1
|
Kalsi S, Singh J, Saini KV, Sharma NK. Orientation effect and locational variation in elastic-plastic compressive properties of bovine cortical bone. Proc Inst Mech Eng H 2025; 239:72-82. [PMID: 39785362 DOI: 10.1177/09544119241308056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Bone is a highly heterogeneous and anisotropic material with a hierarchical structure. The effect of diaphysis locations and directions of loading on elastic-plastic compressive properties of bovine femoral cortical bone was examined in this study. The impact of location and loading directions on elastic-plastic compressive properties of cortical bone was found to be statistically insignificant in this study. The variances of most of the compressive properties were also observed to be location and directionality independent except for the locational differences in modulus of resilience (distal to central for longitudinal loading) and plastic work (central to distal for transverse loading) as well as differences in variances of the modulus of resilience and elastic modulus values for two directions of loading. The micro-mechanisms of cortical bone failure for longitudinal and transverse directions of loading were considered to be responsible for the difference in variances in the later properties values as well as for the maximum and minimum coefficient of variation (CV) obtained for compressive properties in two directions of loading. The representative cubical volume at the tested hierarchical level contained all unique microstructural features of the plexiform bone and therefore produced the homogeneous and isotropic elastic-plastic compressive properties of cortical bone. It is expected that the outcome of this study may be helpful in the area of bone tissue engineering and finite element simulation of cortical bone.
Collapse
Affiliation(s)
- Sachin Kalsi
- Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India
| | - Jagjit Singh
- Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India
| | - Karan Vir Saini
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nitin Kumar Sharma
- Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Bracher S, Voumard B, Simon M, Kochetkova T, Pretterklieber M, Zysset P. Bone collagen tensile properties of the aging human proximal femur. Bone Rep 2024; 21:101773. [PMID: 38778833 PMCID: PMC11109327 DOI: 10.1016/j.bonr.2024.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Despite the dominant role of bone mass in osteoporotic fractures, aging bone tissue properties must be thoroughly understood to improve osteoporosis management. In this context, collagen content and integrity are considered important factors, although limited research has been conducted on the tensile behavior of demineralized compact bone in relation to its porosity and elastic properties in the native mineralized state. Therefore, this study aims (i) at examining the age-dependency of mineralized bone and collagen micromechanical properties; (ii) to test whether, and if so to which extent, collagen properties contribute to mineralized bone mechanical properties. Two cylindrical cortical bone samples from fresh frozen human anatomic donor material were extracted from 80 proximal diaphyseal sections from a cohort of 24 female and 19 male donors (57 to 96 years at death). One sample per section was tested in uniaxial tension under hydrated conditions. First, the native sample was tested elastically (0.25 % strain), and after demineralization, up to failure. Morphology and composition of the second specimen was assessed using micro-computed tomography, Raman spectroscopy, and gravimetric methods. Simple and multiple linear regression were employed to relate morphological, compositional, and mechanical variables with age and sex. Macro-tensile properties revealed that only elastic modulus of native samples was age dependent whereas apparent elastic modulus was sex dependent (p < 0.01). Compositional and morphological analysis detected a weak but significant age and sex dependency of relative mineral weight (r = -0.24, p < 0.05) and collagen disorder ratio (I∼1670/I∼1640, r = 0.25, p < 0.05) and a strong sex dependency of bone volume fraction while generally showing consistent results in mineral content assessment. Young's modulus of demineralized bone was significantly related to tissue mineral density and Young's modulus of native bone. The results indicate that mechanical properties of the organic phase, that include collagen and non-collagenous proteins, are independent of donor age. The observed reduction in relative mineral weight and corresponding overall stiffer response of the collagen network may be caused by a reduced number of mineral-collagen connections and a lack of extrafibrillar and intrafibrillar mineralization that induces a loss of waviness and a collagen fiber pre-stretch.
Collapse
Affiliation(s)
- Stefan Bracher
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Benjamin Voumard
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Mathieu Simon
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Tatiana Kochetkova
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Michael Pretterklieber
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| |
Collapse
|
3
|
Alijani H, Vaughan TJ. Exploring the hierarchical structure of lamellar bone and its impact on fracture behaviour: A computational study using a phase field damage model. J Mech Behav Biomed Mater 2024; 153:106471. [PMID: 38458079 DOI: 10.1016/j.jmbbm.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Bone is a naturally occurring composite material composed of a stiff mineral phase and a compliant organic matrix of collagen and non-collagenous proteins (NCP). While diverse mineral morphologies such as platelets and grains have been documented, the precise role of individual constituents, and their morphology, remains poorly understood. To understand the role of constituent morphology on the fracture behaviour of lamellar bone, a damage based representative volume element (RVE) was developed, which considered various mineral morphologies and mineralised collagen fibril (MCF) configurations. This model framework incorporated a novel phase-field damage model to predict the onset and evolution of damage at mineral-mineral and mineral-MCF interfaces. It was found that platelet-based mineral morphologies had superior mechanical performance over their granular counterparts, owing to their higher load-bearing capacity, resulting from a higher aspect ratio. It was also found that MCFs had a remarkable capacity for energy dissipation under axial loading, with these fibrillar structures acting as barriers to crack propagation, thereby enhancing overall elongation and toughness. Interestingly, the presence of extrafibrillar platelet-based minerals also provided an additional toughening through a similar mechanism, whereby these structures also inhibited crack propagation. These findings demonstrate that the two primary constituent materials of lamellar bone play a key role in its toughening behaviour, with combined effect by both mineral and MCFs to inhibit crack propagation at this scale. These results have provided novel insight into the fracture behaviour of lamellar bone, enhancing our understanding of microstructure-property relationships at the sub-tissue level.
Collapse
Affiliation(s)
- Hamid Alijani
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland.
| |
Collapse
|
4
|
Alijani H, Vaughan TJ. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils. J Mech Behav Biomed Mater 2024; 153:106472. [PMID: 38432183 DOI: 10.1016/j.jmbbm.2024.106472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
At the tissue-scale and above, there are now well-established structure-property relationships that provide good approximations of the biomechanical performance of bone through, for example, power-law relationships that relate tissue mineral density to elastic properties. However, below the tissue-level, the individual role of the constituents becomes prominent and these simple relationships tend to break down, with more detailed theoretical and computational models are required to describe the mechanical response. In this study, a two-dimensional micromechanics damage-based representative volume element (RVE) of lamellar bone was developed, which included a novel implementation of a phase-field damage model to describe the behaviour of non-collagenous proteins at mineral-mineral and mineral-fibril interface regions. It was found that, while the stiffness of the tissue was governed by the relative proportion of extra-fibrillar mineral and mineralised collagen fibrils, the strength and toughness of the tissue in transverse direction relied on the interactions occurring at mineral-mineral and mineral-fibril interfaces, highlighting the prominence of non-collagenous proteins in determine fracture-based processes at this scale. While fractures tended to initiate in mineral rich areas of the extra-fibrillar mineral matrix, it was found that the presence of mineralised collagen fibrils at low density did not provide a substantial contribution to crack propagation behaviour under transverse loading. However, at physiological volume fraction (VfMCF=50%), different scenarios could arise depending on the relative strength value of the interphase around the MCFs ( [Formula: see text] ) to the interphase between individual minerals ( [Formula: see text] ): (i) When [Formula: see text] , MCFs appear to facilitate crack propagation with MCF-mineral debonding being the dominant failure mode; (ii) once γ>1, the MCFs hinder the microcracks, leading to inhibition of crack propagation, which can be regarded as an energy dissipation mechanism. The effective fracture properties of the tissue also experience a sudden increase in fracture work density (J-integral) once the crack is arrested by MCFs or severely deflected. Collectively, the predicted behaviour of the model compared well to those reported through experimental and computational methods, highlighting its potential to provide further understanding into the mechanistic response of bone ultrastructure alterations related to the structural and compositional changes resulting from disease and aging.
Collapse
Affiliation(s)
- Hamid Alijani
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland.
| |
Collapse
|
5
|
Indermaur M, Casari D, Kochetkova T, Willie BM, Michler J, Schwiedrzik J, Zysset P. Does tissue fixation change the mechanical properties of dry ovine bone extracellular matrix? J Mech Behav Biomed Mater 2024; 150:106294. [PMID: 38128472 DOI: 10.1016/j.jmbbm.2023.106294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/01/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Tissue fixation is a prevalent method for bone conservation. Bone biopsies are typically fixed in formalin, dehydrated in ethanol, and infiltrated with polymethyl methacrylate (PMMA) Since some experiments can only be performed on fixed bone samples, it is essential to understand how fixation affects the measured material properties. The aim of this study was to quantify the influence of tissue fixation on the mechanical properties of cortical ovine bone at the extracellular matrix (ECM) level with state-of-the-art micromechanical techniques. A small section from the middle of the diaphysis of two ovine tibias (3.5 and 5.5 years old) was cut in the middle and polished on each side, resulting in a pair of mirrored surfaces. For each pair, one specimen underwent a fixation protocol involving immersion in formalin, dehydration with ethanol, and infiltration with PMMA. The other specimen (mirrored) was air-dried. Six osteons were selected in both pairs, which could be identified in both specimens. The influence of fixation on the mechanical properties was first analyzed using micropillar compression tests and nanoindentation in dry condition. Additionally, changes in the degree of mineralization were evaluated with Raman spectroscopy in both fixed and native bone ECM. Finally, micro tensile experiments were conducted in the 3.5-year fixed ovine bone ECM and compared to reported properties of unfixed dry ovine bone ECM. Interestingly, we found that tissue fixation does not alter the mechanical properties of ovine cortical bone ECM compared to experiments in dry state. However, animal age increases the degree of mineralization (p = 0.0159) and compressive yield stress (p = 0.041). Tissue fixation appears therefore as a valid conservation technique for investigating the mechanical properties of dehydrated bone ECM.
Collapse
Affiliation(s)
- Michael Indermaur
- ARTORG Center for Biomedical Engineering, University of Bern, Switzerland.
| | - Daniele Casari
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Tatiana Kochetkova
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Johann Michler
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Jakob Schwiedrzik
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering, University of Bern, Switzerland.
| |
Collapse
|
6
|
Uniyal P, Kaur S, Dhiman V, Kumar Bhadada S, Kumar N. Effect of inelastic deformation on strain rate-dependent mechanical behaviour of human cortical bone. J Biomech 2023; 161:111853. [PMID: 37890220 DOI: 10.1016/j.jbiomech.2023.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
In this study, the role of inelastic deformation of bone on its strain rate-dependent mechanical behaviour was investigated. For this, human cortical bone samples were cyclically loaded to accumulate inelastic strain and subsequently, mechanical response was investigated under compressive loading at different strain rates. The strain rate behaviour of fatigued samples was compared with non-loaded control samples. Furthermore, cyclic loading-induced microdamage was quantified through histological analysis. The compression test results show that the strength of fatigue-loaded bone reduced significantly at low strain rates but not at high strain rates. The difference in microcrack density was not significant between fatigued and control groups. The results indicate that the mechanism of load transfer varies between low strain rate and high strain rate regimes. The inelastic deformation mechanisms are more prominent at low strain rates but not at high strain rates. This study shed light on the role of inelastic deformation on the rate-dependent behaviour of cortical bone.
Collapse
Affiliation(s)
- Piyush Uniyal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Simran Kaur
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Navin Kumar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India; Department of Mechanical Engineering, Indian Institute of Technology Ropar, India
| |
Collapse
|
7
|
Indermaur M, Casari D, Kochetkova T, Willie BM, Michler J, Schwiedrzik J, Zysset P. Tensile Mechanical Properties of Dry Cortical Bone Extracellular Matrix: A Comparison Among Two Osteogenesis Imperfecta and One Healthy Control Iliac Crest Biopsies. JBMR Plus 2023; 7:e10826. [PMID: 38130764 PMCID: PMC10731133 DOI: 10.1002/jbm4.10826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 12/23/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetic, collagen-related bone disease that increases the incidence of bone fractures. Still, the origin of this brittle mechanical behavior remains unclear. The extracellular matrix (ECM) of OI bone exhibits a higher degree of bone mineralization (DBM), whereas compressive mechanical properties at the ECM level do not appear to be inferior to healthy bone. However, it is unknown if collagen defects alter ECM tensile properties. This study aims to quantify the tensile properties of healthy and OI bone ECM. In three transiliac biopsies (healthy n = 1, OI type I n = 1, OI type III n = 1), 23 microtensile specimens (gauge dimensions 10 × 5 × 2 μm3) were manufactured and loaded quasi-statically under tension in vacuum condition. The resulting loading modulus and ultimate strength were extracted. Interestingly, tensile properties in OI bone ECM were not inferior compared to controls. All specimens revealed a brittle failure behavior. Fracture surfaces were graded according to their mineralized collagen fibers (MCF) orientation into axial, mixed, and transversal fracture surface types (FST). Furthermore, tissue mineral density (TMD) of the biopsy cortices was extracted from micro-computed tomogra[hy (μCT) images. Both FST and TMD are significant factors to predict loading modulus and ultimate strength with an adjusted R 2 of 0.556 (p = 2.65e-05) and 0.46 (p = 2.2e-04), respectively. The influence of MCF orientation and DBM on the mechanical properties of the neighboring ECM was further verified with quantitative polarized Raman spectroscopy (qPRS) and site-matched nanoindentation. MCF orientation and DBM were extracted from the qPRS spectrum, and a second mechanical model was developed to predict the indentation modulus with MCF orientation and DBM (R 2 = 67.4%, p = 7.73e-07). The tensile mechanical properties of the cortical bone ECM of two OI iliac crest biopsies are not lower than the one from a healthy and are primarily dependent on MCF orientation and DBM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael Indermaur
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
| | - Daniele Casari
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Tatiana Kochetkova
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children‐Canada, Department of Pediatric SurgeryMcGill UniversityMontrealQCCanada
| | - Johann Michler
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Jakob Schwiedrzik
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
| |
Collapse
|
8
|
Kochetkova T, Hanke MS, Indermaur M, Groetsch A, Remund S, Neuenschwander B, Michler J, Siebenrock KA, Zysset P, Schwiedrzik J. Composition and micromechanical properties of the femoral neck compact bone in relation to patient age, sex and hip fracture occurrence. Bone 2023; 177:116920. [PMID: 37769956 DOI: 10.1016/j.bone.2023.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Current clinical methods of bone health assessment depend to a great extent on bone mineral density (BMD) measurements. However, these methods only act as a proxy for bone strength and are often only carried out after the fracture occurs. Besides BMD, composition and tissue-level mechanical properties are expected to affect the whole bone's strength and toughness. While the elastic properties of the bone extracellular matrix (ECM) have been extensively investigated over the past two decades, there is still limited knowledge of the yield properties and their relationship to composition and architecture. In the present study, morphological, compositional and micropillar compression bone data was collected from patients who underwent hip arthroplasty. Femoral neck samples from 42 patients were collected together with anonymous clinical information about age, sex and primary diagnosis (coxarthrosis or hip fracture). The femoral neck cortex from the inferomedial region was analyzed in a site-matched manner using a combination of micromechanical testing (nanoindentation, micropillar compression) together with micro-CT and quantitative polarized Raman spectroscopy for both morphological and compositional characterization. Mechanical properties, as well as the sample-level mineral density, were constant over age. Only compositional properties demonstrate weak dependence on patient age: decreasing mineral to matrix ratio (p = 0.02, R2 = 0.13, 2.6 % per decade) and increasing amide I sub-peak ratio I∼1660/I∼1683 (p = 0.04, R2 = 0.11, 1.5 % per decade). The patient's sex and diagnosis did not seem to influence investigated bone properties. A clear zonal dependence between interstitial and osteonal cortical zones was observed for compositional and elastic bone properties (p < 0.0001). Site-matched microscale analysis confirmed that all investigated mechanical properties except yield strain demonstrate a positive correlation with the mineral fraction of bone. The output database is the first to integrate the experimentally assessed microscale yield properties, local tissue composition and morphology with the available patient clinical information. The final dataset was used for bone fracture risk prediction in-silico through the principal component analysis and the Naïve Bayes classification algorithm. The analysis showed that the mineral to matrix ratio, indentation hardness and micropillar yield stress are the most relevant parameters for bone fracture risk prediction at 70 % model accuracy (0.71 AUC). Due to the low number of samples, further studies to build a universal fracture prediction algorithm are anticipated with the higher number of patients (N > 200). The proposed classification algorithm together with the output dataset of bone tissue properties can be used for the future comparison of existing methods to evaluate bone quality as well as to form a better understanding of the mechanisms through which bone tissue is affected by aging or disease.
Collapse
Affiliation(s)
- Tatiana Kochetkova
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.
| | - Markus S Hanke
- Department of Orthopedic Surgery, Inselspital, University of Bern, Switzerland
| | - Michael Indermaur
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Alexander Groetsch
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Stefan Remund
- Institute for Applied Laser, Photonics and Surface Technologies (ALPS), Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Beat Neuenschwander
- Institute for Applied Laser, Photonics and Surface Technologies (ALPS), Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Johann Michler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Klaus A Siebenrock
- Department of Orthopedic Surgery, Inselspital, University of Bern, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Jakob Schwiedrzik
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.
| |
Collapse
|
9
|
Groetsch A, Gourrier A, Casari D, Schwiedrzik J, Shephard JD, Michler J, Zysset PK, Wolfram U. The elasto-plastic nano- and microscale compressive behaviour of rehydrated mineralised collagen fibres. Acta Biomater 2023; 164:332-345. [PMID: 37059408 DOI: 10.1016/j.actbio.2023.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
The hierarchical design of bio-based nanostructured materials such as bone enables them to combine unique structure-mechanical properties. As one of its main components, water plays an important role in bone's material multiscale mechanical interplay. However, its influence has not been quantified at the length-scale of a mineralised collagen fibre. Here, we couple in situ micropillar compression, and simultaneous synchrotron small angle X-ray scattering (SAXS) and X-ray diffraction (XRD) with a statistical constitutive model. Since the synchrotron data contain statistical information on the nanostructure, we establish a direct connection between experiment and model to identify the rehydrated elasto-plastic micro- and nanomechanical fibre behaviour. Rehydration led to a decrease of 65%-75% in fibre yield stress and compressive strength, and 70% in stiffness with a 3x higher effect on stresses than strains. While in agreement with bone extracellular matrix, the decrease is 1.5-3x higher compared to micro-indentation and macro-compression. Hydration influences mineral more than fibril strain with the highest difference to the macroscale when comparing mineral and tissue levels. The effect of hydration seems to be strongly mediated by ultrastructural interfaces while results provide insights towards mechanical consequences of reported water-mediated structuring of bone apatite. The missing reinforcing capacity of surrounding tissue for an excised fibril array is more pronounced in wet than dry conditions, mainly related to fibril swelling. Differences leading to higher compressive strength between mineralised tissues seem not to depend on rehydration while the lack of kink bands supports the role of water as an elastic embedding influencing energy-absorption mechanisms. STATEMENT OF SIGNIFICANCE: Characterising structure-property-function relationships in hierarchical biological materials helps us to elucidate mechanisms that enable their unique properties. Experimental and computational methods can advance our understanding of their complex behaviour with the potential to inform bio-inspired material development. In this study, we close a gap for bone's fundamental mechanical building block at micro- and nanometre length scales. We establish a direct connection between experiments and simulations by coupling in situ synchrotron tests with a statistical model and quantify the behaviour of rehydrated single mineralised collagen fibres. Results suggest a high influence of hydration on structural interfaces, and the role of water as an elastic embedding by outlining important differences between wet and dry elasto-plastic properties of mineral nanocrystals, fibrils and fibres.
Collapse
Affiliation(s)
- Alexander Groetsch
- Institute of Mechanical, Process & Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | | | - Daniele Casari
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Jakob Schwiedrzik
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Jonathan D Shephard
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Johann Michler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Philippe K Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Switzerland
| | - Uwe Wolfram
- Institute of Mechanical, Process & Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| |
Collapse
|
10
|
Qiu J, Liao Z, Xiang H, Li H, Yuan D, Jiang C, Xie J, Qin M, Li K, Zhao H. Effects of different preservation on the mechanical properties of cortical bone under quasi-static and dynamic compression. Front Bioeng Biotechnol 2023; 11:1082254. [PMID: 36911185 PMCID: PMC9995777 DOI: 10.3389/fbioe.2023.1082254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Mechanical properties of biological tissue are important for numerical simulations. Preservative treatments are necessary for disinfection and long-term storage when conducting biomechanical experimentation on materials. However, few studies have been focused on the effect of preservation on the mechanical properties of bone in a wide strain rate. The purpose of this study was to evaluate the influence of formalin and dehydration on the intrinsic mechanical properties of cortical bone from quasi-static to dynamic compression. Methods: Cube specimens were prepared from pig femur and divided into three groups (fresh, formalin, and dehydration). All samples underwent static and dynamic compression at a strain rate from 10-3 s-1 to 103 s-1. The ultimate stress, ultimate strain, elastic modulus, and strain-rate sensitivity exponent were calculated. A one-way ANOVA test was performed to determine if the preservation method showed significant differences in mechanical properties under at different strain rates. The morphology of the macroscopic and microscopic structure of bones was observed. Results: The results show that ultimate stress and ultimate strain increased as the strain rate increased, while the elastic modulus decreased. Formalin fixation and dehydration did not affect elastic modulus significantly whereas significantly increased the ultimate strain and ultimate stress. The strain-rate sensitivity exponent was the highest in the fresh group, followed by the formalin group and dehydration group. Different fracture mechanisms were observed on the fractured surface, with fresh and preserved bone tending to fracture along the oblique direction, and dried bone tending to fracture along the axial direction. Discussion: In conclusion, preservation with both formalin and dehydration showed an influence on mechanical properties. The influence of the preservation method on material properties should be fully considered in developing a numerical simulation model, especially for high strain rate simulation.
Collapse
Affiliation(s)
- Jinlong Qiu
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Zhikang Liao
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Hongyi Xiang
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Haocheng Li
- Department of Medical Engineering, General Hospital of Central Theater Command, Wuhan, China
| | - Danfeng Yuan
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Chengyue Jiang
- School of Vehicle Engineering, Chongqing University of Technology, Chongqing, China
| | - Jingru Xie
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Mingxin Qin
- College of Biomedical Engineering, Army Medical University, PLA, Chongqing, China
| | - Kui Li
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Hui Zhao
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| |
Collapse
|
11
|
Kochetkova T, Groetsch A, Indermaur M, Peruzzi C, Remund S, Neuenschwander B, Bellon B, Michler J, Zysset P, Schwiedrzik J. Assessing minipig compact jawbone quality at the microscale. J Mech Behav Biomed Mater 2022; 134:105405. [DOI: 10.1016/j.jmbbm.2022.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|