1
|
Yu H, Zhang T, Liu Y, Wang W, Guan Z, Li P. Association between cardiovascular health and markers of liver function: a cross-sectional study from NHANES 2005-2018. Front Med (Lausanne) 2025; 12:1538654. [PMID: 40144884 PMCID: PMC11936933 DOI: 10.3389/fmed.2025.1538654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background Cardiovascular health (CVH) has been associated with various systemic diseases. However, the relationship between CVH, as measured by Life's Essential 8 (LE8), and liver function markers in the general population remains poorly understood. Methods This study analyzed data from 21,156 participants (aged ≥ 20) from the NHANES 2005-2018 to investigate the associations between CVH and liver function markers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), albumin and AST/ALT ratio]. Linear regression models were used, along with a restricted cubic spline (RCS) to assess dose-response. Weighted quantile sum (WQS) regression and quantile g-computation (QGC) analyses were employed to evaluate the association between CVH and liver function markers. Results Linear regression analysis showed that each 1-point increase in CVH score was significantly associated with decreased levels of liver enzymes [ALT: -0.200 U/L (95% CI: -0.223, -0.176), AST: -0.043 U/L (-0.062, -0.024), GGT: -0.453 U/L (-0.509, -0.397), ALP: -0.310 U/L (-0.340, -0.281)] and increased levels of albumin [0.040 g/dL (0.036, 0.045)] and AST/ALT ratio [0.0056 (0.0051, 0.0061)]. Notably, CVH score demonstrated non-linear dose-response relationships with ALT, ALP, and AST/ALT ratio. Age significantly modified these associations, while nicotine exposure, BMI, and blood lipids were identified as primary contributors through WQS and QGC analyses. E-value analysis suggested robustness to unmeasured confounding. Conclusion This study demonstrates robust associations between CVH and liver function markers in United States adults, with nicotine exposure, BMI, and blood lipids identified as significant contributors. These findings suggest that maintaining optimal cardiovascular health may have beneficial effects on liver function, highlighting potential targets for integrated prevention strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Wang M, Zhong H, Li Y, Li J, Zhang X, He F, Wei P, Wang HH, Nie Z. Advances in Bioinspired Artificial System Enabling Biomarker-Driven Therapy. Chemistry 2024; 30:e202401593. [PMID: 38923644 DOI: 10.1002/chem.202401593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Bioinspired molecular engineering strategies have emerged as powerful tools that significantly enhance the development of novel therapeutics, improving efficacy, specificity, and safety in disease treatment. Recent advancements have focused on identifying and utilizing disease-associated biomarkers to optimize drug activity and address challenges inherent in traditional therapeutics, such as frequent drug administrations, poor patient adherence, and increased risk of adverse effects. In this review, we provide a comprehensive overview of the latest developments in bioinspired artificial systems (BAS) that use molecular engineering to tailor therapeutic responses to drugs in the presence of disease-specific biomarkers. We examine the transition from open-loop systems, which rely on external cues, to closed-loop feedback systems capable of autonomous self-regulation in response to disease-associated biomarkers. We detail various BAS modalities designed to achieve biomarker-driven therapy, including activatable prodrug molecules, smart drug delivery platforms, autonomous artificial cells, and synthetic receptor-based cell therapies, elucidating their operational principles and practical in vivo applications. Finally, we discuss the current challenges and future perspectives in the advancement of BAS-enabled technology and envision that ongoing advancements toward more programmable and customizable BAS-based therapeutics will significantly enhance precision medicine.
Collapse
Affiliation(s)
- Meixia Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huan Zhong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yangbing Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xinxin Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fang He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Gao Z, Sun H, Yang S, Li M, Qi N, Cui J. Red Blood Cell-Like Poly(ethylene glycol) Particles: Influence of Particle Stiffness on Biological Behaviors. ACS Macro Lett 2024; 13:966-971. [PMID: 39038183 DOI: 10.1021/acsmacrolett.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Cell-like particles represent a category of synthetic particles designed to emulate the structures or functions of natural cells. Herein, we present the assembly of cell-like poly(ethylene glycol) (PEG) particles with different stiffnesses and shapes via replication of animal cells and investigate the impact of particle stiffness on their biological behaviors. As a proof of concept, we fabricate red blood cell-like and spherical PEG particles with varying cross-linking densities. A systematic exploration of their properties, encompassing morphology, stiffness, deformability, and biodistribution, reveal the vital influence of particle stiffness on in vivo fate, elucidating its role in governing the traversal of capillaries and the dynamic interactions with phagocytic cells.
Collapse
Affiliation(s)
- Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Hongning Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Shuang Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Na Qi
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
4
|
Wu YC, Yao Y, Tao LS, Wang SX, Hu Y, Li LY, Hu S, Meng X, Yang DS, Li H, Xu T. The role of acetaldehyde dehydrogenase 2 in the pathogenesis of liver diseases. Cell Signal 2023; 102:110550. [PMID: 36464104 DOI: 10.1016/j.cellsig.2022.110550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Common liver tissue damage is mainly due to the accumulation of toxic aldehydes in lipid peroxidation under oxidative stress. Cumulative toxic aldehydes in the liver can be effectively metabolized by acetaldehyde dehydrogenase 2 (ALDH2), thereby alleviating various liver diseases. Notably, gene mutation of ALDH2 leads to impaired ALDH2 enzyme activity, thus aggravating the progress of liver diseases. However, the relationship and specific mechanism between ALDH2 and liver diseases are not clear. Consequently, the review explains the relationship between ALDH2 and liver diseases such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). In addition, this review also discusses ALDH2 as a potential therapeutic target for various liver diseases,and focuses on summarizing the regulatory mechanism of ALDH2 in these liver diseases.
Collapse
Affiliation(s)
- Yin-Cui Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Liang-Song Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Shu-Xian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Da-Shuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - He Li
- The Second Hospital of Anhui Medical University, Hefei, Anhui Province 230001, China.
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China.
| |
Collapse
|
5
|
Li R, Zhan W, Ren J, Gao X, Huang X, Ma Y. Associations between organophosphate esters concentrations and markers of liver function in US adolescents aged 12-19 years: A mixture analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120255. [PMID: 36155224 DOI: 10.1016/j.envpol.2022.120255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Liver disease has become a growing health burden, and little is known about the impairment of liver function caused by exposure to organophosphate esters (OPEs) in adolescents aged 12-19 years in the United States. To investigate the relationship between urinary metabolites of OPEs including diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), bis(1-chloroethyl) phosphate (BCPP), bis(2-chloroethyl) phosphate (BCEP), and dibutyl phosphate (DBUP) and liver function in US adolescents aged 12-19 years. Liver function tests (LFTs) include aspartate aminotransferase (AST), albumin (ALB), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total bilirubin (TBIL), total protein (TP), and AST/ALT. Meanwhile, potential confounding and interaction effects were assessed. The study sample included 592 adolescents aged 12-19 from two consecutive NHANES cycles (2011-2012, 2013-2014). A composite statistical strategy combining traditional linear regression with advanced multi-pollutant models quantile based g-computation (QGC) and eXtreme Gradient Boosting (XGBoost) regression was used to analyze the joint effects of multiple OPEs on liver function indicators, and to describe the interaction between different OPEs in detail. 592 adolescent participants were 15 (14-17) years old, with similar numbers of males and females (304 vs. 288). The analysis results showed that (1) in the linear regression model, individual DPHP, BCEP exposure and ALP changes, BCEP and AST/ALT changes were positively associated. DPHP, BDCPP were negatively associated with TP changes. (2) The combined effects of various OPEs on ALB, ALT, ALP, GGT, TBIL, TP, and AST/ALT were statistically significant. (3) There is no potential interaction between different OPEs. Several OPEs and their combinations are closely related to the 8 LFT indicators. In addition, data suggest that exposure to OPEs in adolescents may be associated with liver damage. Due to limited evidence in the literature and potential limitations of the current study, our findings require more studies to confirm.
Collapse
Affiliation(s)
- Ruiqiang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Wenqiang Zhan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xian Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xin Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
6
|
Wang F, Deng Y, Yu L, Zhou A, Wang J, Jia J, Li N, Ding F, Lian W, Liu Q, Yang Y, Lin X. A Macrophage Membrane-Polymer Hybrid Biomimetic Nanoplatform for Therapeutic Delivery of Somatostatin Peptide to Chronic Pancreatitis. Pharmaceutics 2022; 14:pharmaceutics14112341. [PMID: 36365160 PMCID: PMC9698601 DOI: 10.3390/pharmaceutics14112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The clinical translation of therapeutic peptides is generally challenged by multiple issues involving absorption, distribution, metabolism and excretion. In this study, a macrophage membrane-coated poly(lactic-co-glycolic acid) (PLGA) nanodelivery system was developed to enhance the bioavailability of the somatostatin (SST) peptide, which faces the hurdles of short half-life and potential side effects in the treatment of chronic pancreatitis. Using a facile nanoprecipitation strategy, SST was loaded in the nanoparticles with an encapsulation efficiency (EE) and a loading efficiency (LE) of 73.68 ± 3.56% and 1.47 ± 0.07%, respectively. The final formulation of SST-loaded nanoparticles with the camouflage of macrophage membrane (MP-SST) showed a mean diameter of 151 ± 4 nm and an average zeta potential of −29.6 ± 0.3 mV, which were stable long term during storage. With an above 90% cell viability, a hemolysis level of about 2% (<5%) and a preference for being ingested by activated endothelial cells compared to macrophages, the membrane−polymer hybrid nanoparticle showed biocompatibility and targeting capability in vitro. After being intravenously administered to mice with chronic pancreatitis, the MP-SST increased the content of SST in the serum (123.6 ± 13.6 pg/mL) and pancreas (1144.9 ± 206.2 pg/g) compared to the treatment of (Dulbecco’s phosphate-buffered saline) DPBS (61.7 ± 6.0 pg/mL in serum and 740.2 ± 172.4 pg/g in the pancreas). The recovery of SST by MP-SST downregulated the expressions of chronic pancreatitis-related factors and alleviated the histologic severity of the pancreas to the greatest extent compared to other treatment groups. This augmentation of SST therapeutic effects demonstrated the superiority of integrating the synthetic polymer with biological membranes in the design of nanoplatforms for advanced and smart peptide delivery. Other peptides like SST can also be delivered via the membrane−polymer hybrid nanosystem for the treatment of diseases, broadening and promoting the potential clinical applications of peptides as therapeutics.
Collapse
Affiliation(s)
- Fang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yu Deng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Luying Yu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ao Zhou
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jieting Wang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jingyan Jia
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Fadian Ding
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Wei Lian
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Qicai Liu
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Yu Yang
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Juqian Road 185, Changzhou 213000, China
- Correspondence: (Y.Y.); (X.L.)
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Correspondence: (Y.Y.); (X.L.)
| |
Collapse
|
7
|
Xu R, Duan C, Meng Z, Zhao J, He Q, Zhang Q, Gong C, Huang J, Xie Q, Yang Q, Bai Y. Lipid Microcapsules Promoted Neural Stem Cell Survival in the Infarcted Area of Mice with Ischemic Stroke by Inducing Autophagy. ACS Biomater Sci Eng 2022; 8:4462-4473. [PMID: 36069708 DOI: 10.1021/acsbiomaterials.2c00228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracerebral transplantation of neural stem cells (NSCs) for ischemic stroke treatment has been demonstrated to be inefficient, with only <5% of delivered cells being retained. Microcapsules may be a good carrier for NSC delivery; however, the current microcapsules do not fully meet the demands for cell survival after transplantation. In the present study, we designed a strategy for the encapsulation of NSCs in a novel lipid-alginate (L-A) microcapsule based on a two-step method. The protective effect of a L-A microcapsule on oxygen-glucose deprivation (OGD) was investigated by using the CCK8 test, the LDH release test, and flow cytometry. Mechanisms underlying the prosurvival effect were investigated by detecting autophagy markers like P62, LC3-I, and LC3-II, and autophagy flux analysis was also performed. Lastly, the ability of the L-A microcapsule to support NSCs delivery for ischemic stroke was investigated in the middle cerebral artery occlusion (MCAO) model. We found that L-A microcapsules exerted a good protective effect against OGD compared with control and alginate microcapsules. The L-A microcapsules were found to promote cell survival by not only providing a "physical" barrier but also altering autophagy markers like P62 and LC3-II, which enhanced autophagy flux. This novel microcapsule was confirmed to be suitable for NSC delivery in vivo, which alleviated transplanted NSC apoptosis, reduced the infarct volume, decreased brain edema, improved neurological deficit scores, and lastly, improved survival rate. The findings of this study may provide a new method for stem cell delivery, raising the prospect that intracerebral cell transplantation may be used to treat, for instance, ischemic stroke, traumatic brain injury, and so on.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Chunmei Duan
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Zhaoyou Meng
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Jian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xichangan Street, Changan District, Xi'an 710119, China
| | - Qian He
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Qin Zhang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Changxiong Gong
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Jiacheng Huang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Qi Xie
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Qingwu Yang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Yang Bai
- Department of Otolaryngology, The First Affiliated Hospital, Army Medical University, Gaotanyan Zheng Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|