1
|
Tran NM, Truong AT, Nguyen DT, Dang TT. Profiling Pro-Inflammatory Proteases as Biomolecular Signatures of Material-Induced Subcutaneous Host Response in Immuno-Competent Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2309709. [PMID: 39630111 PMCID: PMC11792001 DOI: 10.1002/advs.202309709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/19/2024] [Indexed: 02/05/2025]
Abstract
Proteases are important modulators of inflammation, but they remain understudied in material-induced immune response, which is critical to clinical success of biomedical implants. Herein, molecular expression and proteolytic activity of three distinct proteases, namely neutrophil elastase, matrix metalloproteinases, cysteine cathepsins (cathepsin-K and cathepsin-B) are comprehensively profiled, in the subcutaneous host response of immuno-competent mice against different biomaterial implants. Quantitative non-invasive monitoring with activatable fluorescent probes reveals that different microparticulate materials induce distinct levels of protease activity with degradable poly(lactic-co-glycolic) acid inducing the strongest signal compared to nondegradable materials such as polystyrene and silica oxide. Furthermore, protein expression of selected proteases, attributable to both their inactive and active forms, notably deviates from their activities associated only with their active forms. Protease activity exhibits positive correlations with protein expression of pro-inflammatory cytokines tumor necrosis factor α and interleukin 6 but negative correlation with pro-fibrotic cytokine transforming growth factor β1. This study also demonstrates the predictive utility of protease activity as a non-invasive, pro-inflammatory parameter for evaluation of the anti-inflammatory effects of model bioactive compounds on material-induced host response. Overall, the findings provide new insights into protease presence in material-induced immune responses, facilitating future biomaterial assessment to evoke appropriate host responses for implant applications.
Collapse
Affiliation(s)
- Nam M.P. Tran
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| | - Anh T.H. Truong
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| | - Dang T. Nguyen
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| | - Tram T. Dang
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| |
Collapse
|
2
|
Noddeland HK, Lind M, Jensen LB, Petersson K, Skak-Nielsen T, Larsen FH, Malmsten M, Heinz A. Design and characterization of matrix metalloproteinase-responsive hydrogels for the treatment of inflammatory skin diseases. Acta Biomater 2023; 157:149-161. [PMID: 36526241 DOI: 10.1016/j.actbio.2022.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Enzyme-responsive hydrogels, formed by step growth photopolymerization of biscysteine peptide linkers with alkene functionalized polyethylene glycol, provide interesting opportunities as biomaterials and drug delivery systems. In this study, we developed stimuli-responsive, specific, and cytocompatible hydrogels for delivery of anti-inflammatory drugs for the treatment of inflammatory skin diseases. We designed peptide linkers with optimized sensitivity towards matrix metalloproteinases, a family of proteolytic enzymes overexpressed in the extracellular matrix of the skin during inflammation. The peptide linkers were crosslinked with branched 4-arm and 8-arm polyethylene glycols by thiol-norbornene photopolymerization, leading to the formation of a hydrogel network, in which the anti-inflammatory Janus kinase inhibitor tofacitinib citrate was incorporated. The hydrogels were extensively characterized by physical properties, in vitro release studies, cytocompatibility with fibroblasts, and anti-inflammatory efficacy testing in both an atopic dermatitis-like keratinocyte assay and an activated T-cell assay. The drug release was studied after single and multiple-time exposure to matrix metalloproteinase 9 to mimic inflammatory flare-ups. Drug release was found to be triggered by matrix metalloproteinase 9 and to depend on type of crosslinker and of the polyethylene glycol polymer, due to differences in architecture and swelling behavior. Moreover, swollen hydrogels showed elastic properties similar to those of extracellular matrix proteins in the dermis. Cell studies revealed limited cytotoxicity when fibroblasts and keratinocytes were exposed to the hydrogels or their enzymatic cleavage products. Taken together, our results suggest multi-arm polyethylene glycol hydrogels as promising matrix metalloproteinase-responsive drug delivery systems, with potential in the treatment of inflammatory skin disease. STATEMENT OF SIGNIFICANCE: Smart responsive drug delivery systems such as matrix metalloproteinase-responsive hydrogels are excellent candidates for the treatment of inflammatory skin diseases including psoriasis. Their release profile can be optimized to correspond to the patient's individual disease state by tuning formulation parameters and disease-related stimuli, providing personalized treatment solutions. However, insufficient cross-linking efficiency, low matrix metalloproteinase sensitivity, and undesirable drug release kinetics remain major challenges in the development of such drug delivery systems. In this study, we address shortcomings of previous work by designing peptide linkers with optimized sensitivity towards matrix metalloproteinases and high cross-linking efficiencies. We further provide a proof-of-concept for the usability of the hydrogels in inflammatory skin conditions by employing a drug release set-up simulating inflammatory flare-ups.
Collapse
Affiliation(s)
- Heidi Kyung Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Louise Bastholm Jensen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Tine Skak-Nielsen
- Cells & Assays, In vitro Biology, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Flemming Hofmann Larsen
- Advanced Analytical and Structural Chemistry, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Cheng L, Fan Y, Cheng J, Wang J, Liu Q, Feng Z. Long non-coding RNA ZFY-AS1 represses periodontitis tissue inflammation and oxidative damage via modulating microRNA-129-5p/DEAD-Box helicase 3 X-linked axis. Bioengineered 2022; 13:12691-12705. [PMID: 35659193 PMCID: PMC9275892 DOI: 10.1080/21655979.2021.2019876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A large number of studies have manifested long non-coding RNA (lncRNA) is involved in the modulation of the development of periodontitis, but the specific mechanism has not been fully elucidated. The purpose of this study was to explore the biological function and latent molecular mechanism of lncZFY-AS1 in periodontitis. The results clarified lncZFY-AS1 and DEAD-Box Helicase 3 X-Linked (DDX3X) were up-regulated, but microRNA (miR)-129-5p was down-regulated in periodontitis. Knockdown of lncZFY-AS2 or overexpression of miR-129-5p decreased macrophage infiltration and periodontal membrane cell apoptosis, increased cell viability, repressed inflammatory factors and nuclear factor kappa B activation, reduced oxidative stress, but promoted nuclear factor-E2-related factor 2/heme oxygenase 1 expression. LncZFY-AS1 elevation further aggravated periodontitis inflammation, oxidative stress, and apoptosis. LncZFY competitively adsorbed miR-129-5p to mediate DDX3X expression. Knockdown lncZFY’s improvement effect on periodontitis was reversed by depressive miR-129-5p or enhancive DDX3X. In conclusion, these data suggest lncZFY-AS1 promotes inflammatory injury and oxidative stress in periodontitis by competitively binding to miR-129-5p and mediating DDX3X expression. LncZFY-AS1/miR-129-5p/DDX3X may serve as a novel molecular target for treatment of periodontitis in the future.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - YuLing Fan
- Department of Stomatology, School of Stomatology, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Jue Cheng
- Department of Stomatology, The Community Health Service Center of Beijing Jiao Tong University, Beijing City, China
| | - Jun Wang
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - Qingmei Liu
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - ZhiYuan Feng
- Department of Orthodontics, Shanxi Provincial People’s Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
4
|
Jing X, Wang S, Tang H, Li D, Zhou F, Xin L, He Q, Hu S, Zhang T, Chen T, Song J. Dynamically Bioresponsive DNA Hydrogel Incorporated with Dual-Functional Stem Cells from Apical Papilla-Derived Exosomes Promotes Diabetic Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16082-16099. [PMID: 35344325 DOI: 10.1021/acsami.2c02278] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The regeneration of bone defects in patients with diabetes mellitus (DM) is remarkably impaired by hyperglycemia and over-expressed proinflammatory cytokines, proteinases (such as matrix metalloproteinases, MMPs), etc. In view of the fact that exosomes represent a promising nanomaterial, herein, we reported the excellent capacity of stem cells from apical papilla-derived exosomes (SCAP-Exo) to facilitate angiogenesis and osteogenesis whether in normal or diabetic conditions in vitro. Then, a bioresponsive polyethylene glycol (PEG)/DNA hybrid hydrogel was developed to support a controllable release of SCAP-Exo for diabetic bone defects. This system could be triggered by the elevated pathological cue (MMP-9) in response to the dynamic diabetic microenvironment. It was further confirmed that the administration of the injectable SCAP-Exo-loaded PEG/DNA hybrid hydrogel into the mandibular bone defect of diabetic rats demonstrated a great therapeutic effect on promoting vascularized bone regeneration. In addition, the miRNA sequencing suggested that the mechanism of dual-functional SCAP-Exo might be related to highly expressed miRNA-126-5p and miRNA-150-5p. Consequently, our study provides valuable insights into the design of promising bioresponsive exosome-delivery systems to improve bone regeneration in diabetic patients.
Collapse
Affiliation(s)
- Xuan Jing
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Si Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Han Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Dize Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Fuyuan Zhou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Liangjing Xin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Qingqing He
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Shanshan Hu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Tingwei Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Tao Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| |
Collapse
|
5
|
Zhao Y, Liu K, Li J, Liao J, Ma L. Engineering of hybrid anticancer drug-loaded polymeric nanoparticles delivery system for the treatment and care of lung cancer therapy. Drug Deliv 2021; 28:1539-1547. [PMID: 34282705 PMCID: PMC8293970 DOI: 10.1080/10717544.2021.1934187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 10/31/2022] Open
Abstract
Chemotherapy with combination drugs has become one of the most commonly used cancer prevention treatments, with positive clinical results. The goal of this study was to develop compostable polymeric nanomaterials (NMs) for the delivery of puerarin (PRN) and 5-fluorouracil (5FU), as well as to investigate the anticancer activity of the drug delivery system (PRN-5FU NMs) against in vitro and in vivo lung cancer cells. Since double antitumor drugs PRN and 5FU are insufficiently compressed in polymer-based bio-degradable nanoparticles, encapsulation of PRN and 5FU antitumor drugs were co-encapsulated with polyethylene glycol and polylactidecoglycolide nanoparticles (NMs) is efficient. The arrangement of PRN NMs, 5FU NMs, and PRN-5FU NMs, as well as the nanoparticles shape and scale, were studied using transmission electron microscopy (TEM). 5FU-PRN NMs triggered apoptosis in lung carcinoma cell lines such as HEL-299 and A549 in vitro. Acridine orange/ethidium bromide (AO/EB) and nuclear damaging staining techniques were used to observe morphologies and cell death. The mechanistic analysis of apoptosis was also confirmed by flow cytometry analysis using dual staining. When compared to free anticancer products, the hemolysis analysis findings of the 5FU-PRN NMs showed excellent biocompatibility. Taken together the advantages, this combination drug conveyance strategy exposed that 5FU-PRN NMs could have a significant promising to improve the effectiveness of lung cancer cells.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Kefeng Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jie Li
- Third ward of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi’an, PR China
| | - Juan Liao
- Third ward of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi’an, PR China
| | - Li Ma
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
6
|
Zu M, Ma Y, Cannup B, Xie D, Jung Y, Zhang J, Yang C, Gao F, Merlin D, Xiao B. Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Adv Drug Deliv Rev 2021; 176:113887. [PMID: 34314785 DOI: 10.1016/j.addr.2021.113887] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/27/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
The incidence of inflammatory bowel disease (IBD) is rapidly rising throughout the world. Although tremendous efforts have been made, limited therapeutics are available for IBD management. Natural active small molecules (NASMs), which are a gift of nature to humanity, have been widely used in the prevention and alleviation of IBD; they have numerous advantageous features, including excellent biocompatibility, pharmacological activity, and mass production potential. Oral route is the most common and acceptable approach for drug administration, but the clinical application of NASMs in IBD treatment via oral route has been seriously restricted by their inherent limitations such as high hydrophobicity, instability, and poor bioavailability. With the development of nanotechnology, polymeric nanoparticles (NPs) have provided a promising platform that can efficiently encapsulate versatile NASMs, overcome multiple drug delivery barriers, and orally deliver the loaded NASMs to targeted tissues or cells while enhancing their stability and bioavailability. Thus, NPs can enhance the preventive and therapeutic effects of NASMs against IBD. Herein, we summarize the recent knowledge about polymeric matrix-based carriers, targeting ligands for drug delivery, and NASMs. We also discuss the current challenges and future developmental directions.
Collapse
Affiliation(s)
- Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Brandon Cannup
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States
| | - Dengchao Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, South Korea
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
7
|
Nanoparticles to Target and Treat Macrophages: The Ockham's Concept? Pharmaceutics 2021; 13:pharmaceutics13091340. [PMID: 34575416 PMCID: PMC8469871 DOI: 10.3390/pharmaceutics13091340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Nanoparticles are nanomaterials with three external nanoscale dimensions and an average size ranging from 1 to 1000 nm. Nanoparticles have gained notoriety in technological advances due to their tunable physical, chemical, and biological characteristics. However, the administration of functionalized nanoparticles to living beings is still challenging due to the rapid detection and blood and tissue clearance by the mononuclear phagocytic system. The major exponent of this system is the macrophage. Regardless the nanomaterial composition, macrophages can detect and incorporate foreign bodies by phagocytosis. Therefore, the simplest explanation is that any injected nanoparticle will be probably taken up by macrophages. This explains, in part, the natural accumulation of most nanoparticles in the spleen, lymph nodes, and liver (the main organs of the mononuclear phagocytic system). For this reason, recent investigations are devoted to design nanoparticles for specific macrophage targeting in diseased tissues. The aim of this review is to describe current strategies for the design of nanoparticles to target macrophages and to modulate their immunological function involved in different diseases with special emphasis on chronic inflammation, tissue regeneration, and cancer.
Collapse
|
8
|
He L, Qin X, Fan D, Feng C, Wang Q, Fang J. Dual-Stimuli Responsive Polymeric Micelles for the Effective Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21076-21086. [PMID: 33913684 DOI: 10.1021/acsami.1c04953] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The nontargeted distribution and uncontrolled in vivo release of drugs impede their efficacy in the treatment of rheumatoid arthritis (RA). Delivering drugs to arthritic joints and releasing drugs on demand are a feasible solution to achieve the effective treatment of RA. In this paper, we report a facile method to assemble dual-stimuli responsive polymeric micelles from polyethylene glycol-phenylboric acid-triglycerol monostearate (PEG-PBA-TGMS, PPT) conjugates with the aim of delivering dexamethasone (Dex) to arthritic joints and controlling the release of Dex by inflammatory stimuli. We show that the release of Dex from the PPT micelles is accelerated in response to acidic pH and overexpressed matrix metalloproteinases. In an adjuvant-induced arthritis model, the PPT micelles preferentially accumulate in arthritic joints and show an excellent therapeutic efficacy after being intravenously administrated. Our results highlight the potential of the dual stimuli-responsive micelles as a promising therapeutic option for the effective treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Liming He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Donghao Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chenglan Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Florida 32816, United States
| |
Collapse
|
9
|
Trujillo S, Seow M, Lueckgen A, Salmeron-Sanchez M, Cipitria A. Dynamic Mechanical Control of Alginate-Fibronectin Hydrogels with Dual Crosslinking: Covalent and Ionic. Polymers (Basel) 2021; 13:polym13030433. [PMID: 33573020 PMCID: PMC7866402 DOI: 10.3390/polym13030433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 01/14/2023] Open
Abstract
Alginate is a polysaccharide used extensively in biomedical applications due to its biocompatibility and suitability for hydrogel fabrication using mild reaction chemistries. Though alginate has commonly been crosslinked using divalent cations, covalent crosslinking chemistries have also been developed. Hydrogels with tuneable mechanical properties are required for many biomedical applications to mimic the stiffness of different tissues. Here, we present a strategy to engineer alginate hydrogels with tuneable mechanical properties by covalent crosslinking of a norbornene-modified alginate using ultraviolet (UV)-initiated thiol-ene chemistry. We also demonstrate that the system can be functionalised with cues such as full-length fibronectin and protease-degradable sequences. Finally, we take advantage of alginate's ability to be crosslinked covalently and ionically to design dual crosslinked constructs enabling dynamic control of mechanical properties, with gels that undergo cycles of stiffening-softening by adding and quenching calcium cations. Overall, we present a versatile hydrogel with tuneable and dynamic mechanical properties, and incorporate cell-interactive features such as cell-mediated protease-induced degradability and full-length proteins, which may find applications in a variety of biomedical contexts.
Collapse
Affiliation(s)
- Sara Trujillo
- Centre for the Cellular Microenvironment, University of Glasgow, 72-76 Oakfield Avenue, Glasgow G12 8LT, UK; (S.T.); (M.S.)
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Melanie Seow
- Centre for the Cellular Microenvironment, University of Glasgow, 72-76 Oakfield Avenue, Glasgow G12 8LT, UK; (S.T.); (M.S.)
- Julius Wolff Institute & Centre for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Aline Lueckgen
- Julius Wolff Institute & Centre for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, University of Glasgow, 72-76 Oakfield Avenue, Glasgow G12 8LT, UK; (S.T.); (M.S.)
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
- Correspondence: (M.S.-S.); (A.C.)
| | - Amaia Cipitria
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
- Correspondence: (M.S.-S.); (A.C.)
| |
Collapse
|
10
|
Jin X, Shang Y, Zou Y, Xiao M, Huang H, Zhu S, Liu N, Li J, Wang W, Zhu P. Injectable Hypoxia-Induced Conductive Hydrogel to Promote Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56681-56691. [PMID: 33274927 DOI: 10.1021/acsami.0c13197] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Injectable hydrogels with the capability to cast a hypoxic microenvironment is of great potentialities to develop novel therapies for tissue regeneration. However, the relative research still remains at the conceptual phase. Herein, we chose diabetic wound as a representative injury model to explore the actual therapeutic results of tissue injury by injectable hypoxia-induced hydrogels. To enhance recovery and widen applicability, the hypoxia-induced system was incorporated with a conductive network by an original sequentially interpenetrating technique based on the combination of a fast "click chemistry" and a slow enzymatic mediated cross-linking. Hyperbranched poly(β-amino ester)-tetraaniline (PBAE-TA) was cross-linked with thiolated hyaluronic acid (HA-SH) via a thiol-ene click reaction, contributing to the rapid formation of the first conductive network, where vanillin-grafted gelatin (Geln-Van) and laccase (Lac) with a slow cross-linking rate were employed in casting a hypoxic microenvironment. The as-prepared injectable hydrogels possessed both suitable conductivity and sustainable hypoxia-inducing capability to upregulate the hypoxia-inducible factor-1α and connexin 43 expressions of the encapsulated adipose-derived stem cells, which enhanced vascular regeneration and immunoregulation and further promoted the reconstruction of blood vessels, hair follicles, and dermal collagen matrix, eventually leading to the recovery of diabetic rat skin wounds and restoration of skin functions. This work provides a promising strategy to broaden the applicability of diverse hydrogels with a long time-consuming gelation process and to integrate different networks with various biological functions for the therapies of diabetic wounds and other complex clinical symptoms.
Collapse
Affiliation(s)
- Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingying Shang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yang Zou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Meng Xiao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Huanlei Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Jiani Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Wei Wang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|