1
|
Gao H, Chen N, Sun L, Sheng D, Zhong Y, Huang M, Yu C, Yang X, Hao Y, Chen S, Shao Z, Chen J. Time-programmed release of curcumin and Zn 2+ from multi-layered RSF coating modified PET graft for improvement of graft-host integration. Int J Biol Macromol 2024; 272:132830. [PMID: 38825264 DOI: 10.1016/j.ijbiomac.2024.132830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Artificial graft serves as the primary grafts used in the clinical management of sports-related injuries. Until now, optimizing its graft-host integration remains a great challenge due to the excessive inflammatory response during the inflammatory phase, coupled with an absence of tissue-inductive capacity during the regeneration phase. Here, a multi-layered regenerated silk fibroin (RSF) coating loaded with curcumin (Cur) and Zn2+ on the surface of the PET grafts (Cur@Zn2+@PET) was designed and fabricated for providing time-matched regulation specifically tailored to address issues arising at both inflammatory and regeneration phases, respectively. The release of Cur and Zn2+ from the Cur@Zn2+@PET followed a time-programmed pattern in vitro. Specifically, cellular assays revealed that Cur@Zn2+@PET initially released Cur during the inflammatory phase, thereby markedly inhibit the expression of inflammatory cytokines TNF-a and IL-1β. Meanwhile, a significant release of Zn2+ was major part during the regeneration phase, serving to induce the osteogenic differentiation of rBMSC. Furthermore, rat model of anterior cruciate ligament reconstruction (ACLR) showed that through time-programmed drug release, Cur@Zn2+@PET could suppress the formation of fibrous interface (FI) caused by inflammatory response, combined with significant new bone (NB) formation during regeneration phase. Consequently, the implementation of the Cur@Zn2+@PET characterized by its time-programmed release patterns hold considerable promise for improving graft-host integration for sports-related injuries.
Collapse
Affiliation(s)
- Han Gao
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Luyi Sun
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Dandan Sheng
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Yuting Zhong
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Mingru Huang
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Chengxuan Yu
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Xing Yang
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215500, Jiangsu, China
| | - Yuefeng Hao
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215500, Jiangsu, China
| | - Shiyi Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Jun Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China.
| |
Collapse
|
2
|
Ming P, Liu Y, Yu P, Jiang X, Yuan L, Cai S, Rao P, Cai R, Lan X, Tao G, Xiao J. A Biomimetic Se-nHA/PC Composite Microsphere with Synergistic Immunomodulatory and Osteogenic Ability to Activate Bone Regeneration in Periodontitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305490. [PMID: 37852940 DOI: 10.1002/smll.202305490] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/21/2023] [Indexed: 10/20/2023]
Abstract
Accumulation of reactive oxygen species (ROS) in periodontitis exacerbates the destruction of alveolar bone. Therefore, scavenging ROS to reshape the periodontal microenvironment, alleviate the inflammatory response and promote endogenous stem cell osteogenic differentiation may be an effective strategy for treating bone resorption in periodontitis. In this study, sericin-hydroxyapatite nanoparticles (Se-nHA NPs) are synthesized using a biomimetic mineralization method. Se-nHA NPs and proanthocyanidins (PC) are then encapsulated in sericin/sodium alginate (Se/SA) using an electrostatic injection technique to prepare Se-nHA/PC microspheres. Microspheres are effective in scavenging ROS, inhibiting the polarization of macrophages toward the M1 type, and inducing the polarization of macrophages toward the M2 type. In normal or macrophage-conditioned media, the Se-nHA/PC microspheres effectively promoted the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). Furthermore, the Se-nHA/PC microspheres demonstrated anti-inflammatory effects in a periodontitis rat model by scavenging ROS and suppressing pro-inflammatory cytokines. The Se-nHA/PC microspheres are also distinguished by their capacity to decrease alveolar bone loss, reduce osteoclast activity, and boost osteogenic factor expression. Therefore, the biomimetic Se-nHA/PC composite microspheres have efficient ROS-scavenging, anti-inflammatory, and osteogenic abilities and can be used as a multifunctional filling material for inflammatory periodontal tissue regeneration.
Collapse
Affiliation(s)
- Piaoye Ming
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Yunfei Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Peiyang Yu
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xueyu Jiang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Linlin Yuan
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Shuyu Cai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Pengcheng Rao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
3
|
Gao H, Wang L, Lin Z, Jin H, Lyu Y, Kang Y, Zhu T, Zhao J, Jiang J. Bi-lineage inducible and immunoregulatory electrospun fibers scaffolds for synchronous regeneration of tendon-to-bone interface. Mater Today Bio 2023; 22:100749. [PMID: 37545569 PMCID: PMC10400930 DOI: 10.1016/j.mtbio.2023.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Facilitating regeneration of the tendon-to-bone interface can reduce the risk of postoperative retear after rotator cuff repair. Unfortunately, undesirable inflammatory responses following injury, difficulties in fibrocartilage regeneration, and bone loss in the surrounding area are major contributors to suboptimal tendon-bone healing. Thus, the development of biomaterials capable of regulating macrophage polarization to a favorable phenotype and promoting the synchronous regeneration of the tendon-to-bone interface is currently a top priority. Here, strontium-doped mesoporous bioglass nanoparticles (Sr-MBG) were synthesized through a modulated sol-gel method and Bi-lineage Inducible and Immunoregulatory Electrospun Fibers Scaffolds (BIIEFS) containing Sr-MBG were fabricated. The BIIEFS were biocompatible, showed sustained release of multiple types of bioactive ions, enhanced osteogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs), and facilitated macrophage polarization towards the M2 phenotype in vitro. The implantation of BIIEFS at the torn rotator cuff resulted in greater numbers of M2 macrophages and the synchronous regeneration of tendon, fibrocartilage, and bone at the tendon-to-bone interface, leading to a significant improvement in the biomechanical strength of the supraspinatus tendon-humerus complexes. Our research offers a feasible strategy to fabricate immunoregulatory and multi-lineage inducible electrospun fibers scaffolds incorporating bioglass nanoparticles for the regeneration of soft-to-hard tissue interfaces.
Collapse
Affiliation(s)
- Haihan Gao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Liren Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Zhiqi Lin
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haocheng Jin
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yangbao Lyu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, PR China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, 201306, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
4
|
Chen N, Jin W, Gao H, Hong J, Sun L, Yao J, Chen X, Chen J, Chen S, Shao Z. Sequential intervention of anti-inflammatory and osteogenesis with silk fibroin coated polyethylene terephthalate artificial ligaments for anterior cruciate ligament reconstruction. J Mater Chem B 2023; 11:8281-8290. [PMID: 37584321 DOI: 10.1039/d3tb00911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Graft-host integration after the anterior cruciate ligament (ACL) reconstruction sequentially follows the prognosis from the inflammation period to the regeneration period. However, due to insufficient bioactivity, polyethylene terephthalate (PET) artificial ligaments often require a long period for graft-host integration. To improve graft-host integration, sequential therapy targeting multifactor is widely advocated. In this study, a multilayer regenerated silk fibroin (RSF) coating loaded with heparin and bone morphogenetic protein binding peptide (BBP) for differentiated release was introduced on the surface of the PET artificial ligament by a stepwise deposition method. The drug release profiles of heparin and BBP on the coated PET artificial ligament indicated the features of differential drug release, i.e., with heparin in the outermost layer releasing a significant amount (more than 60%) during the first 5 days while BBP in the inner layer only releasing a small amount (ca. 30%) within 1 week without burst release. Based on the isometric ACL reconstruction model of rabbits, such drug-loaded RSF coating was verified to be able to modulate the early inflammatory response and promote the maturation of the graft in the articular cavity, meanwhile, it provided a continuous and stable signal of osteogenic induction to improve graft-bone integration. Thus, sequential intervention with heparin and BBP proved to be a reliable combination, and multifunctional RSF-coated PET artificial ligaments hold great potential for improving the clinical efficacy of ACL reconstruction.
Collapse
Affiliation(s)
- Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Wenhe Jin
- Sports Medicine Insititute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Han Gao
- Sports Medicine Insititute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Jiachan Hong
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Luyi Sun
- Sports Medicine Insititute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Jun Chen
- Sports Medicine Insititute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Shiyi Chen
- Sports Medicine Insititute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Camarero‐Espinosa S, Yuan H, Emans PJ, Moroni L. Mimicking the Graded Wavy Structure of the Anterior Cruciate Ligament. Adv Healthc Mater 2023; 12:e2203023. [PMID: 36914581 PMCID: PMC11469042 DOI: 10.1002/adhm.202203023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/22/2023] [Indexed: 03/16/2023]
Abstract
Anterior cruciate ligament (ACL) is the connective tissue providing mechanical stability to the knee joint. ACL reconstruction upon rupture remains a clinical challenge due to the high mechanical properties required for proper functioning. ACL owes its outstanding mechanical properties to the arrangement of the extracellular matrix (ECM) and to the cells with distinct phenotypes present along the length of the tissue. Tissue regeneration appears as an ideal alternative. In this study, a tri-phasic fibrous scaffold that mimics the structure of collagen in the native ECM is developed, presenting a wavy intermediate zone and two aligned uncurled extremes. The mechanical properties of the wavy scaffolds present a toe region, characteristic of the native ACL, and an extended yield and ultimate strain compared to aligned scaffolds. The presentation of a wavy fiber arrangement affects cell organization and the deposition of a specific ECM characteristic of fibrocartilage. Cells cultured in wavy scaffolds grow in aggregates, deposit an abundant ECM rich in fibronectin and collagen II, and express higher amounts of collagen II, X, and tenomodulin as compared to aligned scaffolds. In vivo implantation in rabbits shows a high cellular infiltration and the formation of an oriented ECM compared to aligned scaffolds.
Collapse
Affiliation(s)
- Sandra Camarero‐Espinosa
- MERLN Institute for Technology‐Inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht UniversityP.O. Box 616Maastricht6200 MDThe Netherlands
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia/San SebastiánGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceEuskadi Pl. 5Bilbao48009Spain
| | - Huipin Yuan
- MERLN Institute for Technology‐Inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht UniversityP.O. Box 616Maastricht6200 MDThe Netherlands
| | - Pieter J. Emans
- Department of Orthopaedic SurgeryJoint‐Preserving Clinic, CAPHRI Research SchoolMaastricht University Medical CentreP. Debyelaan 25Maastricht6229 HXThe Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht UniversityP.O. Box 616Maastricht6200 MDThe Netherlands
| |
Collapse
|
6
|
Li Y, Xiao L, Wei D, Liu S, Zhang Z, Lian R, Wang L, Chen Y, Jiang J, Xiao Y, Liu C, Li Y, Zhao J. Injectable Biomimetic Hydrogel Guided Functional Bone Regeneration by Adapting Material Degradation to Tissue Healing. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202213047] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 01/06/2025]
Abstract
AbstractThe treatment of irregular bone defects remains a clinical challenge since the current biomaterials (e.g., calcium phosphate bone cement (CPC)) mainly act as inert substitutes, which are incapable of transforming into a regenerated host bone (termed functional bone regeneration). Ideally, the implant degradation rate should adapt to that of bone regeneration, therefore providing sufficient physicochemical support and giving space for bone growth. This study aims to develop an injectable biomaterial with bone regeneration‐adapted degradability, to reconstruct a biomimetic bone‐like structure that can timely transform into new bone, facilitating functional bone regeneration. To achieve this goal, a hybrid (LP‐CPC@gelatin, LC) hydrogel is synthesized via one‐step incorporation of laponite (LP) and CPC into gelatin hydrogel, and the LC gel degradation rate is controlled by adjusting the LP/CPC ratio to match the bone regeneration rate. Such an LC hydrogel shows good osteoinduction, osteoconduction, and angiogenesis effects, with complete implant‐to‐new bone transformation capacity. This 2D nanoclay‐based bionic hydrogel can induce ectopic bone regeneration and promote ligament graft osseointegration in vivo by inducing functional bone regeneration. Therefore, this study provides an advanced strategy for functional bone regeneration and an injectable biomimetic biomaterial for functional skeletal muscle repair in a minimally invasive therapy.
Collapse
Affiliation(s)
- Yamin Li
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering Centre for Biomedical Technologies Queensland University of Technology 60 Musk Avenue, Kelvin Grove Brisbane QLD 4059 Australia
| | - Daixu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Department of Life Sciences and Medicine Northwest University Xi'an 710069 China
| | - Shengyang Liu
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education School of Material Science and Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Zeren Zhang
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education School of Material Science and Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Ruixian Lian
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education School of Material Science and Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Liren Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
| | - Yunsu Chen
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
| | - Jia Jiang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering Centre for Biomedical Technologies Queensland University of Technology 60 Musk Avenue, Kelvin Grove Brisbane QLD 4059 Australia
- School of Medicine and Dentistry Griffith University Gold Coast QLD 4222 Australia
| | - Changsheng Liu
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education School of Material Science and Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Yulin Li
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education School of Material Science and Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Jinzhong Zhao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
| |
Collapse
|
7
|
Sinkler MA, Furdock RJ, McMellen CJ, Calcei JG, Voos JE. Biologics, Stem Cells, Growth Factors, Platelet-Rich Plasma, Hemarthrosis, and Scaffolds May Enhance Anterior Cruciate Ligament Surgical Treatment. Arthroscopy 2023; 39:166-175. [PMID: 36370920 DOI: 10.1016/j.arthro.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Biologics including mesenchymal stem cells (MSCs), growth factors, and platelet-rich plasma may enhance anterior cruciate ligament (ACL) reconstruction and even ACL primary repair. In addition, hemarthrosis after acute ACL injury represents a source of biologic factors. MSCs can differentiate into both fibroblasts and osteoblasts, potentially providing a transition between the ligament or graft and bone. MSCs also produce cytokines and growth factors necessary for cartilage, bone, ligament, and tendon regeneration. MSC sources including bone marrow, synovium, adipose tissue, ACL-remnant, patellar tendon, and umbilical cord. Also, scaffolds may represent a tool for ACL tissue engineering. A scaffold should be porous, which allows cell growth and flow of nutrients and waste, should be biocompatible, and might have mechanical properties that match the native ACL. Scaffolds have the potential to deliver bioactive molecules or stem cells. Synthetic and biologically derived scaffolds are widely available. ACL reconstruction with improved outcome, ACL repair, and ACL tissue engineering are promising goals. LEVEL OF EVIDENCE: Level V, expert opinion.
Collapse
Affiliation(s)
- Margaret A Sinkler
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A..
| | - Ryan J Furdock
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - Christopher J McMellen
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - Jacob G Calcei
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - James E Voos
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| |
Collapse
|
8
|
Qiao Y, Zhang Q, Wang Q, Li Y, Wang L. Chrysanthemum–like hierarchitectures decorated on polypropylene hernia mesh and their anti-inflammatory effects. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
Gao H, Wang L, Jin H, Lin Z, Li Z, Kang Y, Lyu Y, Dong W, Liu Y, Shi D, Jiang J, Zhao J. Regulating Macrophages through Immunomodulatory Biomaterials Is a Promising Strategy for Promoting Tendon-Bone Healing. J Funct Biomater 2022; 13:243. [PMID: 36412884 PMCID: PMC9703966 DOI: 10.3390/jfb13040243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 08/08/2023] Open
Abstract
The tendon-to-bone interface is a special structure connecting the tendon and bone and is crucial for mechanical load transfer between dissimilar tissues. After an injury, fibrous scar tissues replace the native tendon-to-bone interface, creating a weak spot that needs to endure extra loading, significantly decreasing the mechanical properties of the motor system. Macrophages play a critical role in tendon-bone healing and can be divided into various phenotypes, according to their inducing stimuli and function. During the early stages of tendon-bone healing, M1 macrophages are predominant, while during the later stages, M2 macrophages replace the M1 macrophages. The two macrophage phenotypes play a significant, yet distinct, role in tendon-bone healing. Growing evidence shows that regulating the macrophage phenotypes is able to promote tendon-bone healing. This review aims to summarize the impact of different macrophages on tendon-bone healing and the current immunomodulatory biomaterials for regulating macrophages, which are used to promote tendon-bone healing. Although macrophages are a promising target for tendon-bone healing, the challenges and limitations of macrophages in tendon-bone healing research are discussed, along with directions for further research.
Collapse
Affiliation(s)
- Haihan Gao
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liren Wang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haocheng Jin
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhiqi Lin
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ziyun Li
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yangbao Lyu
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wenqian Dong
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yefeng Liu
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dingyi Shi
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
10
|
Wang F, Sun P, Xie E, Ji Y, Niu Y, Li F, Wei J. Phytic acid/magnesium ion complex coating on PEEK fiber woven fabric as an artificial ligament with anti-fibrogenesis and osteogenesis for ligament-bone healing. BIOMATERIALS ADVANCES 2022; 140:213079. [PMID: 35985068 DOI: 10.1016/j.bioadv.2022.213079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Development of an artificial ligament possessing osteogenic activity to enhance ligament-bone healing for reconstruction of anterior cruciate ligament (ACL) is a great challenge. Herein, polyetheretherketone fibers (PKF) were coated with phytic acid (PA)/magnesium (Mg) ions complex (PKPM), which were woven into fabrics as an artificial ligament. The results demonstrated that PKPM with PA/Mg complex coating exhibited optimized surface properties with improved hydrophilicity and surface energy, and slow release of Mg ions. PKPM significantly enhanced responses of rat bone marrow stem cells in vitro. Moreover, PKPM remarkably promoted M2 macrophage polarization that upregulated production of anti-inflammatory cytokine while inhibited M1 macrophage polarization that downregulated production of pro-inflammatory cytokine in vitro. Further, PKPM inhibited fibrous encapsulation by preventing M1 macrophage polarization while promoted osteogenesis for ligament-bone healing by triggering M2 macrophage polarization in vivo. The results suggested that the downregulation of M1 macrophage polarization for inhibiting fibrogenesis and upregulation of M2 macrophage polarization for improving osteogenesis of PKPM were attributed to synergistic effects of PA and sustained release of Mg ions. In summary, PKPM with PA/Mg complex coating upregulated pro-osteogenic macrophage polarization that supplied a profitable anti-inflammatory environments for osteogenesis and ligament-bone healing, thereby possessing tremendous potential for reconstruction of ACL.
Collapse
Affiliation(s)
- Fan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Sun
- Department of Orthopaedics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - En Xie
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yinjun Ji
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yunfei Niu
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Fengqian Li
- Department of Orthopaedics, Shanghai Eighth People's Hospital, Shanghai 200235, China.
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
A regeneration process-matching scaffold with appropriate dynamic mechanical properties and spatial adaptability for ligament reconstruction. Bioact Mater 2022; 13:82-95. [PMID: 35224293 PMCID: PMC8844703 DOI: 10.1016/j.bioactmat.2021.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Ligament regeneration is a complicated process that requires dynamic mechanical properties and allowable space to regulate collagen remodeling. Poor strength and limited space of currently available grafts hinder tissue regeneration, yielding a disappointing success rate in ligament reconstruction. Matching the scaffold retreat rate with the mechanical and spatial properties of the regeneration process remains challenging. Herein, a scaffold matching the regeneration process was designed via regulating the trajectories of fibers with different degradation rates to provide dynamic mechanical properties and spatial adaptability for collagen infiltration. This core-shell structured scaffold exhibited biomimetic fiber orientation, having tri-phasic mechanical behavior and excellent strength. Besides, by the sequential material degradation, the available space of the scaffold increased from day 6 and remained stable on day 24, consistent with the proliferation and deposition phase of the native ligament regeneration process. Furthermore, mature collagen infiltration and increased bone integration in vivo confirmed the promotion of tissue regeneration by the adaptive space, maintaining an excellent failure load of 67.65% of the native ligament at 16 weeks. This study proved the synergistic effects of dynamic strength and adaptive space. The scaffold matching the regeneration process is expected to open new approaches in ligament reconstruction. Regeneration process-matching scaffold was made via regulating fiber trajectory. The scaffold showed tri-phasic mechanical behavior and fatigue properties. Matching repair process with dynamic mechanical property and spatial adaptability. A feasible substitute for the T/L reconstruction by spatial adaptability.
Collapse
|
12
|
Li Y, Chen C, Jiang J, Liu S, Zhang Z, Xiao L, Lian R, Sun L, Luo W, Tim‐yun Ong M, Yuk‐wai Lee W, Chen Y, Yuan Y, Zhao J, Liu C, Li Y. Bioactive Film-Guided Soft-Hard Interface Design Technology for Multi-Tissue Integrative Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105945. [PMID: 35322573 PMCID: PMC9130887 DOI: 10.1002/advs.202105945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Control over soft-to-hard tissue interfaces is attracting intensive worldwide research efforts. Herein, a bioactive film-guided soft-hard interface design (SHID) for multi-tissue integrative regeneration is shown. Briefly, a soft bioactive film with good elasticity matchable to native ligament tissue, is incorporated with bone-mimic components (calcium phosphate cement, CPC) to partially endow the soft-film with hard-tissue mimicking feature. The hybrid film is elegantly compounded with a clinical artificial ligament to act as a buffer zone to bridge the soft (ligament) and hard tissues (bone). Moreover, the bioactive film-decorated ligament can be rolled into a 3D bio-instructive implant with spatial-controllable distribution of CPC bioactive motifs. CPC then promotes the recruitment and differentiation of endogenous cells in to the implant inside part, which enables a vascularized bone growth into the implant, and forms a structure mimicking the biological ligament-bone interface, thereby significantly improving osteointegration and biomechanical property. Thus, this special design provides an effective SHID-guided implant-bioactivation strategy unreached by the traditional manufacturing methods, enlightening a promising technology to develop an ideal SHID for translational use in the future.
Collapse
Affiliation(s)
- Yamin Li
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Can Chen
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Jia Jiang
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Shengyang Liu
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Zeren Zhang
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Lan Xiao
- Centre for Biomedical TechnologiesQueensland University of TechnologyThe Australia‐China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM)60 Musk Avenue, Kelvin GroveBrisbaneQLD4059Australia
| | - Ruixian Lian
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Lili Sun
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Wei Luo
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Michael Tim‐yun Ong
- Department of Orthopaedics and TraumatologyFaculty of MedicinePrince of Wales HospitalThe Chinese University of Hong KongShatinHong KongChina
| | - Wayne Yuk‐wai Lee
- Department of Orthopaedics and TraumatologyLi Ka Shing Institute of Health SciencesFaculty of MedicinePrince of Wales HospitalThe Chinese University of Hong KongShatinHong KongChina
| | - Yunsu Chen
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yuan Yuan
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Jinzhong Zhao
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Changsheng Liu
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Yulin Li
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
13
|
Ma P, Chen T, Wu X, Hu Y, Huang K, Wang Y, Dai H. Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments. J Mater Chem B 2021; 9:6600-6613. [PMID: 34369537 DOI: 10.1039/d1tb00768h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The insufficient bioactivity of polyethylene terephthalate (PET) artificial ligaments severely weakens the ligament-bone healing in anterior cruciate ligament (ACL) reconstruction, while osteogenic modification is a prevailing method to enhance osseointegration of PET artificial ligaments. In the present study, strontium-substituted hydroxyapatite (SrHA) nanoparticles with different strontium (Sr) contents were synthesized via microwave-hydrothermal method and subsequently were coated on the surface of PET artificial ligaments. The results of XRD, FT-IR, TEM and ICP-OES revealed that the doping of Sr ions had no great influences on the phase composition, morphology and particle size of HA, but affected its chemical compositions and crystallinity. The SEM images showed that nanoparticles were successfully deposited on the surface of PET grafts, the surface hydrophilicity of which was significantly improved by the prepared coatings. The in vitro study revealed that the osteogenic activity of rat bone marrow mesenchymal stem cells (rBMSCs) was affected by varying concentrations of Sr ions in coatings and the optimal osteogenic differentiation was observed in the 2SrHA-PET group, which significantly up-regulated the expression of BMP-2, OCN, Col-I and VEGF. The enhanced osteogenic ability of the 2SrHA-PET group was further demonstrated through an in vivo study, which obviously promoted ligament-bone integration compared with that of PET and HA-PET groups, thus improving the biomechanical strength of the graft-bone complex. This study confirms that SrHA coatings can facilitate osseointegration in the repair of ligament injury in rabbits and thus offers a prospective method for ACL reconstruction by using Sr-containing biomaterial-modified PET artificial ligaments.
Collapse
Affiliation(s)
- Pan Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | | | | | | | | | | | | |
Collapse
|