1
|
Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, Mahmood A, Liang Y, Li W, Deng Z. Cellular crosstalk in the bone marrow niche. J Transl Med 2024; 22:1096. [PMID: 39627858 PMCID: PMC11613879 DOI: 10.1186/s12967-024-05900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
Collapse
Affiliation(s)
- Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zoya Iqbal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - A M Alabsi
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia
- School of Dentistry, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 ShahAlam, Selangor, Malaysia
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ayesha Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yujie Liang
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Deng J, Tan Y, Xu Z, Wang H. Advances in hematopoietic stem cells ex vivo expansion associated with bone marrow niche. Ann Hematol 2024; 103:5035-5057. [PMID: 38684510 DOI: 10.1007/s00277-024-05773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.
Collapse
Affiliation(s)
- Ju Deng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Doherty-Boyd WS, Donnelly H, Tsimbouri MP, Dalby MJ. Building bones for blood and beyond: the growing field of bone marrow niche model development. Exp Hematol 2024; 135:104232. [PMID: 38729553 DOI: 10.1016/j.exphem.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
The bone marrow (BM) niche is a complex microenvironment that provides the signals required for regulation of hematopoietic stem cells (HSCs) and the process of hematopoiesis they are responsible for. Bioengineered models of the BM niche incorporate various elements of the in vivo BM microenvironment, including cellular components, soluble factors, a three-dimensional environment, mechanical stimulation of included cells, and perfusion. Recent advances in the bioengineering field have resulted in a spate of new models that shed light on BM function and are approaching precise imitation of the BM niche. These models promise to improve our understanding of the in vivo microenvironment in health and disease. They also aim to serve as platforms for HSC manipulation or as preclinical models for screening novel therapies for BM-associated disorders and diseases.
Collapse
Affiliation(s)
- W Sebastian Doherty-Boyd
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom.
| | - Hannah Donnelly
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica P Tsimbouri
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| | - Matthew J Dalby
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Hong J, Zhu Z, Cui L, Wang Z, Hao Y, Tian X, Cheng G. Bone marrow-inspired hydrogel/graphene composite scaffolds to support in vitro expansion of hematopoietic stem cells. J Mater Chem B 2024; 12:2354-2363. [PMID: 38344940 DOI: 10.1039/d3tb02448b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Hematopoietic stem cell (HSC) expansion offers a key strategy to address the source limitation and donor shortages of HSCs for the treatment of various blood disorders. Specific remodeling of the complex bone marrow microenvironment that contributes to efficient in vitro expansion of HSCs remains challenging. Here, inspired by the regions with different stiffness levels in the bone marrow niche, a three dimensional (3D) bone marrow-mimicking composite scaffold created based on gelatin-hyaluronic acid (Gel-HA) hydrogels and graphene foams (GFs) was engineered to support the in vitro expansion of HSCs. The composite scaffold was prepared by forming a photo-cross-linked Gel-HA hydrogel surrounding the GF. The "soft" Gel-HA hydrogel and "stiff" GF replicate the structure and stiffness of the vascular niche and endosteal niche in the bone marrow, respectively. Furthermore, HSCs cultured in the Gel-HA/GF scaffold proliferated well and retained the CD34+CD38- immunophenotype and pluripotency, suggesting that the Gel-HA/GF composite scaffold supported the in vitro expansion of HSCs, maintaining the primitive phenotype and the ability to differentiate into functional blood cells. Thus, the hydrogel/graphene composite scaffold offers a means of facilitating HSC expansion through structurally and mechanically mimicking bone marrow niches, demonstrating great promise for HSC transplantation.
Collapse
Affiliation(s)
- Jing Hong
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, China
| | - Zhanchi Zhu
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, China
| | - Leisha Cui
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, China
| | - Zhaojun Wang
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ying Hao
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, China
| | - Xiaopeng Tian
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Guosheng Cheng
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, China
| |
Collapse
|
5
|
Liu B, Jin M, Wang DA. In vitro expansion of hematopoietic stem cells in a porous hydrogel-based 3D culture system. Acta Biomater 2023; 161:67-79. [PMID: 36754271 DOI: 10.1016/j.actbio.2023.01.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
Hematopoietic stem cell (HSC) transplantation remains the most effective therapy for hematologic and lymphoid disorders. However, as the primary therapeutic cells, the source of HSCs has been limited due to the scarcity of matched donors and difficulties in ex vivo expansion. Here, we described a facile method to attempt the expansion of HSCs in vitro through a porous alginate hydrogel-based 3D culture system. We used gelatin powders as the porogen to create submillimeter-scaled pores in alginate gel bulk while pre-embedding naïve HSCs in the gel phase. The results indicated that this porous hydrogel system performed significantly better than those cultured via conventional suspension or encapsulation in non-porous alginate hydrogels in maintaining the phenotype and renewability of HSCs. Only the porous hydrogel system achieved a two-fold growth of CD34+ cells within seven days of culture, while the number of CD34+ cells in the suspension system and nonporous hydrogel showed different degrees of attenuation. The expansion efficiency of the porous hydrogel for CD34+CD38- cells was more than 2.2 times that of the other two systems. Mechanistic study via biophysical analysis revealed that the porous alginate system was competent to reduce the electron capture caused by biomaterials, decrease cellular oxygen stress, avoid oxidative protection, thus maintaining the cellular phenotype of the CD34+ cells. The transcriptomic analysis further suggested that the porous alginate system also upregulated the TNF signaling pathway and activated the NF-κB signaling pathway to promote the CD34+ cells' survival and maintain cellular homeostasis so that renewability was substantially favoured. STATEMENT OF SIGNIFICANCE: • The reported porous hydrogel system performs significantly better in terms of maintaining the phenotype and renewability of HSCs than those cultured via conventional suspension or encapsulation in non-porous alginate hydrogel. • The reported porous alginate system is competent to reduce the electron capture caused by biomaterials, decrease cellular oxygen stress, avoid oxidative protection, and therefore maintain the cellular phenotype of the CD34+ cells. • The reported porous alginate system can also upregulate the TNF signaling pathway and activate the NF-κB signaling pathway to promote the CD34+ cells' survival and maintain cellular homeostasis so that the renewability is substantially favored..
Collapse
Affiliation(s)
- Bangheng Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China
| | - Min Jin
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
6
|
Huang X, Wang Y, Wang T, Wen F, Liu S, Oudeng G. Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing. Front Bioeng Biotechnol 2022; 10:1049965. [PMID: 36507253 PMCID: PMC9730123 DOI: 10.3389/fbioe.2022.1049965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem cells (HSCs) provide a life-long supply of haemopoietic cells and are indispensable for clinical transplantation in the treatment of malignant hematological diseases. Clinical applications require vast quantities of HSCs with maintained stemness characteristics. Meeting this demand poses often insurmountable challenges for traditional culture methods. Creating a supportive artificial microenvironment for the culture of HSCs, which allows the expansion of the cells while maintaining their stemness, is becoming a new solution for the provision of these rare multipotent HSCs. Hydrogels with good biocompatibility, excellent hydrophilicity, tunable biochemical and biophysical properties have been applied in mimicking the hematopoietic niche for the efficient expansion of HSCs. This review focuses on recent progress in the use of hydrogels in this specialized application. Advanced biomimetic strategies use for the creation of an artificial haemopoietic niche are discussed, advances in combined use of hydrogel matrices and microfluidics, including the emerging organ-on-a-chip technology, are summarized. We also provide a brief description of novel stimulus-responsive hydrogels that are used to establish an intelligent dynamic cell microenvironment. Finally, current challenges and future perspectives of engineering hydrogels for HSC biomedicine are explored.
Collapse
Affiliation(s)
- Xiaochan Huang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Yuting Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Tianci Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Lindner M, Laporte A, Elomaa L, Lee-Thedieck C, Olmer R, Weinhart M. Flow-induced glycocalyx formation and cell alignment of HUVECs compared to iPSC-derived ECs for tissue engineering applications. Front Cell Dev Biol 2022; 10:953062. [PMID: 36133919 PMCID: PMC9483120 DOI: 10.3389/fcell.2022.953062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The relevance of cellular in vitro models highly depends on their ability to mimic the physiological environment of the respective tissue or cell niche. Static culture conditions are often unsuitable, especially for endothelial models, since they completely neglect the physiological surface shear stress and corresponding reactions of endothelial cells (ECs) such as alignment in the direction of flow. Furthermore, formation and maturation of the glycocalyx, the essential polysaccharide layer covering all endothelial surfaces and regulating diverse processes, is highly dependent on applied fluid flow. This fragile but utterly important macromolecular layer is hard to analyze, its importance is often underestimated and accordingly neglected in many endothelial models. Therefore, we exposed human umbilical vein ECs (HUVECs) and human induced pluripotent stem cell-derived ECs (iPSC-ECs) as two relevant EC models in a side-by-side comparison to static and physiological dynamic (6.6 dyn cm-2) culture conditions. Both cell types demonstrated an elongation and alignment along the flow direction, some distinct changes in glycocalyx composition on the surface regarding the main glycosaminoglycan components heparan sulfate, chondroitin sulfate or hyaluronic acid as well as an increased and thereby improved glycocalyx thickness and functionality when cultured under homogeneous fluid flow. Thus, we were able to demonstrate the maturity of the employed iPSC-EC model regarding its ability to sense fluid flow along with the general importance of physiological shear stress for glycocalyx formation. Additionally, we investigated EC monolayer integrity with and without application of surface shear stress, revealing a comparable existence of tight junctions for all conditions and a reorganization of the cytoskeleton upon dynamic culture leading to an increased formation of focal adhesions. We then fabricated cell sheets of EC monolayers after static and dynamic culture via non-enzymatic detachment using thermoresponsive polymer coatings as culture substrates. In a first proof-of-concept we were able to transfer an aligned iPSC-EC sheet to a 3D-printed scaffold thereby making a step in the direction of vascular modelling. We envision these results to be a valuable contribution to improvements of in vitro endothelial models and vascular engineering in the future.
Collapse
Affiliation(s)
- Marcus Lindner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- REBIRTH–Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
8
|
Zhang T, Zhou M, Xiao D, Liu Z, Jiang Y, Feng M, Lin Y, Cai X. Myelosuppression Alleviation and Hematopoietic Regeneration by Tetrahedral-Framework Nucleic-Acid Nanostructures Functionalized with Osteogenic Growth Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202058. [PMID: 35882625 PMCID: PMC9507378 DOI: 10.1002/advs.202202058] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/12/2022] [Indexed: 02/06/2023]
Abstract
As major complications of chemoradiotherapy, myelosuppression and hematopoietic-system damage severely affect immunologic function and can delay or even terminate treatment for cancer patients. Although several specific cytokines have been used for hematopoiesis recovery, their effect is limited, and they may increase the risk of tumor recurrence. In this study, osteogenic growth peptide functionalized tetrahedral framework nucleic-acid nanostructures (OGP-tFNAs) are prepared; they combine the positive hematopoiesis stimulating effect of OGP and the drug carrying function of tFNAs. The potential of OGP-tFNAs for hematopoietic stimulation and microenvironment regulation is investigated. It is shown that OGP-tFNAs can protect bone marrow stromal cells from 5-fluorouracil (5-FU)-induced DNA damage and apoptosis. OGP-tFNAs pretreatment activates the extracellularly regulated protein kinase signal and downregulates apoptosis-related proteins. OGP-tFNAs also alleviate the chemotherapy-induced inhibition of hematopoiesis-related cytokine expression, which is crucial for hematopoiesis reconstitution. In conclusion, OGP-tFNAs can protect hematopoietic cells and their microenvironment from chemotherapy-induced injuries and myelosuppression, while promoting hematopoiesis regeneration.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Mi Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Yueying Jiang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Maogeng Feng
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhou646000P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| |
Collapse
|
9
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
10
|
Xuan J, Liu Y, Liu J, Zeng X, Wang H. New Insights into Hematopoietic Stem Cell Expansion to Stimulate Repopulation of the Adult Blood System for Transplantation. Life (Basel) 2022; 12:life12050716. [PMID: 35629383 PMCID: PMC9146250 DOI: 10.3390/life12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Successful engraftment of hematopoietic stem cells (HSCs) and progenitor cells (HSPCs) may be considered as a basis for the repopulation of the blood cells after transplantation in adults. Therefore, in vivo and ex vivo expansion of HSCs holds great promise for clinical applications. In this review, the mechanisms of HSC expansion will be discussed, considering the previous studies and works of literature. This is aimed to identify the signaling pathways that regulate HSC expansion and improve the application of engraftment in disease management. The following aspects will be included: (i) Stimulation of HSCs growth in vivo through gene regulation and cytokines activation; (ii) direct or indirect induction of HSC expansion by regulating signaling pathways; (iii) addition to assisting cells to help in the proliferation of HSCs; (iv) changing of living environment in the HSCs cultures via adjusting components and forms of cultures; (v) enhancement of HSC expansion by incorporating substances, such as extracellular vesicles (EVs), UM171, among others. In this review, recent new findings that provide us with new insights into HSC expansion methods have been summarized. Furthermore, these findings will also provide more possibilities for the development of some novel strategies for expanding and engrafting HSCs applied for treatments of some hematopoietic disorders.
Collapse
Affiliation(s)
- Jiangying Xuan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Yingxia Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
| | - Jinhui Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
| | - Xiaoping Zeng
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
| | - Hongmei Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
- Correspondence: ; Tel.: +86-137-6700-4966
| |
Collapse
|
11
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
12
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
13
|
Liu B, Tao C, Wu Z, Yao H, Wang DA. Engineering strategies to achieve efficient in vitro expansion of haematopoietic stem cells: development and improvement. J Mater Chem B 2022; 10:1734-1753. [DOI: 10.1039/d1tb02706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Haematopoietic stem cells are the basis for building and maintaining lifelong haematopoietic mechanisms and important resources for the treatment of blood disorders. Haematopoietic niches are microenvironment in the body where...
Collapse
|
14
|
Weijts B, Yvernogeau L, Robin C. Recent Advances in Developmental Hematopoiesis: Diving Deeper With New Technologies. Front Immunol 2021; 12:790379. [PMID: 34899758 PMCID: PMC8652083 DOI: 10.3389/fimmu.2021.790379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
15
|
Seidlits SK, Kilian KA. Biomaterials for Personalized Disease Models. Acta Biomater 2021; 132:1-3. [PMID: 34503734 DOI: 10.1016/j.actbio.2021.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|