1
|
Dai P, Sun C, Su W, Tang S, Wei X, Cai Y, Huang G, Xian Z, Han W, Zhu L, You H. Fabrication of Large-Area, Crack-Free Inverse Opals on Microfluidic Chips via Wet Infiltration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15859-15867. [PMID: 40000921 DOI: 10.1021/acsami.4c21524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Inverse opals (IOs) exhibit attractive optical properties and high interconnected porosity; however, the large-area fabrication of continuously ordered IOs remains challenging. This study presents a method for preparing crack-free IO hydrogel films using a microfluidic chip. Through a "wet infiltration" technique, the drying process of the template is eliminated, thereby avoiding dense cracks that result from particle shrinkage. The fabricated IO films achieve long-range order with lateral dimensions of 1 × 1.2 cm2 and thicknesses of 1 mm, with thickness precisely controlled using the dimensions of the microfluidic chamber. The absence of a covering layer exposes the highly porous photonic structures on the surface of the film. Additionally, this preparation method adopts varying ratios of hydrogel precursors, making it suitable for various applications. This study represents a simple, cost-effective, and scalable approach for generating thick IO films suitable for diverse applications.
Collapse
Affiliation(s)
- Peng Dai
- School of Mechanical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Cuimin Sun
- School of Computer, Electronics Information, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Wenyun Su
- Medical College, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Shengchang Tang
- School of Mechanical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Xiangfu Wei
- School of Mechanical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
- Guangxi Vocational and Technical College of Communications, Nanning 530023, Guangxi, P. R. China
| | - Yongchao Cai
- School of Mechanical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Guangyong Huang
- School of Mechanical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Zhaokun Xian
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, P. R. China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Hui You
- School of Mechanical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
| |
Collapse
|
2
|
Xia T, Li X, Wu Y, Lu X. Synthesis and thermally-induced gelation of interpenetrating nanogels. J Colloid Interface Sci 2024; 669:754-765. [PMID: 38739967 DOI: 10.1016/j.jcis.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Thermally-induced in-situ gelation of polymers and nanogels is of significant importance for injectable non-invasive tissue engineering and delivery systems of drug delivery system. In this study, we for the first time demonstrated that the interpenetrating (IPN) nanogel with two networks of poly (N-isopropylacrylamide) (PNIPAM) and poly (N-Acryloyl-l-phenylalanine) (PAphe) underwent a reversible temperature-triggered sol-gel transition and formed a structural color gel above the phase transition temperature (Tp). Dynamic light scattering (DLS) studies confirmed that the Tp of IPN nanogels are the same as that of PNIPAM, independent of Aphe content of the IPN nanogels at pH of 6.5 ∼ 7.4. The rheological and optical properties of IPN nanogels during sol-gel transition were studied by rheometer and optical fiber spectroscopy. The results showed that the gelation time of the hydrogel photonic crystals assembled by IPN nanogel was affected by temperature, PAphe composition, concentration, and sequence of interpenetration. As the temperature rose above the Tp, the Bragg reflection peak of IPN nanogels exhibited blue shift due to the shrinkage of IPN nanogels. In addition, these colored IPN nanogels demonstrated good injectability and had no obvious cytotoxicity. These IPN nanogels will open an avenue to the preparation and thermally-induced in-situ gelation of novel NIPAM-based nanogel system.
Collapse
Affiliation(s)
- Tingting Xia
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xueting Li
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Shanghai 200082, China
| | - Youtong Wu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Shanghai 200082, China.
| |
Collapse
|
3
|
Wan W, Li Z, Wang X, Tian F, Yang J. Surface-Fabrication of Fluorescent Hydroxyapatite for Cancer Cell Imaging and Bio-Printing Applications. BIOSENSORS 2022; 12:bios12060419. [PMID: 35735566 PMCID: PMC9221440 DOI: 10.3390/bios12060419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 05/07/2023]
Abstract
Hydroxyapatite (HAP) materials are widely applied as biomedical materials due to their stable performance, low cost, good biocompatibility and biodegradability. Here, a green, fast and efficient strategy was designed to construct a fluorescent nanosystem for cell imaging and drug delivery based on polyethyleneimine (PEI) and functionalized HAP via simple physical adsorption. First, HAP nanorods were functionalized with riboflavin sodium phosphate (HE) to provide them with fluorescence properties based on ligand-exchange process. Next, PEI was attached on the surface of HE-functionalized HAP (HAP-HE@PEI) via electrostatic attraction. The fluorescent HAP-HE@PEI nanosystem could be rapidly taken up by NIH-3T3 fibroblast cells and successfully applied to for cell imaging. Additionally, doxorubicin hydrochloride (DOX) containing HAP-HE@PEI with high loading capacity was prepared, and in-vitro release results show that the maximum release of DOX at pH 5.4 (31.83%) was significantly higher than that at pH 7.2 (9.90%), which can be used as a drug delivery tool for cancer therapy. Finally, HAP-HE@PEI as the 3D inkjet printing ink were printed with GelMA hydrogel, showing a great biocompatible property for 3D cell culture of RAW 264.7 macrophage cells. Altogether, because of the enhanced affinity with the cell membrane of HAP-HE@PEI, this green, fast and efficient strategy may provide a prospective candidate for bio-imaging, drug delivery and bio-printing.
Collapse
Affiliation(s)
- Weimin Wan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ziqi Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fei Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Correspondence:
| |
Collapse
|
4
|
Wu L, Li X, Miao H, Xu J, Pan G. State of the art in development of molecularly imprinted biosensors. VIEW 2022. [DOI: 10.1002/viw.20200170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Licheng Wu
- Sino‐European School of Technology of Shanghai University Shanghai University Shanghai China
| | - Xiaolei Li
- Sino‐European School of Technology of Shanghai University Shanghai University Shanghai China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Jingjing Xu
- Sino‐European School of Technology of Shanghai University Shanghai University Shanghai China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
5
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
6
|
Chen W, Guo Z, Yu H, Liu Q, Fu M. Molecularly imprinted colloidal array with multi-boronic acid sites for glycoprotein detection under neutral pH. J Colloid Interface Sci 2021; 607:1163-1172. [PMID: 34571303 DOI: 10.1016/j.jcis.2021.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
Glycoproteins play vital roles in living organisms and often serve as biomarkers for some disease. However, due to the low content of glycoprotein in biological fluids, selective detection of glycoproteins is still a challenging issue that needs to be addressed. In this study, molecularly imprinted colloidal array with multi-boronic acid sites for glycoprotein detection under physiological pH was proposed. Monodispersed glycoprotein imprinted particles (SiO2@PEI/MIPs) was first prepared based on surface imprinting strategy using horseradish peroxidase (HRP) as template, and polyethyleneimine (PEI) was used to increase the number of boronic acid groups. The binding experiment indicated that the SiO2@PEI/MIPs hold satisfactory adsorption capacity (1.41 μmol/g), rapid adsorption rate (40 min) and preferable selectivity toward HRP. Then the SiO2@PEI/MIPs was assembled into close-packed colloidal array to construct a label free optical sensor (denoted as GICA). Benefiting from the high ordered photonic crystal structure, binding of HRP onto the GICA could be directly readout from the changes in structure color and diffracted wavelength. The structure color of the GICA changed from bright blue to yellow with the diffraction wavelength red shifted 59 nm when the HRP concentration increased from 2.5 to 15 μmol/L. Importantly, the GICA was capable of detecting HRP from human serum samples. All those results indicated the potential of the GICA for naked-eye detection of glycoprotein.
Collapse
Affiliation(s)
- Wei Chen
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Zhiyang Guo
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Hao Yu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qingyun Liu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Min Fu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
7
|
Ma Y, He P, Xie W, Zhang Q, Yin W, Pan J, Wang M, Zhao X, Pan G. Dynamic Colloidal Photonic Crystal Hydrogels with Self-Recovery and Injectability. RESEARCH 2021; 2021:9565402. [PMID: 33870200 PMCID: PMC8028842 DOI: 10.34133/2021/9565402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 01/18/2023]
Abstract
Simulation of self-recovery and diversity of natural photonic crystal (PC) structures remain great challenges for artificial PC materials. Motivated by the dynamic characteristics of PC nanostructures, here, we present a new strategy for the design of hydrogel-based artificial PC materials with reversible interactions in the periodic nanostructures. The dynamic PC hydrogels, derived from self-assembled microgel colloidal crystals, were tactfully constructed by reversible crosslinking of adjacent microgels in the ordered structure via phenylboronate covalent chemistry. As proof of concept, three types of dynamic colloidal PC hydrogels with different structural colors were prepared. All the hydrogels showed perfect self-healing ability against physical damage. Moreover, dynamic crosslinking within the microgel crystals enabled shear-thinning injection of the PC hydrogels through a syringe (indicating injectability or printability), followed by rapid recovery of the structural colors. In short, in addition to the great significance in biomimicry of self-healing function of natural PC materials, our work provides a facile strategy for the construction of diversified artificial PC materials for different applications such as chem-/biosensing, counterfeit prevention, optical display, and energy conversion.
Collapse
Affiliation(s)
- Yue Ma
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.,School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.,Jiangsu Agrochem Laboratory, Changzhou, Jiangsu 213022, China
| | - Peiyan He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wanli Xie
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.,School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Weiling Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|