterns. The understanding of BSI would advance the current strategies to improve biomaterial-host tissue integration and open novel translational avenues in biomaterials-based tissue regeneration. Impact statement Understanding the novel concept of biomaterials-driven sterile inflammation and associated damage-associated molecular patterns in long-term biodegradable implants would determine their success and improves the tissue engineering and regenerative strategies.
Collapse
Affiliation(s)
- Henry Chen
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
- Address correspondence to: Finosh G. Thankam, PhD, Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA
| |
Collapse
|
16
|
Deng J, Pan J, Yu L, Wang Y, Zhang W, Huang W, Fan Y, Liu Y. The Effects of Irradiation Time on Gelatin Methacrylate Hydrogels Used for Bone Tissue Engineering. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gelatin methacrylate (GelMA) hydrogels are a promising material for use in a variety of tissue engineering applications. Herein, we focused on identifying the optimal irradiation time necessary to photopolymerize GelMA hydrogels with visible blue light in a manner that did not adversely
impact the biophysical properties of these cell-containing gels. We assessed the toxic effects of different irradiation times (3, 5, 10, 20 and 40 seconds) on BMMSCs encapsulated in a GelMA hydrogel using lithium phenyl-2,4,6 trimethylbenzoylphosphinate (LAP) as a photoinitiator. Both CCK-8
assays and Live-Dead staining were used to measure BMMSCs viability. We observed increasing compression strength as a function of increased irradiation time, although this corresponded to a reduction in swelling ratio and pore sizes. We ultimately found that when using LAP as a photoinitiator,
the optimal irradiation time was 5–10 seconds, which was suitable for bone tissue engineering application. Ultimately we determined that a 5 second irradiation time was optimal for studies of encapsulated stem cells.
Collapse
Affiliation(s)
- Jiajia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, P. R. China
| | - Jie Pan
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, P. R. China
| | - Liming Yu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, P. R. China
| | - Yuhui Wang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, P. R. China
| | - Weihua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, P. R. China
| | - Wei Huang
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, P. R. China
| | - Yichao Fan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, P. R. China
| |
Collapse
|
17
|
How Do Bone Allografts Regenerate Bone? J Craniofac Surg 2021; 33:729-730. [PMID: 34759254 DOI: 10.1097/scs.0000000000008376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Calcium phosphate-based materials regulate osteoclast-mediated osseointegration. Bioact Mater 2021; 6:4517-4530. [PMID: 34632163 PMCID: PMC8484898 DOI: 10.1016/j.bioactmat.2021.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/16/2022] Open
Abstract
Calcium phosphate-based materials (CaP) have been widely used as bone graft substitutes with a decent osseointegration. However, the mechanism whereby cells function and repair the bone defect in CaP micro-environment is still elusive. The aim of this study is to find the mechanism how osteoclast behaviors mediate bone healing with CaP scaffolds. Recent reports show that behaviors of osteoclast are closely related with osteogenesis, thus we make a hypothesis that active osteoclast behaviors induced by CaP facilitate bone healing. Here, we found a new mechanism that CaP can regulate osteoclast-mediated osseointegration. Calcium phosphate cement (CPC) is selected as a representative CaP. We demonstrate that the osteoclast-mediated osseointegration can be strongly modulated by the stimulation with CaP. An appropriate Ca/P ratio in CaP can effectively promote the RANKL-RANK binding and evoke more activated NF-κB signaling transduction, which results in vigorous osteoclast differentiation. We observe significant improvement of bone healing in vivo, owing to the active coupling effect of osteoclasts. What is more noteworthy is that the phosphate ions released from CaP can be a pivotal role regulating osteoclast activity by changing Ca/P ratio readily in materials. These studies suggest the potential of harnessing osteoclast-mediated osteogenesis in order to develop a materials-manipulated approach for improving osseointegration. Calcium phosphate-based materials (CaP) can directly participate in bone healing by released ions. Excessive phosphate ions released from CaP can inhibit the affinity of RANKL and RANK. Altering Ca/P ratio in CaP can significantly regulate osteoclast differentiation and function through RANKL-RANK dependent NF-κB signaling pathway.
Collapse
|
19
|
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277:121114. [PMID: 34488119 DOI: 10.1016/j.biomaterials.2021.121114] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Impaired bone healing occurs in 5-10% of cases following injury, leading to a significant economic and clinical impact. While an inflammatory response upon injury is necessary to facilitate healing, its resolution is critical for bone tissue repair as elevated acute or chronic inflammation is associated with impaired healing in patients and animal models. This process is governed by important crosstalk between immune cells through mediators that contribute to resolution of inflammation in the local healing environment. Approaches modulating the initial inflammatory phase followed by its resolution leads to a pro-regenerative environment for bone regeneration. In this review, we discuss the role of inflammation in bone repair, the negative impact of dysregulated inflammation on bone tissue regeneration, and how timely resolution of inflammation is necessary to achieve normal healing. We will discuss applications of biomaterials to treat large bone defects with a specific focus on resolution of inflammation to modulate the immune environment following bone injury, and their observed functional benefits. We conclude the review by discussing future strategies that could lead to the realization of anti-inflammatory therapeutics for bone tissue repair.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
20
|
Pei QG, Wang HC, Li L, Wang ZL. Triggering Receptor Expressed On Myeloid cells-2 Stimulates Osteoclast Differentiation and Bone Loss in Periodontitis. Oral Dis 2021; 28:1652-1661. [PMID: 34387017 DOI: 10.1111/odi.14004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the expression of triggering receptor expressed on myeloid cells 2 (TREM-2) in the healthy and diseased tissue, including gingivitis or periodontitis, and then to assess if it has an impact on the development of periodontitis. METHODS AND MATERIALS The gingival tissues from healthy controls, gingivitis and periodontitis underwent haematoxylin-eosin and immunohistochemical staining, and the association of TREM-2 expression or TREM-2+ cell counts with clinical parameters was assessed. An anti-TREM-2 antibody was used to block the osteoclastogenesis in vitro and during the experimental periodontitis by injection into the gingiva. The relative gene expression of TREM-2 in different gingival tissues was analysed by quantitative PCR. RESULTS In the gingival tissues of periodontitis, TREM-2 expression and TREM-2+ cell counts were significantly higher than those of gingivitis and healthy controls (P<0.05). In the group of periodontitis showing moderate signs, the gingival tissues displayed significantly lower TREM-2 expression, in contrast with the group with advanced periodontal symptoms (P<0.05). Consistently, blocking TREM-2 significantly decreased osteoclast formation both in vitro and in vivo (P<0.05). CONCLUSION Increased TREM-2 expression and TREM-2+ cells were positively associated with the development of periodontitis. Osteoclast differentiation and stimulating alveolar bone loss were partly relied on TREM-2, which could be a target to be blocked for attenuating osteoclastogenesis in periodontitits.
Collapse
Affiliation(s)
- Qing-Guo Pei
- Department of Oral Implant, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Centre of Tooth Restoration and Regeneration, 399 Yanchang Road, Shanghai, 200072, China
| | - Hai-Cheng Wang
- Department of Pathology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Lin Li
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Centre of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai, 200072, China
| | - Zuo-Lin Wang
- Department of Oral Implant, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Centre of Tooth Restoration and Regeneration, 399 Yanchang Road, Shanghai, 200072, China
| |
Collapse
|
21
|
He M, Yang B, Huo F, Xie L, Yang M, Tian W. A novel coating with universal adhesion and inflammation-responsive drug release functions to manipulate the osteoimmunomodulation of implants. J Mater Chem B 2021; 9:5272-5283. [PMID: 34137425 DOI: 10.1039/d1tb00953b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immune response elicited by the bone endoprosthesis is currently considered an important factor that affects its interfacial osteointegration. In this work, a metal-phenolic-based drug-loaded coating with universal adhesion properties and intelligent drug delivery feature was created to promote osteointegration by manipulating a beneficial osteoimmune microenvironment. A novel pro-drug with inflammation-responsive release function was firstly synthesized via the esterification reaction between tannic acid (TA) and indometacin (IND), and then the coating was developed by chelating it with Fe3+. In the normal biological environment, the coating was stable, while, in the inflammatory environment, the release of TA and IND motifs could be triggered by the overexpressed esterase. The released TA and IND displayed synergistic effects on macrophage polarization, leading to a downregulation expression of pro-inflammatory cytokines, and an upregulation expression of anti-inflammatory cytokines and osteogenic-related factors. When stimulated by a conditioned medium generated by macrophages seeded onto the coating, the osteogenic differentiation potential of BMSCs was significantly enhanced. Finally, the designed coating significantly promoted the osteointegration of the implant, demonstrated by the increase of the bone-implant contact by two times. Additionally, the coating was substrate-independent and can be formed within seconds without special equipment, thus, it showed great potential applications to endow advanced hard tissue implants with favorable osteoimmunomodulation.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Xie
- State Key Laboratory of Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
22
|
Al-Hamed FS, Rodan R, Ramirez-Garcialuna JL, Elkashty O, Al-Shahrani N, Tran SD, Lordkipanidzé M, Kaartinen M, Badran Z, Tamimi F. The effect of aging on the bone healing properties of blood plasma. Injury 2021; 52:1697-1708. [PMID: 34049703 DOI: 10.1016/j.injury.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Age-related changes in blood composition have been found to affect overall health. Thus, this study aimed to understand the effect of these changes on bone healing by assessing how plasma derived from young and old rats affect bone healing using a rat model. METHODS . Blood plasma was collected from 6-month and 24-month old rats. Differences in elemental composition and metabolome were assessed using optical emission spectrometry and liquid mass spectrometry, respectively. Bilateral tibial bone defects were created in eight rats. Young plasma was randomly applied to one defect, while aged plasma was applied to the contralateral one. Rats were euthanized after two weeks, and their tibiae were analyzed using micro-CT and histology. The proteome of bone marrow was analyzed in an additional group of three rats. RESULTS Bone-defects treated with aged-plasma were significantly bigger in size and presented lower bone volume/tissue volume compared to defects treated with young-plasma. Histomorphometric analysis showed fewer mast cells, macrophages, and lymphocytes in defects treated with old versus young plasma. The proteome analysis showed that young plasma upregulated pathways required for bone healing (e.g. RUNX2, platelet signaling, and crosslinking of collagen fibrils) whereas old plasma upregulated pathways, involved in disease and inflammation (e.g. IL-7, IL-15, IL-20, and GM-CSF signaling). Plasma derived from old rats presented higher concentrations of iron, phosphorous, and nucleotide metabolites as well as lower concentrations of platelets, citric acid cycle, and pentose phosphate pathway metabolites compared to plasma derived from young rats. CONCLUSION bone defects treated with plasma-derived from young rats showed better healing compared to defects treated with plasma-derived from old rats. The application of young and old plasmas has different effects on the proteome of bone defects.
Collapse
Affiliation(s)
| | - Rania Rodan
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Senior specialist in periodontology, Royal Medical Services, Amman, Jordan
| | - Jose Luis Ramirez-Garcialuna
- Faculty of Medicine, McGill University, Montreal, QC, Canada; The Bone Engineering Labs, Research Institute McGill University Health Center, Montreal, QC, Canada
| | - Osama Elkashty
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | | - Simon D Tran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Marie Lordkipanidzé
- Faculté de pharmacie, Université de Montréal, Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Mari Kaartinen
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Zahi Badran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Periodontology (CHU/Rmes Inserm U1229/UIC11), Faculty of Dental Surgery, University of Nantes, Nantes, France; College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Faleh Tamimi
- College of Dental Medicine, Qatar University, Doha, Qatar.
| |
Collapse
|
23
|
Tresguerres FGF, Tresguerres IF, Iglesias O, Leco I, Tamimi F, Torres J. The role of cortical perforations in allogeneic block grafting for lateral augmentation in maxilla: A randomized clinical trial. Clin Implant Dent Relat Res 2021; 23:530-542. [PMID: 34107553 DOI: 10.1111/cid.12996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The need of decortication on the recipient site remains unclear for bone regeneration. To our knowledge, there are no human clinical trials that studied the influence of decortication on cancellous allogeneic block grafting. PURPOSE The aim of the present study is to evaluate the influence of perforating the cortex of the recipient site on cancellous allogeneic block graft integration and revascularization in the maxilla. MATERIAL AND METHODS Twenty-six patients referred for lateral bone augmentation were included in this clinical trial. Patients received freeze-dried bone allograft cancellous blocks obtained from the iliac crest; cortical perforations of the recipient bed were performed in the test group while in the control group it was left intact. After a 4-month healing period another surgery was performed to place dental implants, and a bone biopsy was collected using a trephine. All samples underwent micro-CT scans, and were processed for histomorphometric and immunohistochemical analysis. Implant survival comparisons were made using a repeated measures analysis of variance (ANOVA) while all other variables were compared using the analysis of covariance (ANCOVA). RESULTS One hundred and nineteen implants were placed into 110 augmented sites. One hundred percent implant survival rate was reported during 24 months follow-up period. No differences were reported in bleeding on probing at 1 (5.6 vs 9%) and 2 years (13.2 vs 12.1%), probing pocket depth at 1 (3.4 ± 0.95 vs 3.6 ± 1.12 mm) and 2 years (3.8 ± 1.02 vs 4.1 ± 1.46 mm), and marginal bone loss at 1 (0.2 ± 0.52 vs 0.3 ± 0.57 mm) and 2 years (0.6 ± 0.91 vs 0.5 ± 0.87 mm). No statistically significant differences were found in the micro-CT and histomorphometric analysis in terms of newly formed bone (25.7 ± 11.2% vs 22.3 ± 9.7%), soft tissue (33.0 ± 14.7% vs 36.5 ± 15.7%), remnant allograft (39.3 ± 20.4% vs 41.2 ± 22.7%), and bone mineralization (57.2 ± 10.6% vs 53.8 ± 8.7%). Perforating the cortex of the recipient site had no significant effect on angiogenesis as shown by immunohistochemical analysis of CD34 positive blood vessels (39.21 ± 10.53/mm2 vs 34.16 ± 12.67/mm2 ). CONCLUSION Cancellous allogeneic bone block grafts are a clinically acceptable alternative for horizontal bone augmentation. Cortical perforations of the recipient site in the maxilla did not improve angiogenesis nor bone formation within the block graft.
Collapse
Affiliation(s)
- Francisco G F Tresguerres
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University, Madrid, Spain
| | - Isabel F Tresguerres
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University, Madrid, Spain
| | - Oscar Iglesias
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University, Madrid, Spain
| | - Isabel Leco
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University, Madrid, Spain
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Jesús Torres
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University, Madrid, Spain
| |
Collapse
|
24
|
Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B 2021; 8:9404-9427. [PMID: 32970087 DOI: 10.1039/d0tb01379j] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regulatory role of the immune system in maintaining bone homeostasis and restoring its functionality, when disturbed due to trauma or injury, has become evident in recent years. The polarization of macrophages, one of the main constituents of the immune system, into the pro-inflammatory or anti-inflammatory phenotype has great repercussions for cellular crosstalk and the subsequent processes needed for proper bone regeneration such as angiogenesis and osteogenesis. In certain scenarios, the damaged osseous tissue requires the placement of synthetic bone grafts to facilitate the healing process. Inorganic biomaterials such as bioceramics or bioactive glasses are the most widely used due to their resemblance to the mineral phase of bone and superior osteogenic properties. The immune response of the host to the inorganic biomaterial, which is of an exogenous nature, might determine its fate, leading either to active bone regeneration or its failure. Therefore, various strategies have been employed, like the modification of structural/chemical features or the incorporation of bioactive molecules, to tune the interplay with the immune cells. Understanding how these particular modifications impact the polarization of macrophages and further osteogenic and osteoclastogenic events is of great interest in view of designing a new generation of osteoimmunomodulatory materials that support the regeneration of osseous tissue during all stages of bone healing.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 16, 08019 Barcelona, Spain. and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Negrescu AM, Cimpean A. The State of the Art and Prospects for Osteoimmunomodulatory Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1357. [PMID: 33799681 PMCID: PMC7999637 DOI: 10.3390/ma14061357] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.
Collapse
Affiliation(s)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
26
|
Decellularized bone extracellular matrix in skeletal tissue engineering. Biochem Soc Trans 2021; 48:755-764. [PMID: 32369551 DOI: 10.1042/bst20190079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms - whole organ, particles, hydrogels - has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.
Collapse
|
27
|
Buck E, Lee S, Stone LS, Cerruti M. Protein Adsorption on Surfaces Functionalized with COOH Groups Promotes Anti-inflammatory Macrophage Responses. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7021-7036. [PMID: 33539069 DOI: 10.1021/acsami.0c16509] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Implants can induce a foreign body reaction that leads to chronic inflammation and fibrosis in the surrounding tissue. Macrophages help detect the foreign material, play a role in the inflammatory response, and may promote fibrosis instead of the desired tissue regeneration around implants. Implant surface properties impact macrophage responses by changing the nature of the adsorbed protein layer, but conflicting studies highlight the complexity of this relationship. In this study, the effect of surface chemistry on macrophage behavior was investigated with poly(styrene) surfaces containing common functional groups at similar surface densities. The protein layer was characterized to identify the proteins that adsorbed on the surfaces from the medium and the proteins secreted onto the surfaces by adherent macrophages. Of the surface chemistries studied, carboxylic acid (COOH) groups promoted anti-inflammatory responses from unstimulated macrophages and did not exacerbate inflammation upon stimulation. These surfaces also enhanced the adsorption of proteins involved in integrin signaling and promoted the secretion of proteins related to angiogenesis, integrin signaling, and cytokine signaling, which have been previously associated with improved biomaterial integration. Therefore, this study suggests that surface modification with COOH groups may help improve the integration of implants in the body by enhancing anti-inflammatory macrophage responses through altered protein adsorption.
Collapse
Affiliation(s)
- Emily Buck
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Seunghwan Lee
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura S Stone
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
28
|
Batool F, Özçelik H, Stutz C, Gegout PY, Benkirane-Jessel N, Petit C, Huck O. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. J Tissue Eng 2021; 12:20417314211041428. [PMID: 34721831 PMCID: PMC8554547 DOI: 10.1177/20417314211041428] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Control of inflammation is indispensable for optimal oral wound healing and tissue regeneration. Several biomaterials have been used to enhance the regenerative outcomes; however, the biomaterial implantation can ensure an immune-inflammatory response. The interface between the cells and the biomaterial surface plays a critical role in determining the success of soft and hard tissue regeneration. The initial inflammatory response upon biomaterial implantation helps in tissue repair and regeneration, however, persistant inflammation impairs the wound healing response. The cells interact with the biomaterials through extracellular matrix proteins leading to protein adsorption followed by recruitment, attachment, migration, and proliferation of several immune-inflammatory cells. Physical nanotopography of biomaterials, such as surface proteins, roughness, and porosity, is crucial for driving cellular attachment and migration. Similarly, modification of scaffold surface chemistry by adapting hydrophilicity, surface charge, surface coatings, can down-regulate the initiation of pro-inflammatory cascades. Besides, functionalization of scaffold surfaces with active biological molecules can down-regulate pro-inflammatory and pro-resorptive mediators' release as well as actively up-regulate anti-inflammatory markers. This review encompasses various strategies for the optimization of physical, chemical, and biological properties of biomaterial and the underlying mechanisms to modulate the immune-inflammatory response, thereby, promoting the tissue integration and subsequent soft and hard tissue regeneration potential of the administered biomaterial.
Collapse
Affiliation(s)
- Fareeha Batool
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Pierre-Yves Gegout
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Catherine Petit
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Huck
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
29
|
Lim KT, Patel DK, Dutta SD, Choung HW, Jin H, Bhattacharjee A, Chung JH. Human Teeth-Derived Bioceramics for Improved Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2396. [PMID: 33266215 PMCID: PMC7761315 DOI: 10.3390/nano10122396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
Hydroxyapatite (HAp, Ca10(PO4)6(OH)2) is one of the most promising candidates of the calcium phosphate family, suitable for bone tissue regeneration due to its structural similarities with human hard tissues. However, the requirements of high purity and the non-availability of adequate synthetic techniques limit the application of synthetic HAp in bone tissue engineering. Herein, we developed and evaluated the bone regeneration potential of human teeth-derived bioceramics in mice's defective skulls. The developed bioceramics were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (FE-SEM). The developed bioceramics exhibited the characteristic peaks of HAp in FTIR and XRD patterns. The inductively coupled plasma mass spectrometry (ICP-MS) technique was applied to determine the Ca/P molar ratio in the developed bioceramics, and it was 1.67. Cytotoxicity of the simulated body fluid (SBF)-soaked bioceramics was evaluated by WST-1 assay in the presence of human alveolar bone marrow stem cells (hABMSCs). No adverse effects were observed in the presence of the developed bioceramics, indicating their biocompatibility. The cells adequately adhered to the bioceramics-treated media. Enhanced bone regeneration occurred in the presence of the developed bioceramics in the defected skulls of mice, and this potential was profoundly affected by the size of the developed bioceramics. The bioceramics-treated mice groups exhibited greater vascularization compared to control. Therefore, the developed bioceramics have the potential to be used as biomaterials for bone regeneration application.
Collapse
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.)
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.)
| | - Han-Wool Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 151921, Korea;
| | - Hexiu Jin
- Department of Plastic and Traumatic Surgery, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100069, China;
| | - Arjak Bhattacharjee
- Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, India;
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151921, Korea
| |
Collapse
|
30
|
Zhuang Z, John JV, Liao H, Luo J, Rubery P, Mesfin A, Boda SK, Xie J, Zhang X. Periosteum Mimetic Coating on Structural Bone Allografts via Electrospray Deposition Enhances Repair and Reconstruction of Segmental Defects. ACS Biomater Sci Eng 2020; 6:6241-6252. [PMID: 33449646 DOI: 10.1021/acsbiomaterials.0c00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structural bone allograft transplantation remains one of the common strategies for repair and reconstruction of large bone defects. Due to the loss of periosteum that covers the outer surface of the cortical bone, the healing and incorporation of allografts is extremely slow and limited. To enhance the biological performance of allografts, herein, we report a novel and simple approach for engineering a periosteum mimetic coating on the surface of structural bone allografts via polymer-mediated electrospray deposition. This approach enables the coating on allografts with precisely controlled composition and thickness. In addition, the periosteum mimetic coating can be tailored to achieve desired drug release profiles by making use of an appropriate biodegradable polymer or polymer blend. The efficacy study in a murine segmental femoral bone defect model demonstrates that the allograft coating composed of poly(lactic-co-glycolic acid) and bone morphogenetic protein-2 mimicking peptide significantly improves allograft healing as evidenced by decreased fibrotic tissue formation, increased periosteal bone formation, and enhanced osseointegration. Taken together, this study provides a platform technology for engineering a periosteum mimetic coating which can greatly promote bone allograft healing. This technology could eventually result in an off-the-shelf and multifunctional structural bone allograft for highly effective repair and reconstruction of large segmental bone defects. The technology can also be used to ameliorate the performance of other medical implants by modifying their surfaces.
Collapse
Affiliation(s)
- Zhou Zhuang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14621, United States
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Haofu Liao
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Paul Rubery
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Addisu Mesfin
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| |
Collapse
|
31
|
Zou W, Li X, Li N, Guo T, Cai Y, Yang X, Liang J, Sun Y, Fan Y. A comparative study of autogenous, allograft and artificial bone substitutes on bone regeneration and immunotoxicity in rat femur defect model. Regen Biomater 2020; 8:rbaa040. [PMID: 33732488 PMCID: PMC7947581 DOI: 10.1093/rb/rbaa040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Repair and reconstruction of large bone defect were often difficult, and bone substitute materials, including autogenous bone, allogenic bone and artificial bone, were common treatment strategies. The key to elucidate the clinical effect of these bone repair materials was to study their osteogenic capacity and immunotoxicological compatibility. In this paper, the mechanical properties, micro-CT imaging analysis, digital image analysis and histological slice analysis of the three bone grafts were investigated and compared after different time points of implantation in rat femur defect model. Autogenous bone and biphasic calcium phosphate particular artificial bone containing 61.4% HA and 38.6% β-tricalcium phosphate with 61.64% porosity and 0.8617 ± 0.0068 g/cm3 density (d ≤ 2 mm) had similar and strong bone repair ability, but autogenous bone implant materials caused greater secondary damage to experimental animals; allogenic bone exhibited poor bone defect repair ability. At the early stage of implantation, the immunological indexes such as Immunoglobulin G, Immunoglobulin M concentration and CD4 cells' population of allogenic bone significantly increased in compared with those of autologous bone and artificial bone. Although the repair process of artificial bone was relatively inefficient than autologous bone graft, the low immunotoxicological indexes and acceptable therapeutic effects endowed it as an excellent alternative material to solve the problems with insufficient source and secondary trauma of autogenous bone.
Collapse
Affiliation(s)
- Wen Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China.,Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Na Li
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Tianwei Guo
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Yongfu Cai
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Xiaoqin Yang
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China.,Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| |
Collapse
|
32
|
Sarrigiannidis S, Moussa H, Dobre O, Dalby MJ, Tamimi F, Salmeron-Sanchez M. Chiral Tartaric Acid Improves Fracture Toughness of Bioactive Brushite-Collagen Bone Cements. ACS APPLIED BIO MATERIALS 2020; 3:5056-5066. [PMID: 32904797 PMCID: PMC7461128 DOI: 10.1021/acsabm.0c00555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023]
Abstract
Brushite cements are promising bone regeneration materials with limited biological and mechanical properties. Here, we engineer a mechanically improved brushite-collagen type I cement with enhanced biological properties by use of chiral chemistry; d- and l-tartaric acid were used to limit crystal growth and increase the mechanical properties of brushite-collagen cements. The impact of the chiral molecules on the cements was examined with Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). A 3-point bend test was utilized to study the fracture toughness, and cell attachment and morphology studies were carried out to demonstrate biocompatibility. XRD and SEM analyses showed that l-, but not d-tartaric acid, significantly restrained brushite crystal growth by binding to the {010} plane of the mineral and increased brushite crystal packing and the collagen interaction area. l-Tartaric acid significantly improved fracture toughness compared to traditional brushite by 30%. Collagen significantly enhanced cell morphology and focal adhesion expression on l-tartaric acid-treated brushite cements.
Collapse
Affiliation(s)
- Stylianos
O. Sarrigiannidis
- Centre
for the Cellular Microenvironment, University
of Glasgow, Rankine Building, 79−85 Oakfield Ave, Glasgow G12 8LT, United
Kingdom
| | - Hanan Moussa
- Faculty
of Dentistry, McGill University, Strathcona Building, 3640 University
Street, Montreal, Quebec H3A 2B2, Canada
- Faculty
of Dentistry, Benghazi University, Benghazi 9504, Libya
| | - Oana Dobre
- Centre
for the Cellular Microenvironment, University
of Glasgow, Rankine Building, 79−85 Oakfield Ave, Glasgow G12 8LT, United
Kingdom
| | - Matthew J. Dalby
- Centre
for the Cellular Microenvironment, University
of Glasgow, Joseph Black Building, University Pl, Glasgow G12 8QQ, United Kingdom
| | - Faleh Tamimi
- Faculty
of Dentistry, McGill University, Strathcona Building, 3640 University
Street, Montreal, Quebec H3A 2B2, Canada
- College
of Dental Medicine, Qatar University, Doha, Qatar
| | - Manuel Salmeron-Sanchez
- Centre
for the Cellular Microenvironment, University
of Glasgow, Rankine Building, 79−85 Oakfield Ave, Glasgow G12 8LT, United
Kingdom
| |
Collapse
|
33
|
Mansour A, Abu Nada L, El-Hadad AA, Mezour MA, Ersheidat A, Al-Subaie A, Moussa H, Laurenti M, Kaartinen MT, Tamimi F. Biomimetic trace metals improve bone regenerative properties of calcium phosphate bioceramics. J Biomed Mater Res A 2020; 109:666-681. [PMID: 32608184 DOI: 10.1002/jbm.a.37051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023]
Abstract
The bone regenerative capacity of synthetic calcium phosphates (CaPs) can be enhanced through the enrichment with selected metal trace ions. However, defining the optimal elemental composition required for bone formation is challenging due to many possible concentrations and combinations of these elements. We hypothesized that the ideal elemental composition exists in the inorganic phase of the bone extracellular matrix (ECM). To study our hypothesis, we first obtained natural hydroxyapatite through the calcination of bovine bone, which was then investigated its reactivity with acidic phosphates to produce CaP cements. Bioceramic scaffolds fabricated using these cements were assessed for their composition, properties, and in vivo regenerative performance and compared with controls. We found that natural hydroxyapatite could react with phosphoric acid to produce CaP cements with biomimetic trace metals. These cements present significantly superior in vivo bone regenerative performance compared with cements prepared using synthetic apatite. In summary, this study opens new avenues for further advancements in the field of CaP bone biomaterials by introducing a simple approach to develop biomimetic CaPs. This work also sheds light on the role of the inorganic phase of bone and its composition in defining the regenerative properties of natural bone xenografts.
Collapse
Affiliation(s)
- Alaa Mansour
- Faculty of dentistry, McGill University, Montreal, Canada.,Resident, Periodontics department, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| | - Lina Abu Nada
- Faculty of dentistry, McGill University, Montreal, Canada
| | - Amir A El-Hadad
- Faculty of dentistry, McGill University, Montreal, Canada.,Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Ala' Ersheidat
- Faculty of dentistry, McGill University, Montreal, Canada.,Royal Medical Services, Jordanian Armed Forces, Amman, Jordan
| | - Ahmed Al-Subaie
- Faculty of dentistry, McGill University, Montreal, Canada.,College of Dentistry, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Hanan Moussa
- Faculty of dentistry, McGill University, Montreal, Canada.,Faculty of Dentistry, Benghazi University, Benghazi, Libya
| | - Marco Laurenti
- Faculty of Pharmacy, Universidad complutense de Madrid, Spain
| | | | - Faleh Tamimi
- Faculty of dentistry, McGill University, Montreal, Canada.,College of Dental Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
34
|
Abstract
With the rapidly development of clinical treatments, precision medicine has come to people eyes with the requirement according to different people and different disease situation. So precision medicine is called personalized medicine which is a new frontier of healthcare. Bone tissue engineering developed from traditional bone graft to precise medicine era. So scientists seek approaches to harness stem cells, scaffolds, growth factors, and extracellular matrix to promise enhanced and more reliable bone formation. This review provides an overview of novel developments on precision medicine in tissue engineering of bone hoping it can open new perspectives of strategies on bone treatment.
Collapse
Affiliation(s)
| | | | - Rong Zhou
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haixia Liu
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Raorao Wang
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|