1
|
Ryabukhina E, Kobanenko M, Tretiakova D, Shchegravina E, Khaidukov S, Alekseeva A, Boldyrev I, Zgoda V, Tikhonova O, Fedorov AY, Onishchenko N, Vodovozova E. Plasma protein corona of liposomes loaded with a phospholipid-allocolchicinoid conjugate enhances their anti-inflammatory potential. Colloids Surf B Biointerfaces 2025; 253:114746. [PMID: 40319730 DOI: 10.1016/j.colsurfb.2025.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/15/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Today colchicine is considered as a possible new treatment for cardiovascular diseases. Its physiological effects have been shown to be primarily due to the intra-leukocyte concentrations. Nanoparticulate formulations could help accumulation of colchicine in phagocytic cells. Previously we formulated liposomes loaded with a colchicine analog in the form of an enzyme-responsive conjugate with phosphatidylcholine (aC-PC) and showed acceptable stability of the formulation in human plasma. Here, we investigated how protein coronas formed on a series of aC-PC-bearing liposomes in human plasma affected their interactions with leukocytes and endothelial cells. Liposome-protein complexes were analyzed by shotgun proteomics. Liposomes 25C with the highest load of aC-PC (25 %) were distinguished by a three times more massive protein corona and specific profile of proteins, including enrichment with ApoD and galectin-3-binding protein, which may affect the inflammation-associated signaling. Differences in the protein coronas did not noticeably affect liposome uptake by cultured monocytes and endotheliocytes, although the level of uptake decreased in the presence of plasma proteins. Nor did the composition of liposomes affect the course of phagocytosis by leukocytes in the blood ex vivo. The effects of protein coronas were manifested in the suppression of the production of inflammatory chemokine MCP-1 (and to a much lesser extent IL-8) by stimulated peripheral blood monocytes about 1.5 times compared with naked liposomes. In the case of liposomes 25C the inhibition was complete. These liposomes are considered the most promising for further preclinical studies.
Collapse
Affiliation(s)
- Ekaterina Ryabukhina
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Maria Kobanenko
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Daria Tretiakova
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ekaterina Shchegravina
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Sergey Khaidukov
- Laboratory of Carbohydrates, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Anna Alekseeva
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ivan Boldyrev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Olga Tikhonova
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Alexey Yu Fedorov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Natalia Onishchenko
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Center for Algorithmic and Robotized Synthesis, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Elena Vodovozova
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| |
Collapse
|
2
|
Björgvinsdóttir UJ, Larsen JB, Bak M, Andresen TL, Münter R. Targeting antibodies dissociate from drug delivery liposomes during blood circulation. J Control Release 2025; 379:982-992. [PMID: 39884438 DOI: 10.1016/j.jconrel.2025.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
Despite three decades of intense research, active targeting of liposomes have not been successfully achieved in a clinical setting. A potential explanation is that the clinically used liposomes lose their targeting abilities upon circulation. Here, we investigated if DSPE-PEG anchored antibody-based targeting ligands dissociate from clinically relevant drug delivery liposomes during circulation in mice. We found that during 4 h of circulation, a significant fraction of the liposomes lose all targeting ligands, while the liposomes with some targeting ligands remaining on their surface, show a > 50 % reduction in surface density of ligands. This was detected irrespective of antibody format (IgG, Fab, F(ab')2), ability to interact with Fc receptors or linking chemistry. Dissociation of targeting antibodies did however not take place when incubating liposomes in serum, but required an in vivo setup, demonstrating that in vitro setups are unsuitable for quantifying such liposome disassembly processes. The observation unravels a problem that researchers developing targeted drug delivery vehicles should take into account when designing novel formulations.
Collapse
Affiliation(s)
- Unnur J Björgvinsdóttir
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Jannik B Larsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Martin Bak
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Thomas L Andresen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark.
| | - Rasmus Münter
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Fu F, Crespy D, Landfester K, Jiang S. In situ characterization techniques of protein corona around nanomaterials. Chem Soc Rev 2024; 53:10827-10851. [PMID: 39291461 DOI: 10.1039/d4cs00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) inevitably interact with proteins upon exposure to biological fluids, leading to the formation of an adsorption layer known as the "protein corona". This corona imparts NPs with a new biological identity, directly influencing their interactions with living systems and dictating their fates in vivo. Thus, gaining a comprehensive understanding of the dynamic interplay between NPs and proteins in biological fluids is crucial for predicting therapeutic effects and advancing the clinical translation of nanomedicines. Numerous methods have been established to decode the protein corona fingerprints. However, these methods primarily rely on prior isolation of NP-protein complex from the surrounding medium by centrifugation, resulting in the loss of outer-layer proteins that directly interact with the biological system and determine the in vivo fate of NPs. We discuss here separation techniques as well as in situ characterization methods tailored for comprehensively unraveling the inherent complexities of NP-protein interactions, highlighting the challenges of in situ protein corona characterization and its significance for nanomedicine development and clinical translation.
Collapse
Affiliation(s)
- Fangqin Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | | | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Sun Y, Zhou Y, Rehman M, Wang YF, Guo S. Protein Corona of Nanoparticles: Isolation and Analysis. CHEM & BIO ENGINEERING 2024; 1:757-772. [PMID: 39974182 PMCID: PMC11792916 DOI: 10.1021/cbe.4c00105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 02/21/2025]
Abstract
Nanoparticles entering biological systems or fluids inevitably adsorb biomolecules, such as protein, on their surfaces, forming a protein corona. Ensuing, the protein corona endows nanoparticles with a new biological identity and impacts the interaction between the nanoparticles and biological systems. Hence, the development of reliable techniques for protein corona isolation and analysis is key for understanding the biological behaviors of nanoparticles. First, this review systematically outlines the approach for isolating the protein corona, including centrifugation, magnetic separation, size exclusion chromatography, flow-field-flow fractionation, and other emerging methods. Next, we review the qualitative and quantitative characterization methods of the protein corona. Finally, we underscore the necessary steps to advance the efficiency and fidelity of protein corona isolation and characterization on nanoparticle surfaces. We anticipate that these insights into protein corona isolation and characterization methodologies will profoundly influence the development of technologies aimed at elucidating bionano interactions and the role of protein corona in various biomedical applications.
Collapse
Affiliation(s)
- Yinuo Sun
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaxin Zhou
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mubashar Rehman
- School
of Biomedical Engineering and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yi-Feng Wang
- School
of Biomedical Engineering and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Shutao Guo
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Zaleski MH, Omo-Lamai S, Nong J, Chase LS, Myerson JW, Glassman PM, Lee F, Reyes-Esteves S, Wang Z, Patel MN, Peshkova AD, Komatsu H, Axelsen PH, Muzykantov VR, Marcos-Contreras OA, Brenner JS. Nanocarriers' repartitioning of drugs between blood subcompartments as a mechanism of improving pharmacokinetics, safety, and efficacy. J Control Release 2024; 374:425-440. [PMID: 39103056 DOI: 10.1016/j.jconrel.2024.07.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
For medical emergencies, such as acute ischemic stroke, rapid drug delivery to the target site is essential. For many small molecule drugs, this goal is unachievable due to poor solubility that prevents intravenous administration, and less obviously, by extensive partitioning to plasma proteins and red blood cells (RBCs), which greatly slows delivery to the target. Here we study these effects and how they can be solved by loading into nanoscale drug carriers. We focus on fingolimod, a small molecule drug that is FDA-approved for treatment of multiple sclerosis, which has also shown promise in the treatment of stroke. Unfortunately, fingolimod has poor solubility and very extensive partitioning to plasma proteins and RBCs (in whole blood, 86% partitions to RBCs, 13.96% to plasma proteins, and 0.04% is free). We develop a liposomal formulation that slows the partitioning of fingolimod to RBCs and plasma proteins, enables intravenous delivery, and additionally prevents fingolimod toxicity to RBCs. The liposomal formulation nearly completely prevented fingolimod adsorption to plasma proteins (association with plasma proteins was 98.4 ± 0.4% for the free drug vs. 5.6 ± 0.4% for liposome-loaded drug). When incubated with whole blood in vitro, the liposomal formulation greatly slowed partitioning of fingolimod to RBCs and also eliminated deleterious effects of fingolimod on RBC rigidity, morphology, and hemolysis. In vivo, the liposomal formulation delayed fingolimod partitioning to RBCs for over 30 min, a critical time window for stroke. Fingolimod-loaded liposomes showed improved efficacy in a mouse model of post-stroke neuroinflammation, completely sealing the leaky blood-brain barrier (114 ± 11.5% reduction in albumin leak into the brain for targeted liposomes vs. 38 ± 16.5% reduction for free drug). This effect was only seen for liposomes modified with antibodies to enable targeted delivery to the site of action, and not in unmodified, long-circulating liposomes. Thus, loading fingolimod into liposomes prevented partitioning to RBCs and associated toxicities and enabled targeted delivery. This paradigm can be used for tuning the blood distribution of small molecule drugs for the treatment of acute illnesses requiring rapid pharmacologic intervention.
Collapse
Affiliation(s)
- Michael H Zaleski
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Serena Omo-Lamai
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jia Nong
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liam S Chase
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick M Glassman
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Florence Lee
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Zhicheng Wang
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Manthan N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alina D Peshkova
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiroaki Komatsu
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul H Axelsen
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oscar A Marcos-Contreras
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Salvati A. The biomolecular corona of nanomedicines: effects on nanomedicine outcomes and emerging opportunities. Curr Opin Biotechnol 2024; 87:103101. [PMID: 38461749 DOI: 10.1016/j.copbio.2024.103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Upon administration, nanomedicines adsorb a corona of endogenous biomolecules on their surface, which can affect nanomedicine interactions with cells, targeting, and efficacy. While strategies to reduce protein binding are available, the high selectivity of the adsorbed corona is enabling novel applications, such as for biomarker discovery and rare protein identification. Additionally, the adsorbed molecules can promote interactions with specific cell receptors, thus conferring the nanomedicine new endogenous targeting capabilities. This has been reported for Onpattro, a lipid nanoparticle targeting the hepatocytes via apolipoproteins in its corona. Recently, selective organ-targeting (SORT) nanoparticles have been proposed, which exploit corona-mediated interactions to deliver nanoparticles outside the liver. Strategies for corona seeding and corona engineering are emerging to increase the selectivity of similar endogenous targeting mechanisms.
Collapse
Affiliation(s)
- Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
7
|
Münter R, Bak M, Thomsen ME, Parhamifar L, Stensballe A, Simonsen JB, Kristensen K, Andresen TL. Deciphering the monocyte-targeting mechanisms of PEGylated cationic liposomes by investigating the biomolecular corona. Int J Pharm 2024; 657:124129. [PMID: 38621615 DOI: 10.1016/j.ijpharm.2024.124129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Cationic liposomes specifically target monocytes in blood, rendering them promising drug-delivery tools for cancer immunotherapy, vaccines, and therapies for monocytic leukaemia. The mechanism behind this monocyte targeting ability is, however, not understood, but may involve plasma proteins adsorbed on the liposomal surfaces. To shed light on this, we investigated the biomolecular corona of three different types of PEGylated cationic liposomes, finding all of them to adsorb hyaluronan-associated proteins and proteoglycans upon incubation in human blood plasma. This prompted us to study the role of the TLR4 co-receptors CD44 and CD14, both involved in signalling and uptake pathways of proteoglycans and glycosaminoglycans. We found that separate inhibition of each of these receptors hampered the monocyte uptake of the liposomes in whole human blood. Based on clues from the biomolecular corona, we have thus identified two receptors involved in the targeting and uptake of cationic liposomes in monocytes, in turn suggesting that certain proteoglycans and glycosaminoglycans may serve as monocyte-targeting opsonins. This mechanistic knowledge may pave the way for rational design of future monocyte-targeting drug-delivery platforms.
Collapse
Affiliation(s)
- Rasmus Münter
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martin Bak
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikkel E Thomsen
- Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark
| | - Ladan Parhamifar
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; Clinical Cancer Center, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Jens B Simonsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kasper Kristensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Thomas L Andresen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Amărandi RM, Neamṭu A, Ştiufiuc RI, Marin L, Drăgoi B. Impact of Lipid Composition on Vesicle Protein Adsorption: A BSA Case Study. ACS OMEGA 2024; 9:17903-17918. [PMID: 38680315 PMCID: PMC11044229 DOI: 10.1021/acsomega.3c09131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
Investigating the interaction between liposomes and proteins is of paramount importance in the development of liposomal formulations with real potential for bench-to-bedside transfer. Upon entering the body, proteins are immediately adsorbed on the liposomal surface, changing the nanovehicles' biological identity, which has a significant impact on their biodistribution and pharmacokinetics and ultimately on their therapeutic effect. Albumin is the most abundant plasma protein and thus usually adsorbs immediately on the liposomal surface. We herein report a comprehensive investigation on the adsorption of model protein bovine serum albumin (BSA) onto liposomal vesicles containing the zwitterionic lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), in combination with either cholesterol (CHOL) or the cationic lipid 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP). While many studies regarding protein adsorption on the surface of liposomes with different compositions have been performed, to the best of our knowledge, the differential responses of CHOL and DOTAP upon albumin adsorption on vesicles have not yet been investigated. UV-vis spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a strong influence of the phospholipid membrane composition on protein adsorption. Hence, it was found that DOTAP-containing vesicles adsorb proteins more robustly but also aggregate in the presence of BSA, as confirmed by DLS and TEM. Separation of liposome-protein complexes from unadsorbed proteins performed by means of centrifugation and size exclusion chromatography (SEC) was also investigated. Our results show that neither method can be regarded as a golden experimental setup to study the protein corona of liposomes. Yet, SEC proved to be more successful in the separation of unbound proteins, although the amount of lipid loss upon liposome elution was higher than expected. In addition, coarse-grained molecular dynamics simulations were employed to ascertain key membrane parameters, such as the membrane thickness and area per lipid. Overall, this study highlights the importance of surface charge and membrane fluidity in influencing the extent of protein adsorption. We hope that our investigation will be a valuable contribution to better understanding protein-vesicle interactions for improved nanocarrier design.
Collapse
Affiliation(s)
- Roxana-Maria Amărandi
- Nanotechnology
Laboratory, TRANSCEND Research Center, Regional
Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iaşi, Romania
- Department
of Bioinformatics, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iaşi, Romania
| | - Andrei Neamṭu
- Department
of Bioinformatics, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iaşi, Romania
- Department
of Physiology, “Grigore T. Popa”
University of Medicine and Pharmacy, 16 Universităṭii Street, 700115 Iaşi, Romania
| | - Rareş-Ionuṭ Ştiufiuc
- Nanotechnology
Laboratory, TRANSCEND Research Center, Regional
Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iaşi, Romania
- Department
of Nanobiophysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine
and Pharmacy, 4-6 Pasteur
Street, 400337 Cluj-Napoca, Romania
| | - Luminiṭa Marin
- Nanotechnology
Laboratory, TRANSCEND Research Center, Regional
Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iaşi, Romania
- “Petru
Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Vodă Alley, 700487 Iaşi, Romania
| | - Brînduşa Drăgoi
- Nanotechnology
Laboratory, TRANSCEND Research Center, Regional
Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iaşi, Romania
- Faculty of
Chemistry, Alexandru Ioan Cuza University of Iaşi, 11 Carol I Boulevard, 700506 Iaşi, Romania
| |
Collapse
|
9
|
Boselli L, Castagnola V, Armirotti A, Benfenati F, Pompa PP. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306474. [PMID: 38085683 DOI: 10.1002/smll.202306474] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Indexed: 04/13/2024]
Abstract
Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
10
|
Yaghmur A, Østergaard J, Mu H. Lipid nanoparticles for targeted delivery of anticancer therapeutics: Recent advances in development of siRNA and lipoprotein-mimicking nanocarriers. Adv Drug Deliv Rev 2023; 203:115136. [PMID: 37944644 DOI: 10.1016/j.addr.2023.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The limitations inherent in conventional cancer treatment methods have stimulated recent efforts towards the design of safe nanomedicines with high efficacy for combating cancer through various promising approaches. A plethora of nanoparticles has been introduced in the development of cancer nanomedicines. Among them, different lipid nanoparticles are attractive for use due to numerous advantages and unique opportunities, including biocompatibility and targeted drug delivery. However, a comprehensive understanding of nano-bio interactions is imperative to facilitate the translation of recent advancements in the development of cancer nanomedicines into clinical practice. In this contribution, we focus on lipoprotein-mimicking nanoparticles, which possess unique features and compositions facilitating drug transport through receptor binding mechanisms. Additionally, we describe potential applications of siRNA lipid nanoparticles in the future design of anticancer nanomedicines. Thus, this review highlights recent progress, challenges, and opportunities of lipid-based lipoprotein-mimicking nanoparticles and siRNA nanocarriers designed for the targeted delivery of anticancer therapeutic agents.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Liu K, Nilsson R, Lázaro-Ibáñez E, Duàn H, Miliotis T, Strimfors M, Lerche M, Salgado Ribeiro AR, Ulander J, Lindén D, Salvati A, Sabirsh A. Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function. Nat Commun 2023; 14:4007. [PMID: 37414857 PMCID: PMC10325984 DOI: 10.1038/s41467-023-39768-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
In terms of lipid nanoparticle (LNP) engineering, the relationship between particle composition, delivery efficacy, and the composition of the biocoronas that form around LNPs, is poorly understood. To explore this we analyze naturally efficacious biocorona compositions using an unbiased screening workflow. First, LNPs are complexed with plasma samples, from individual lean or obese male rats, and then functionally evaluated in vitro. Then, a fast, automated, and miniaturized method retrieves the LNPs with intact biocoronas, and multiomics analysis of the LNP-corona complexes reveals the particle corona content arising from each individual plasma sample. We find that the most efficacious LNP-corona complexes were enriched with high-density lipoprotein (HDL) and, compared to the commonly used corona-biomarker Apolipoprotein E, corona HDL content was a superior predictor of in-vivo activity. Using technically challenging and clinically relevant lipid nanoparticles, these methods reveal a previously unreported role for HDL as a source of ApoE and, form a framework for improving LNP therapeutic efficacy by controlling corona composition.
Collapse
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ralf Nilsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisa Lázaro-Ibáñez
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Duàn
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Tasso Miliotis
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marie Strimfors
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Johan Ulander
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
12
|
Onishchenko NR, Moskovtsev AA, Kobanenko MK, Tretiakova DS, Alekseeva AS, Kolesov DV, Mikryukova AA, Boldyrev IA, Kapkaeva MR, Shcheglovitova ON, Bovin NV, Kubatiev AA, Tikhonova OV, Vodovozova EL. Protein Corona Attenuates the Targeting of Antitumor Sialyl Lewis X-Decorated Liposomes to Vascular Endothelial Cells under Flow Conditions. Pharmaceutics 2023; 15:1754. [PMID: 37376203 DOI: 10.3390/pharmaceutics15061754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic chip and then applied the liposome formulations to study their interactions with the cells in situ under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy. The incorporation of 5 to 10% SiaLeX conjugate in the bilayer of MlphDG liposomes increased their consumption exclusively by activated endotheliocytes. The increase of serum concentration from 20 to 100% in the flow resulted in lower liposome uptake by the cells. To elucidate the possible roles of plasma proteins in the liposome-cell interactions, liposome protein coronas were isolated and analyzed by shotgun proteomics and immunoblotting of selected proteins. Proteomic analysis showed that a gradual increase in SiaLeX content correlated with the overall enrichment of the liposome-associated proteins with several apolipoproteins, including the most positively charged one, ApoC1, and serum amyloid A4, associated with inflammation, on the one hand, and a decrease in the content of bound immunoglobulins, on the other. The article discusses the potential interference of the proteins in the binding of liposomes to selectins of endothelial cells.
Collapse
Affiliation(s)
- Natalia R Onishchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexey A Moskovtsev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Maria K Kobanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Daria S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Dmitry V Kolesov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Anna A Mikryukova
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Marina R Kapkaeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, ul. Gamaleya 18, 123098 Moscow, Russia
| | - Olga N Shcheglovitova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, ul. Gamaleya 18, 123098 Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Aslan A Kubatiev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Olga V Tikhonova
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
| | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
13
|
Münter R, Christensen E, Andresen TL, Larsen JB. Studying how administration route and dose regulates antibody generation against LNPs for mRNA delivery with single-particle resolution. Mol Ther Methods Clin Dev 2023; 29:450-459. [PMID: 37251983 PMCID: PMC10220314 DOI: 10.1016/j.omtm.2023.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Following the recent approval of both siRNA- and mRNA-based therapeutics, nucleic acid therapies are considered a game changer in medicine. Their envisioned widespread use for many therapeutic applications with an array of cellular target sites means that various administration routes will be employed. Concerns exist regarding adverse reactions against the lipid nanoparticles (LNPs) used for mRNA delivery, as PEG coatings on nanoparticles can induce severe antibody-mediated immune reactions, potentially being boosted by the inherently immunogenic nucleic acid cargo. While exhaustive information is available on how physicochemical features of nanoparticles affects immunogenicity, it remains unexplored how the fundamental choice of administration route regulates anti-particle immunity. Here, we directly compared antibody generation against PEGylated mRNA-carrying LNPs administered by the intravenous, intramuscular, or subcutaneous route, using a novel sophisticated assay capable of measuring antibody binding to authentic LNP surfaces with single-particle resolution. Intramuscular injections in mice were found to generate overall low and dose-independent levels of anti-LNP antibodies, while both intravenous and subcutaneous LNP injections generated substantial and highly dose-dependent levels. These findings demonstrate that before LNP-based mRNA medicines can be safely applied to new therapeutic applications, it will be crucial to carefully consider the choice of administration route.
Collapse
Affiliation(s)
- Rasmus Münter
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Esben Christensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Thomas L. Andresen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Jannik B. Larsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Münter R, Simonsen JB. Comment on "Optimal centrifugal isolating of liposome-protein complexes from human plasma" by L. Digiacomo, F. Giulimondi, A. L. Capriotti, S. Piovesana, C. M. Montone, R. Z. Chiozzi, A. Laganá, M. Mahmoudi, D. Pozzi and G. Caracciolo, Nanoscale Adv., 2021, 3, 3824. NANOSCALE ADVANCES 2022; 5:290-299. [PMID: 36605796 PMCID: PMC9765536 DOI: 10.1039/d2na00343k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 06/01/2023]
Abstract
In a recent paper in Nanoscale Advances, Digiacomo et al. conclude that centrifugation should be the method of choice for researchers who want to investigate the protein corona of liposomes for drug delivery in human plasma. In this Comment, we however propose the opposite - that centrifugation, in most cases, is unsuitable for isolating liposomes from human plasma. Our conclusion is based on the bulk literature on this and similar topics, and new experimental data based on formulations and protocols like the ones used by Digiacomo et al.
Collapse
Affiliation(s)
- Rasmus Münter
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
| | - Jens B Simonsen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
| |
Collapse
|
15
|
Harnessing Protein Corona for Biomimetic Nanomedicine Design. Biomimetics (Basel) 2022; 7:biomimetics7030126. [PMID: 36134930 PMCID: PMC9496170 DOI: 10.3390/biomimetics7030126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are usually treated as multifunctional agents combining several therapeutical applications, like imaging and targeting delivery. However, clinical translation is still largely hindered by several factors, and the rapidly formed protein corona on the surface of NPs is one of them. The formation of protein corona is complicated and irreversible in the biological environment, and protein corona will redefine the “biological identity” of NPs, which will alter the following biological events and therapeutic efficacy. Current understanding of protein corona is still limited and incomplete, and in many cases, protein corona has adverse impacts on nanomedicine, for instance, losing targeting ability, activating the immune response, and rapid clearance. Due to the considerable role of protein corona in NPs’ biological fate, harnessing protein corona to achieve some therapeutic effects through various methods like biomimetic approaches is now treated as a promising way to meet the current challenges in nanomedicine such as poor pharmacokinetic properties, off-target effect, and immunogenicity. This review will first introduce the current understanding of protein corona and summarize the investigation process and technologies. Second, the strategies of harnessing protein corona with biomimetic approaches for nanomedicine design are reviewed. Finally, we discuss the challenges and future outlooks of biomimetic approaches to tune protein corona in nanomedicine.
Collapse
|
16
|
Nix C, Cobraiville G, Gou MJ, Fillet M. Potential of Single Pulse and Multiplexed Drift-Tube Ion Mobility Spectrometry Coupled to Micropillar Array Column for Proteomics Studies. Int J Mol Sci 2022; 23:ijms23147497. [PMID: 35886845 PMCID: PMC9319919 DOI: 10.3390/ijms23147497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Proteomics is one of the most significant methodologies to better understand the molecular pathways involved in diseases and to improve their diagnosis, treatment and follow-up. The investigation of the proteome of complex organisms is challenging from an analytical point of view, because of the large number of proteins present in a wide range of concentrations. In this study, nanofluidic chromatography, using a micropillar array column, was coupled to drift-tube ion mobility and time-of-flight mass spectrometry to identify as many proteins as possible in a protein digest standard of HeLa cells. Several chromatographic parameters were optimized. The high interest of drift-tube ion mobility to increase the number of identifications and to separate isobaric coeluting peptides was demonstrated. Multiplexed drift-tube ion mobility spectrometry was also investigated, to increase the sensitivity in proteomics studies. This innovative proteomics platform will be useful for analyzing patient samples to better understand unresolved disorders.
Collapse
|
17
|
Jiang Z, Chu Y, Zhan C. Protein corona: challenges and opportunities for targeted delivery of nanomedicines. Expert Opin Drug Deliv 2022; 19:833-846. [PMID: 35738018 DOI: 10.1080/17425247.2022.2093854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Targeted drug delivery has been widely explored as a promising way to improve the performance of nanomedicines. However, protein corona formed on the nano-surface represents a major issue that has great impacts on the in vivo fate of targeting nanomedicines, which has been overlooked in the past. With the increasing understanding of protein corona in the recent decade, many efforts have been made to improve targeting efficacy. AREAS COVERED In this review, we briefly summarize insights of targeted delivery systems inspired by protein corona, and discuss the promising strategies to regulate protein corona for better targeting. EXPERT OPINION The interaction between nanomedicines and endogenous proteins brings great uncertainty and challenges, but it also provides great opportunities for the development of targeting nanomedicines at the same time. With increasing understanding of protein corona, the strategies to regulate protein corona pave new avenues for the development of targeting nanomedicines.
Collapse
Affiliation(s)
- Zhuxuan Jiang
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China
| | - Yuxiu Chu
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China
| | - Changyou Zhan
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China.,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, P.R. China.,Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, P.R. China
| |
Collapse
|
18
|
Münter R, Stavnsbjerg C, Christensen E, Thomsen ME, Stensballe A, Hansen AE, Parhamifar L, Kristensen K, Simonsen JB, Larsen JB, Andresen TL. Unravelling Heterogeneities in Complement and Antibody Opsonization of Individual Liposomes as a Function of Surface Architecture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106529. [PMID: 35187804 DOI: 10.1002/smll.202106529] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Coating nanoparticles with poly(ethylene glycol) (PEG) is widely used to achieve long-circulating properties after infusion. While PEG reduces binding of opsonins to the particle surface, immunogenic anti-PEG side-effects show that PEGylated nanoparticles are not truly "stealth" to surface active proteins. A major obstacle for understanding the complex interplay between opsonins and nanoparticles is the averaging effects of the bulk assays that are typically applied to study protein adsorption to nanoparticles. Here, a microscopy-based method for directly quantifying opsonization at the single nanoparticle level is presented. Various surface coatings are investigated on liposomes, including PEG, and show that opsonization by both antibodies and complement C3b is highly dependent on the surface chemistry. It is further demonstrated that this opsonization is heterogeneous, with opsonized and non-opsonized liposomes co-existing in the same ensemble. Surface coatings modify the percentage of opsonized liposomes and/or opsonin surface density on the liposomes, with strikingly different patterns for antibodies and complement. Thus, this assay provides mechanistic details about opsonization at the single nanoparticle level previously inaccessible to established bulk assays.
Collapse
Affiliation(s)
- Rasmus Münter
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Camilla Stavnsbjerg
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Esben Christensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Mikkel E Thomsen
- Department of Health Science and Technology, Aalborg University, Aalborg Ø, 9220, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg Ø, 9220, Denmark
| | - Anders E Hansen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Ladan Parhamifar
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Kasper Kristensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Jens B Simonsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Jannik B Larsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Thomas L Andresen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
19
|
Wang X, Zhang W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J Control Release 2022; 345:832-850. [PMID: 35367478 DOI: 10.1016/j.jconrel.2022.03.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
The therapeutics based on nanoparticles (NPs) are considered as the promising strategy for tumor detection and treatment. However, one of the most challenges is the adsorption of biomolecules on NPs after their exposition to biological medium, leading unpredictable in vivo behaviors. The interactions caused by protein corona (PC) will influence the biological fate of NPs in either negative or positive ways, including (i) blood circulation, accumulation and penetration of NPs at targeting sites, and further cellular uptake in tumor targeting delivery; (ii) interactions between NPs and receptors on immune cells for immunotherapy. Besides, PC on NPs could be utilized as new biomarker in tumor diagnosis by identifying the minor change of protein concentration led by tumor growth and invasion in blood. Herein, the mechanisms of these PC-mediated effects will be introduced. Moreover, the recent advances about the strategies will be reviewed to reduce negative effects caused by PC and/or utilize positive effects of PC on tumor targeting, immunotherapy and diagnosis, aiming to provide a reasonable perspective to recognize PC with their applications.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenli Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
20
|
The need for improved methodology in protein corona analysis. Nat Commun 2022; 13:49. [PMID: 35013179 PMCID: PMC8748711 DOI: 10.1038/s41467-021-27643-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022] Open
|
21
|
Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021; 134:57-78. [PMID: 34364016 DOI: 10.1016/j.actbio.2021.07.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions. STATEMENT OF SIGNIFICANCE: The review focuses on liposomes as an established nanomedicine platform and analyzes the available data on how the protein corona formed on liposome surface in biological fluids affects performance of the liposomes. The review offers a rigorous account of existing literature and critical analysis of methodology currently applied to the assessment of liposome-plasma protein interactions. It introduces a classification of the approaches to exploitation of the protein corona and tailoring liposome carriers to advance the field of nanoparticulate drug delivery systems for the benefit of patients.
Collapse
|