1
|
Moswatsi B, Mahumane GD, Kumar P, Choonara YE. A review of bigels for neurotrauma therapeutics: Structural insights for tissue microenvironment alignment. BIOMATERIALS ADVANCES 2025; 174:214315. [PMID: 40245812 DOI: 10.1016/j.bioadv.2025.214315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Neural injuries pose a significant clinical challenge due to the brain's limited regenerative capacity and the complexity of developing biomaterials that can provide mechanical support and localized therapeutic delivery. Conventional biomaterials such as hydrogels and electrospun scaffolds exhibit limitations, including suboptimal mechanical integrity and uncontrolled drug diffusion. Bigels, biphasic systems composed of interpenetrating hydrophilic and hydrophobic phases, offer tunable viscoelasticity, enhanced drug loading capacity, and structural adaptability, making them promising candidates for addressing the multifaceted requirements of neurotherapeutics applications. Despite their established applications in the transdermal application, the potential of bigels in neurotherapeutics remains underexplored. This review critically examines bigel formulation strategies, physicochemical characteristics, and neuroregenerative potential. Key analytical techniques, including oscillatory rheology, scanning electron microscopy, and Fourier-transform infrared spectroscopy, are explored to assess pore morphology, viscoelastic behavior, and molecular interactions. The role of bigels in neuronal survival, axonal regeneration, and neuroinflammation modulation is highlighted, alongside considerations for scalability, batch-to-batch reproducibility, and regulatory compliance under Good Manufacturing Practices (GMP). Future research should focus on optimizing biodegradation kinetics, neurotrophic factor release profiles, and preclinical validation in traumatic brain injury and spinal cord injury models. Advancing bigel technology could facilitate their clinical translation as neuroprotective scaffolds in regenerative medicine.
Collapse
Affiliation(s)
- Botle Moswatsi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Gillian Dumsile Mahumane
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| |
Collapse
|
2
|
Chen GH, Sia KC, Liu SW, Kao YC, Yang PC, Ho CH, Huang SC, Lee PY, Liang MZ, Chen L, Huang CC. Implantation of MSC spheroid-derived 3D decellularized ECM enriched with the MSC secretome ameliorates traumatic brain injury and promotes brain repair. Biomaterials 2025; 315:122941. [PMID: 39515193 DOI: 10.1016/j.biomaterials.2024.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) presents substantial clinical challenges, as existing treatments are unable to reverse damage or effectively promote brain tissue regeneration. Although implantable biomaterials have been proposed to support tissue repair by mitigating the adverse microenvironment in injured brains, many fail to replicate the complex composition and architecture of the native extracellular matrix (ECM), resulting in only limited therapeutic outcomes. This study introduces an innovative approach by developing a mesenchymal stem cell (MSC) spheroid-derived three-dimensional (3D) decellularized ECM (dECM) that is enriched with the MSC-derived matrisome and secretome, offering a promising solution for TBI treatment and brain tissue regeneration. Proteomic and cytokine array analyses revealed that 3D dECM retained a diverse array of MSC spheroid-derived matrisome proteins and secretome components, which are crucial for replicating the complexity of native ECM and the therapeutic capabilities of MSCs. These molecules were found to underlie the observed effects of 3D dECM on immunomodulation, proneuritogenesis, and proangiogenesis in our in vitro functional assays. Implantation of 3D dECM into TBI model mice effectively mitigated postinjury tissue damage and promoted brain repair, as evidenced by a reduced brain lesion volume, decreased cell apoptosis, alleviated neuroinflammation, reduced glial scar formation, and increased of neuroblast recruitment to the lesion site. These outcomes culminated in improved motor function recovery in animals, highlighting the multifaceted therapeutic potential of 3D dECM for TBI. In summary, our study elucidates the transformative potential of MSC spheroid-derived bioactive 3D dECM as an implantable biomaterial for effectively mitigating post-TBI neurological damage, paving the way for its broader therapeutic application.
Collapse
Affiliation(s)
- Grace H Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kee-Chin Sia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ying-Chi Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Hsin Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Chen Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Peng-Ying Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Min-Zong Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
3
|
Hong SJ, Bock M, Zhang S, An SB, Han I. Therapeutic Transplantation of Human Central Nervous System Organoids for Neural Reconstruction. Int J Mol Sci 2024; 25:8540. [PMID: 39126108 PMCID: PMC11313261 DOI: 10.3390/ijms25158540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Damage to the central nervous system (CNS) often leads to irreversible neurological deficits, and there are currently few effective treatments available. However, recent advancements in regenerative medicine have identified CNS organoids as promising therapeutic options for addressing CNS injuries. These organoids, composed of various neurons and supporting cells, have shown potential for direct repair at injury sites. CNS organoids resemble the structure and function of actual brain tissue, which allows them to adapt and function well within the physiological environment when transplanted into injury sites. Research findings suggest that CNS organoids can replace damaged neurons, form new neural connections, and promote neural recovery. This review highlights the emerging benefits, evaluates preclinical transplantation outcomes, and explores future strategies for optimizing neuroregeneration using CNS organoids. With continued research and technological advancements, these organoids could provide new hope for patients suffering from neurological deficits.
Collapse
Affiliation(s)
- Sung Jun Hong
- Research Competency Milestones Program (RECOMP), School of Medicine, CHA University, Seongnam-si 13488, Republic of Korea;
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Minsung Bock
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| |
Collapse
|
4
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Mahmoudi N, Mohamed E, Dehnavi SS, Aguilar LMC, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Calming the Nerves via the Immune Instructive Physiochemical Properties of Self-Assembling Peptide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303707. [PMID: 38030559 PMCID: PMC10837390 DOI: 10.1002/advs.202303707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Elmira Mohamed
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
| | - Shiva Soltani Dehnavi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
| | - Lilith M. Caballero Aguilar
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Alan R. Harvey
- School of Human SciencesThe University of Western Australiaand Perron Institute for Neurological and Translational SciencePerthWA6009Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleMelbourneVIC3010Australia
| | | | - David R. Nisbet
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
- Melbourne Medical SchoolFaculty of MedicineDentistry and Health ScienceThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
6
|
Wang D, Wang S, Zhu Q, Shen Z, Yang G, Chen Y, Luo C, Du Y, Hu Y, Wang W, Yang J. Prospects for Nerve Regeneration and Gene Therapy in the Treatment of Traumatic Brain Injury. J Mol Neurosci 2023; 73:578-586. [PMID: 37458921 DOI: 10.1007/s12031-023-02144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 09/24/2023]
Abstract
Traumatic brain injury (TBI) is a prevalent neurological disorder and a leading cause of death and disability worldwide. The high mortality rates result in a tremendous burden on society and families in terms of public health and economic costs. Despite advances in biomedical research, treatment options for TBI still remain limited, and there is no effective therapy to restore the structure and function of the injured brain. Regrettably, due to the excessive heterogeneity of TBI and the lack of objective and reliable efficacy evaluation indicators, no proven therapeutic drugs or drugs with clear benefits on functional outcomes have been successfully developed to date. Therefore, it is urgent to explore new therapeutic approaches to protect or regenerate the injured brain from different perspectives. In this review, we first provide a brief overview of the causes and current status of TBI and then summarize the preclinical and clinical research status of cutting-edge treatment methods, including nerve regeneration therapy and gene therapy, with the aim of providing valuable references for effective therapeutic strategies for TBI.
Collapse
Affiliation(s)
- Daliang Wang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Shengguo Wang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Qunchao Zhu
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Zhe Shen
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Guohuan Yang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Yanfei Chen
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Chen Luo
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Yanglin Du
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Yelang Hu
- Biological Medicine Research and Development Center, Yangtze Delta of Zhejiang, Hangzhou, 314006, Zhejiang, China
| | - Wenmin Wang
- Biological Medicine Research and Development Center, Yangtze Delta of Zhejiang, Hangzhou, 314006, Zhejiang, China
| | - Jie Yang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China.
| |
Collapse
|
7
|
Waltzman D, Sarmiento K, Daugherty J, Lumba-Brown A, Klevens J, Miller GF. Firearm-Related Traumatic Brain Injury Homicides in the United States, 2000-2019. Neurosurgery 2023; 93:43-49. [PMID: 36727717 PMCID: PMC10391713 DOI: 10.1227/neu.0000000000002367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/15/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of homicide-related death in the United States. Penetrating TBI associated with firearms is a unique injury with an exceptionally high mortality rate that requires specialized neurocritical trauma care. OBJECTIVE To report incidence patterns of firearm-related and nonfirearm-related TBI homicides in the United States between 2000 and 2019 by demographic characteristics to provide foundational data for prevention and treatment strategies. METHODS Data were obtained from multiple cause of death records from the National Vital Statistics System using Centers for Disease Control and Prevention's Wide-Ranging Online Data for Epidemiologic Research database for the years 2000 to 2019. Number, age-adjusted rates, and percent of firearm and nonfirearm-related TBI homicides by demographic characteristics were calculated. Temporal trends were also evaluated. RESULTS During the study period, there were 77 602 firearm-related TBI homicides. Firearms were involved in the majority (68%) of all TBI homicides. Overall, men, people living in metro areas, and non-Hispanic Black persons had higher rates of firearm-related TBI homicides. The rate of nonfirearm-related TBI homicides declined by 40%, whereas the rate of firearm-related TBI homicides only declined by 3% during the study period. There was a notable increase in the rate of firearm-related TBI homicides from 2012/2013 through 2019 for women (20%) and nonmetro residents (39%). CONCLUSION Firearm-related violence is an important public health problem and is associated with the majority of TBI homicide deaths in the United States. The findings from this study may be used to inform prevention and guide further research to improve treatment strategies directed at reducing TBI homicides involving firearms.
Collapse
Affiliation(s)
- Dana Waltzman
- Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (NCIPC), Division of Injury Prevention, Atlanta, Georgia, USA
| | - Kelly Sarmiento
- Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (NCIPC), Division of Injury Prevention, Atlanta, Georgia, USA
| | - Jill Daugherty
- Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (NCIPC), Division of Injury Prevention, Atlanta, Georgia, USA
| | | | - Joanne Klevens
- Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (NCIPC), Division of Injury Prevention, Atlanta, Georgia, USA
| | - Gabrielle F. Miller
- Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (NCIPC), Division of Injury Prevention, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Xu J, Hsu SH. Self-healing hydrogel as an injectable implant: translation in brain diseases. J Biomed Sci 2023; 30:43. [PMID: 37340481 DOI: 10.1186/s12929-023-00939-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Tissue engineering biomaterials are aimed to mimic natural tissue and promote new tissue formation for the treatment of impaired or diseased tissues. Highly porous biomaterial scaffolds are often used to carry cells or drugs to regenerate tissue-like structures. Meanwhile, self-healing hydrogel as a category of smart soft hydrogel with the ability to automatically repair its own structure after damage has been developed for various applications through designs of dynamic crosslinking networks. Due to flexibility, biocompatibility, and ease of functionalization, self-healing hydrogel has great potential in regenerative medicine, especially in restoring the structure and function of impaired neural tissue. Recent researchers have developed self-healing hydrogel as drug/cell carriers or tissue support matrices for targeted injection via minimally invasive surgery, which has become a promising strategy in treating brain diseases. In this review, the development history of self-healing hydrogel for biomedical applications and the design strategies according to different crosslinking (gel formation) mechanisms are summarized. The current therapeutic progress of self-healing hydrogels for brain diseases is described as well, with an emphasis on the potential therapeutic applications validated by in vivo experiments. The most recent aspect as well as the design rationale of self-healing hydrogel for different brain diseases is also addressed.
Collapse
Affiliation(s)
- Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106319, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106319, Taiwan, Republic of China.
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli, 350401, Taiwan, Republic of China.
| |
Collapse
|
9
|
Tanikawa S, Ebisu Y, Sedlačík T, Semba S, Nonoyama T, Kurokawa T, Hirota A, Takahashi T, Yamaguchi K, Imajo M, Kato H, Nishimura T, Tanei ZI, Tsuda M, Nemoto T, Gong JP, Tanaka S. Engineering of an electrically charged hydrogel implanted into a traumatic brain injury model for stepwise neuronal tissue reconstruction. Sci Rep 2023; 13:2233. [PMID: 36788295 PMCID: PMC9929269 DOI: 10.1038/s41598-023-28870-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Neural regeneration is extremely difficult to achieve. In traumatic brain injuries, the loss of brain parenchyma volume hinders neural regeneration. In this study, neuronal tissue engineering was performed by using electrically charged hydrogels composed of cationic and anionic monomers in a 1:1 ratio (C1A1 hydrogel), which served as an effective scaffold for the attachment of neural stem cells (NSCs). In the 3D environment of porous C1A1 hydrogels engineered by the cryogelation technique, NSCs differentiated into neuroglial cells. The C1A1 porous hydrogel was implanted into brain defects in a mouse traumatic damage model. The VEGF-immersed C1A1 porous hydrogel promoted host-derived vascular network formation together with the infiltration of macrophages/microglia and astrocytes into the gel. Furthermore, the stepwise transplantation of GFP-labeled NSCs supported differentiation towards glial and neuronal cells. Therefore, this two-step method for neural regeneration may become a new approach for therapeutic brain tissue reconstruction after brain damage in the future.
Collapse
Affiliation(s)
- Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Yuki Ebisu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Tomáš Sedlačík
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shingo Semba
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Taiga Takahashi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazushi Yamaguchi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Hinako Kato
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Takuya Nishimura
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.
| |
Collapse
|
10
|
Mishchenko TA, Klimenko MO, Kuznetsova AI, Yarkov RS, Savelyev AG, Sochilina AV, Mariyanats AO, Popov VK, Khaydukov EV, Zvyagin AV, Vedunova MV. 3D-printed hyaluronic acid hydrogel scaffolds impregnated with neurotrophic factors (BDNF, GDNF) for post-traumatic brain tissue reconstruction. Front Bioeng Biotechnol 2022; 10:895406. [PMID: 36091441 PMCID: PMC9453866 DOI: 10.3389/fbioe.2022.895406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria O. Klimenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alisa I. Kuznetsova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Roman S. Yarkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander G. Savelyev
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anastasia V. Sochilina
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Alexandra O. Mariyanats
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
| | - Vladimir K. Popov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
| | - Evgeny V. Khaydukov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Andrei V. Zvyagin
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- MQ Photonics Centre, Macquarie University, Sydney, NSW, Australia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- *Correspondence: Maria V. Vedunova,
| |
Collapse
|
11
|
Applications and Mechanisms of Stimuli-Responsive Hydrogels in Traumatic Brain Injury. Gels 2022; 8:gels8080482. [PMID: 36005083 PMCID: PMC9407546 DOI: 10.3390/gels8080482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a global neurotrauma with high morbidity and mortality that seriously threatens the life quality of patients and causes heavy burdens to families, healthcare institutions, and society. Neuroinflammation and oxidative stress can further aggravate neuronal cell death, hinder functional recovery, and lead to secondary brain injury. In addition, the blood–brain barrier prevents drugs from entering the brain tissue, which is not conducive to the recovery of TBI. Due to their high water content, biodegradability, and similarity to the natural extracellular matrix (ECM), hydrogels are widely used for the delivery and release of various therapeutic agents (drugs, natural extracts, and cells, etc.) that exhibit beneficial therapeutic efficacy in tissue repair, such as TBI. Stimuli-responsive hydrogels can undergo reversible or irreversible changes in properties, structures, and functions in response to internal/external stimuli or physiological/pathological environmental stimuli, and further improve the therapeutic effects on diseases. In this paper, we reviewed the common types of stimuli-responsive hydrogels and their applications in TBI, and further analyzed the therapeutic effects of hydrogels in TBI, such as pro-neurogenesis, anti-inflammatory, anti-apoptosis, anti-oxidation, and pro-angiogenesis. Our study may provide strategies for the treatment of TBI by using stimuli-responsive hydrogels.
Collapse
|
12
|
Zhu W, Chen L, Wu Z, Li W, Liu X, Wang Y, Guo M, Ito Y, Wang L, Zhang P, Wang H. Bioorthogonal DOPA-NGF activated tissue engineering microunits for recovery from traumatic brain injury by microenvironment regulation. Acta Biomater 2022; 150:67-82. [PMID: 35842032 DOI: 10.1016/j.actbio.2022.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/03/2023]
Abstract
Stem cell treatment is vital for recovery from traumatic brain injury (TBI). However, severe TBI usually leads to excessive inflammation and neuroinhibitory factors in the injured brain, resulting in poor neural cell survival and uncontrolled formation of glial scars. In this study, a bioorthogonal microenvironment was constructed on biodegradable poly(lactide-co-glycolide) (PLGA) microcarriers through immobilization of mussel-inspired bioorthogonal 3,4-dihydroxyphenylalanine-containing recombinant nerve growth factor (DOPA-NGF) and human umbilical cord mesenchymal stem cells (hUMSCs) for minimally invasive therapy of TBI. Cell culture and RNA-seq analysis revealed enhanced extracellular matrix (ECM) secretion and viability of hUMSCs on PLGA microcarriers compared to 2D culture. Immobilized DOPA-NGF further promoted adhesion, proliferation, and gene expression in RSC96 neurotrophic cells and hUMSCs. Specifically, the neurotrophin receptor of NT-3 (NTRK3) in hUMSCs was activated by DOPA-NGF, leading to MYC transcription and paracrine enhancement to build an adjustable biomimetic microenvironment. After transplantation of microunits in animal models, the motor and learning-memory ability of TBI mice were improved through rollbacks of overactivated inflammatory reaction regulation, neuronal death, and glial scar formation after injury. This was attributed to the paracrine enhancement of hUMSCs activated by the DOPA-NGF. Our study provides a neural regenerative microenvironment-based therapeutic strategy to advance the effects of transplanted hUMSCs in cell-based regenerative medicine for TBI therapy. STATEMENT OF SIGNIFICANCE: Extensive studies have demonstrated the importance of the microenvironment for posttraumatic brain injury recovery. However, an efficient method that can mimic the neural regenerative microenvironment to strengthen stem cell therapy and brain injury recovery is still absent. In this study, the minimally invasive transplantation of DOPA-NGF immobilized biodegradable microcarriers with mesenchymal stem cells was found to be an effective method for regeneration of injured brain. Moreover, transcriptome analysis revealed that neurotrophin receptor of NT-3 (NTRK3) was activated by DOPA-NGF for MYC transcription and paracrine enhancement to build a kind of adjustable biomimetic microenvironment for brain injury therapy. This study provides a neural regenerative microenvironment-based therapeutic strategy to advance the transplanted hUMSCs in cell-based regenerative medicine for neural recovery.
Collapse
Affiliation(s)
- Wenhao Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Li Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, 130024, China
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wenzhong Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaolong Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama, 351-0198, Japan
| | - Liqiang Wang
- Department of Ophthalmology, Third Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Haifeng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Latchoumane CFV, Forghani R, Karumbaiah L. Cortical Laminar Recording of Multi-unit Response to Distal Forelimb Electrical Stimulation in Rats. Bio Protoc 2021; 11:e4153. [PMID: 34909440 DOI: 10.21769/bioprotoc.4153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/28/2021] [Accepted: 08/22/2021] [Indexed: 11/02/2022] Open
Abstract
Severe traumatic brain injury (sTBI) survivors experience permanent functional disabilities due to significant volume loss and the brain's poor capacity to regenerate. Chondroitin sulfate glycosaminoglycans (CS-GAGs) are key regulators of growth factor signaling and neural stem cell homeostasis in the brain. In this protocol, we describe how to perform recordings to quantify the neuroprotective and regenerative effect of implanted engineered CS-GAG hydrogel (eCS) on brain tissue. This experiment was performed in rats under three conditions: healthy without injury (Sham), controlled cortical impact (CCI) injury on the rostral forelimb area (RFA), and CCI-RFA with eCS implants. This protocol describes the procedure used to perform the craniotomy, the positioning of the cortical recording electrode, the positioning of the stimulation electrode (contralateral paw), and the recording procedure. In addition, a description of the exact electrical setup is provided. This protocol details the recordings in the brain of injured animals while preserving most of the uninjured tissue intact, with additional considerations for intralesional and laminar recordings of multi-unit response. Graphic abstract: Sensorimotor response to paw stimulation using cortical laminar recordings.
Collapse
Affiliation(s)
| | - Rameen Forghani
- Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Lohitash Karumbaiah
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
Thomas JM, Louca I, Bolan F, Sava O, Allan SM, Lawrence CB, Pinteaux E. Regenerative Potential of Hydrogels for Intracerebral Hemorrhage: Lessons from Ischemic Stroke and Traumatic Brain Injury Research. Adv Healthc Mater 2021; 10:e2100455. [PMID: 34197036 PMCID: PMC11468990 DOI: 10.1002/adhm.202100455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/15/2021] [Indexed: 01/02/2023]
Abstract
Intracerebral hemorrhage (ICH) is a deadly and debilitating type of stroke, caused by the rupture of cerebral blood vessels. To date, there are no restorative interventions approved for use in ICH patients, highlighting a critical unmet need. ICH shares some pathological features with other acute brain injuries such as ischemic stroke (IS) and traumatic brain injury (TBI), including the loss of brain tissue, disruption of the blood-brain barrier, and activation of a potent inflammatory response. New biomaterials such as hydrogels have been recently investigated for their therapeutic benefit in both experimental IS and TBI, owing to their provision of architectural support for damaged brain tissue and ability to deliver cellular and molecular therapies. Conversely, research on the use of hydrogels for ICH therapy is still in its infancy, with very few published reports investigating their therapeutic potential. Here, the published use of hydrogels in experimental ICH is commented upon and how approaches reported in the IS and TBI fields may be applied to ICH research to inform the design of future therapies is described. Unique aspects of ICH that are distinct from IS and TBI that should be considered when translating biomaterial-based therapies between disease models are also highlighted.
Collapse
Affiliation(s)
- Josephine M. Thomas
- Geoffrey Jefferson Brain Research CentreThe Manchester Academic Health Science CentreNorthern Care Alliance NHS GroupThe University of ManchesterManchesterM13 9PTUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthThe University of ManchesterManchesterM13 9PTUK
| | - Irene Louca
- Geoffrey Jefferson Brain Research CentreThe Manchester Academic Health Science CentreNorthern Care Alliance NHS GroupThe University of ManchesterManchesterM13 9PTUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthThe University of ManchesterManchesterM13 9PTUK
| | - Faye Bolan
- Geoffrey Jefferson Brain Research CentreThe Manchester Academic Health Science CentreNorthern Care Alliance NHS GroupThe University of ManchesterManchesterM13 9PTUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthThe University of ManchesterManchesterM13 9PTUK
| | - Oana‐Roxana Sava
- Geoffrey Jefferson Brain Research CentreThe Manchester Academic Health Science CentreNorthern Care Alliance NHS GroupThe University of ManchesterManchesterM13 9PTUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthThe University of ManchesterManchesterM13 9PTUK
| | - Stuart M. Allan
- Geoffrey Jefferson Brain Research CentreThe Manchester Academic Health Science CentreNorthern Care Alliance NHS GroupThe University of ManchesterManchesterM13 9PTUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthThe University of ManchesterManchesterM13 9PTUK
| | - Catherine B. Lawrence
- Geoffrey Jefferson Brain Research CentreThe Manchester Academic Health Science CentreNorthern Care Alliance NHS GroupThe University of ManchesterManchesterM13 9PTUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthThe University of ManchesterManchesterM13 9PTUK
| | - Emmanuel Pinteaux
- Geoffrey Jefferson Brain Research CentreThe Manchester Academic Health Science CentreNorthern Care Alliance NHS GroupThe University of ManchesterManchesterM13 9PTUK
- Division of Neuroscience and Experimental PsychologyFaculty of BiologyMedicine and HealthThe University of ManchesterManchesterM13 9PTUK
| |
Collapse
|
15
|
des Rieux A. Stem cells and their extracellular vesicles as natural and bioinspired carriers for the treatment of neurological disorders. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021; 9:3911-3938. [PMID: 33973582 DOI: 10.1039/d0bm02049d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural tissue engineering holds great potential in addressing current challenges faced by medical therapies employed for the functional recovery of the brain. In this context, self-assembling peptides have gained considerable interest owing to their diverse physicochemical properties, which enable them to closely mimic the biophysical characteristics of the native ECM. Additionally, in contrast to synthetic polymers, which lack inherent biological signaling, peptide-based nanomaterials could be easily designed to present essential biological cues to the cells to promote cellular adhesion. Moreover, injectability of these biomaterials further widens their scope in biomedicine. In this context, hydrogels obtained from short bioactive peptide sequences are of particular interest owing to their facile synthesis and highly tunable properties. In spite of their well-known advantages, the exploration of short peptides for neural tissue engineering is still in its infancy and thus detailed discussion is required to evoke interest in this direction. This review provides a general overview of various bioactive hydrogels derived from short peptide sequences explored for neural tissue engineering. The review also discusses the current challenges in translating the benefits of these hydrogels to clinical practices and presents future perspectives regarding the utilization of these hydrogels for advanced biomedical applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| |
Collapse
|
17
|
Bjorklund GR, Anderson TR, Stabenfeldt SE. Recent Advances in Stem Cell Therapies to Address Neuroinflammation, Stem Cell Survival, and the Need for Rehabilitative Therapies to Treat Traumatic Brain Injuries. Int J Mol Sci 2021; 22:ijms22041978. [PMID: 33671305 PMCID: PMC7922668 DOI: 10.3390/ijms22041978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injuries (TBIs) are a significant health problem both in the United States and worldwide with over 27 million cases being reported globally every year. TBIs can vary significantly from a mild TBI with short-term symptoms to a moderate or severe TBI that can result in long-term or life-long detrimental effects. In the case of a moderate to severe TBI, the primary injury causes immediate damage to structural tissue and cellular components. This may be followed by secondary injuries that can be the cause of chronic and debilitating neurodegenerative effects. At present, there are no standard treatments that effectively target the primary or secondary TBI injuries themselves. Current treatment strategies often focus on addressing post-injury symptoms, including the trauma itself as well as the development of cognitive, behavioral, and psychiatric impairment. Additional therapies such as pharmacological, stem cell, and rehabilitative have in some cases shown little to no improvement on their own, but when applied in combination have given encouraging results. In this review, we will abridge and discuss some of the most recent research advances in stem cell therapies, advanced engineered biomaterials used to support stem transplantation, and the role of rehabilitative therapies in TBI treatment. These research examples are intended to form a multi-tiered perspective for stem-cell therapies used to treat TBIs; stem cells and stem cell products to mitigate neuroinflammation and provide neuroprotective effects, biomaterials to support the survival, migration, and integration of transplanted stem cells, and finally rehabilitative therapies to support stem cell integration and compensatory and restorative plasticity.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Biological and Health Systems Engineering, Ira A, Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA;
| | - Trent R. Anderson
- Basic Medical Sciences, College of Medicine–Phoenix, University of Arizona, Phoenix, AZ 85004, USA;
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A, Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA;
- Correspondence:
| |
Collapse
|
18
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|