1
|
Lan X, Johnston E, Ning T, Chen G, Haglund L, Li J. Immunomodulatory bioadhesive technologies. Biomaterials 2025; 321:123274. [PMID: 40156979 DOI: 10.1016/j.biomaterials.2025.123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Bioadhesives have found significant use in medicine and engineering, particularly for wound care, tissue engineering, and surgical applications. Compared to traditional wound closure methods such as sutures and staples, bioadhesives offer advantages, including reduced tissue damage, enhanced healing, and ease of implementation. Recent progress highlights the synergy of bioadhesives and immunoengineering strategies, leading to immunomodulatory bioadhesives capable of modulating immune responses at local sites where bioadhesives are applied. They foster favorable therapeutic outcomes such as reduced inflammation in wounds and implants or enhanced local immune responses to improve cancer therapy efficacy. The dual functionalities of bioadhesion and immunomodulation benefit wound management, tissue regeneration, implantable medical devices, and post-surgical cancer management. This review delves into the interplay between bioadhesion and immunomodulation, highlighting the mechanobiological coupling involved. Key areas of focus include the modulation of immune responses through chemical and physical strategies, as well as the application of these bioadhesives in wound healing and cancer treatment. Discussed are remaining challenges such as achieving long-term stability and effectiveness, necessitating further research to fully harness the clinical potential of immunomodulatory bioadhesives.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Evan Johnston
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Tianqin Ning
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Ave W, Montreal, Quebec, H3A 1A3, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Shriners Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec, H4A 0A9, Canada.
| | - Jianyu Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
2
|
Matsui Y, Tobe M, Nobusawa S, Shirakura T, Sasaki Y, Kawakami A, Yoshizaki Y, Ohya Y, Saito S. An injectable controlled-release local anesthetic formulation of levobupivacaine based on a temperature-responsive polymer: Evaluation of analgesia, motor impairment, and histological toxicity in rats. J Anesth 2025:10.1007/s00540-025-03485-y. [PMID: 40188184 DOI: 10.1007/s00540-025-03485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/28/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE Postoperative pain management is extremely important for early recovery after surgery. However, effective and safe techniques for controlling postoperative pain are lacking. This study examined the effectiveness of controlled-release levobupivacaine for creating sciatic nerve blocks in a rat model of postoperative pain. METHODS A novel controlled-release injectable levobupivacaine gel was produced using a triblock copolymer of poly(ε-caprolactone-co-glycolide) and polyethylene glycol (tri-PCG). Male rats were used to create the incisional pain model. A single dose of controlled-release levobupivacaine (2.25%) gel, 0.25% levobupivacaine (clinical use), or tri-PCG was injected around the sciatic nerve of each rat immediately before paw incision. The pain thresholds were assessed preoperatively and up to 48 h postoperatively using von Frey filaments. Side effects were assessed using a motor impairment test, levobupivacaine blood level measurements, and pathological assessments. RESULTS The novel controlled-release levobupivacaine exhibited temperature-responsive sol-gel transition. In vitro, this formulation released 60% of its levobupivacaine content within 24 h. The withdrawal threshold was higher in the controlled-release levobupivacaine group than in the 0.25% levobupivacaine group at 6 and 12 h after paw incision. Motor impairment was not observed after controlled-release levobupivacaine injection, and the levobupivacaine blood level remained below the limit of detection throughout the assessment. On histopathology, weak signs of inflammation were detected in rat muscle and nerve tissues in the controlled-release levobupivacaine group. CONCLUSION A single injection of controlled-release levobupivacaine gel almost safely inhibited hyperalgesia for 12 h in a rat model. However, further research is needed on its effects on the surrounding tissue.
Collapse
Affiliation(s)
- Yusuke Matsui
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masaru Tobe
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takahiro Shirakura
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuki Sasaki
- Department of Chemistry, Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Ayaka Kawakami
- Department of Chemistry, Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Yuta Yoshizaki
- Organization for Research & Development of Innovative Science & Technology, Kansai University, Suita, Osaka, Japan
| | - Yuichi Ohya
- Department of Chemistry, Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
3
|
Sun S, Wang Q, Zhang B, Cui Y, Si X, Wang G, Wang J, Xu H, Yuan B, Peng C. Vancomycin-Loaded in situ Gelled Hydrogel as an Antibacterial System for Enhancing Repair of Infected Bone Defects. Int J Nanomedicine 2024; 19:10227-10245. [PMID: 39411352 PMCID: PMC11476785 DOI: 10.2147/ijn.s448876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose During treatment of infected bone defects, control of infection is necessary for effective bone repair, and hence controlled topical application of antibiotics is required in clinical practice. In this study, a biodegradable drug delivery system with in situ gelation at the site of infection was prepared by integrating vancomycin into a polyethylene glycol/oxidized dextran (PEG/ODEX) hydrogel matrix. Methods In this work, PEG/ODEX hydrogels were prepared by Schiff base reaction, and vancomycin was loaded into them to construct a drug delivery system with controllable release and degradability. We first examined the microstructure, degradation time and drug release of the hydrogels. Then we verified the biocompatibility and in vitro ability of the release system. Finally, we used a rat infected bone defect model for further experiments. Results The results showed that this antibacterial system could be completely biodegradable in vivo for 56 days, and its degradation products did not cause specific inflammatory response. The cumulative release of vancomycin from the antibacterial system was 58.3% ± 3.8% at 14 days and 78.4% ± 3.2% at 35 days. The concentration of vancomycin in the surrounding environment was about 1.2 mg/mL, which can effectively remove bacteria. Further studies in vivo showed that the antibacterial system cleared the infection and accelerated repair of infected bone defects in the femur of rats. There was no infection in rats after 8 weeks of treatment. The 3D image analysis of the experimental group showed that the bone volume fraction (BV/TV) was 1.39-fold higher (p < 0.001), the trabecular number (Tb.N) was 1.31-fold higher (p < 0.05), and the trabecular separation (Tb.Sp) was 0.58-fold higher than those of the control group (p < 0.01). Conclusion In summary, this study clearly demonstrates that a clinical strategy based on biological materials can provide an innovative and effective approach to treatment of infected bone defects.
Collapse
Affiliation(s)
- Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Qian Wang
- Department of Otolaryngology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bin Zhang
- Department of Spinal Surgery, The 964th Hospital of PLA Joint Logistic Support Force, Changchun, People’s Republic of China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xinghui Si
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hang Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Baoming Yuan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
4
|
Feng H, Ang K, Guan P, Li J, Meng H, Yang J, Fan L, Sun Y. Application of adhesives in the treatment of cartilage repair. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 01/04/2025]
Abstract
AbstractFrom degeneration causing intervertebral disc issues to trauma‐induced meniscus tears, diverse factors can injure the different types of cartilage. This review highlights adhesives as a promising and rapidly implemented repair strategy. Compared to traditional techniques such as sutures and wires, adhesives offer several advantages. Importantly, they seamlessly connect with the injured tissue, deliver bioactive substances directly to the repair site, and potentially alleviate secondary problems like inflammation or degeneration. This review delves into the cutting‐edge advancements in adhesive technology, specifically focusing on their effectiveness in cartilage injury treatment and their underlying mechanisms. We begin by exploring the material characteristics of adhesives used in cartilage tissue, focusing on essential aspects like adhesion, biocompatibility, and degradability. Subsequently, we investigate the various types of adhesives currently employed in this context. Our discussion then moves to the unique role adhesives play in addressing different cartilage injuries. Finally, we acknowledge the challenges currently faced by this promising technology.
Collapse
Affiliation(s)
- Haoyang Feng
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Kai Ang
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Pengfei Guan
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Junji Li
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Huan Meng
- Postdoc Cartilage Biology AO Research Institute Davos Davos Platz Wellington Switzerland
| | - Jian Yang
- Biomedical Engineering Program School of Engineering Westlake University Hangzhou China
| | - Lei Fan
- Department of Orthopedic Surgery Nanfang Hospital Southern Medical University Guangzhou China
| | - Yongjian Sun
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| |
Collapse
|
5
|
Zhang S, Lv R, Zhang Z, Wang Z, Jin Z. Advancements in hydrogel-based embolic agents: Categorized by therapeutic mechanisms. Cancer Med 2024; 13:e70183. [PMID: 39440706 PMCID: PMC11497111 DOI: 10.1002/cam4.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Transcatheter arterial embolization (TAE) is a crucial technique in interventional radiology. Hydrogel-based embolic agents show promise due to their phase transition and drug-loading capabilities. However, existing categorizations of these agents are confusing. AIMS This review tackles the challenge of categorizing hydrogel-based embolic agents based on their therapeutic mechanisms, including transportation, accumulation, interaction, and elimination. It also addresses current challenges and controversies in the field while highlighting future directions for hydrogel-based embolicagents. MATERIALS AND METHODS We conducted a systematic review of papers published in PUBMED from 2004 to 2024, focusing primarily on preclinical trials. RESULTS Various kinds of hydrogel embolic agents were introduced according to their therapeutic mechanisms. DISCUSSION Most hydrogel embolic agents were specifically designed for effective accumulation and interaction. Recent advancement highlight the potential of multifunctional hydrogel embolic agents. CONCLUSION This new categorizations provided valuable insights into hydrogel embolic agents, potentially guiding material scientists and interventional radiologists in the development of novel hydrogel embolic agents in transarterial embolization.
Collapse
Affiliation(s)
- Shenbo Zhang
- Department of Radiology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Rui Lv
- Department of Radiology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Zhe Zhang
- Department of Radiology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
6
|
Selvaraj S, Chauhan A, Verma R, Dutta V, Rana G, Duglet R, Subbarayan R, Batoo KM. Role of degrading hydrogels in hepatocellular carcinoma drug delivery applications: A review. J Drug Deliv Sci Technol 2024; 95:105628. [DOI: 10.1016/j.jddst.2024.105628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Yoshizaki Y, Horii K, Murase N, Kuzuya A, Ohya Y. Development of immune cell delivery system using biodegradable injectable polymers for cancer immunotherapy. Int J Pharm 2024; 652:123801. [PMID: 38244647 DOI: 10.1016/j.ijpharm.2024.123801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Immune cell delivery using injectable hydrogel attracts much attention for improving its therapeutic effect. Specifically, dendritic cells (DCs) are the trigger cells for immune responses, and DC vaccines are studied for improving cancer immunotherapy. Hydrogel-assisted cell delivery is expected to enhance the viability of the implanted cells. We recently reported temperature-responsive biodegradable injectable polymer (IP) formulation utilizing poly(ε-caprolactone-co-glycolide)-b-poly(ethylene glycol)(PEG)-b-poly(ε-caprolactone-co-glycolide) (tri-PCG). Tri-PCG-based IP was reported to exhibit immediate sol-to-gel transition in response to temperature increase, in vivo biodegradability, and excellent biocompatibility. In this study, tri-PCG-based IP was applied to DC delivery. IP encapsulated live DCs, and the DCs incorporated ovalbumin (OVA) as a model antigen and CpG-DNA (oligo DNA with adjuvant effect) in IP hydrogel. Results suggested that DCs encapsulated in IP hydrogel internalized OVA and CpG-DNA and DCs were maturated to present antigens to T cells. Moreover, subcutaneously injected tri-PCG-based IP prolonged the retention period of cell accumulation at injected sites. Tri-PCG IP hydrogel could release matured DCs as the degradation of the hydrogel progressed. Tri-PCG IP formulation improved treatment efficacy of OVA transfected mouse lymphoma (E.G7-OVA) tumor. Hence, tri-PCG IP is a promising platform for immune cell delivery.
Collapse
Affiliation(s)
- Yuta Yoshizaki
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Kenta Horii
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Nobuo Murase
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan; Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Akinori Kuzuya
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan; Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Yuichi Ohya
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan; Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
8
|
Enbanathan S, Munusamy S, Ponnan S, Jothi D, Manoj Kumar S, Sathiyanarayanan KI. AIE active luminous dye with a triphenylamine attached benzothiazole core as a portable polymer film for sensitively detecting CN- ions in food samples. Talanta 2023; 264:124726. [PMID: 37276676 DOI: 10.1016/j.talanta.2023.124726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Aggregation-induced emission (AIE) active 3-(3-(benzo[d]thiazol-2-yl)-2-hydroxyphenyl)-2-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)acrylonitrile (BTPA) has been designed and synthesized herein, with the goal of detecting CN- ions at a low-level in semi-aqueous medium. The deliberate addition of the electron-deficient alkene BTPA increased its sensitivity and selectivity to CN- ions, with a better detection limit of 6.4 nM, unveiling the next-generation approach to creating sophisticated CN- ions selective chemosensors. The ESI-MS and NMR spectra analyses provided strong support for the structures of the chemosensors, while the UV-Vis, photoluminescence, and 1H-NMR titration experiments provided support for the sensing efficiencies. Subsequently, PVDF/BTPA electrospun nanofibers have been effectively produced as functional films. These nanofiber films exhibit outstanding mechanical strength, photo/thermal stability, and optical responsiveness to CN- ions, making them a potential choice for on-field emerging contaminant detection.
Collapse
Affiliation(s)
- Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | - Sathishkumar Munusamy
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, United States.
| | - Sathiyanathan Ponnan
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Dhanapal Jothi
- Department of Advanced Organic Materials Science and Engineering, Chungnam National University, South Korea
| | - Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | | |
Collapse
|
9
|
Wu Y, Shang H, Lai S, Di Y, Sun X, Qiao N, Han L, Zhao Z, Lu Y. Preparation and evaluation of controllable drug delivery system: A light responsive nanosphere based on β-cyclodextrin/mesoporous silica. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Miao F, Lin H, Yao T, Zhang R, Sun X, Cheng H, Gu L, Xia X, Wu T, Li W, Liu G. A topical platelet-independent multilevel clotting initiator for intraoperative hemostasis. CHEMICAL ENGINEERING JOURNAL 2023; 454:139925. [DOI: 10.1016/j.cej.2022.139925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
11
|
Ohya Y, Yonezawa H, Moriwaki C, Murase N, Kuzuya A. A systematic study on the effects of the structure of block copolymers of PEG and poly(ε-caprolactone- co-glycolic acid) on their temperature-responsive sol-to-gel transition behavior. Polym Chem 2023; 14:1350-1358. [DOI: 10.1039/d2py01574a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The effects of the molecular structure on the temperature-responsive sol-to-gel transition behavior and neat morphology of the block copolymers of poly(ethylene glycol) and poly(ε-caprolactone-co-glycolic acid) were systematically investigated.
Collapse
Affiliation(s)
- Yuichi Ohya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
- Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, Suita, Osaka 564-8680, Japan
| | - Hidenori Yonezawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Chihiro Moriwaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Nobuo Murase
- Organization for Research and Development of Innovative Science and Technology (ORDSIT), Kansai University, Suita, Osaka 564-8680, Japan
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
- Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, Suita, Osaka 564-8680, Japan
| |
Collapse
|
12
|
Shokrani H, Shokrani A, Seidi F, Munir MT, Rabiee N, Fatahi Y, Kucinska-Lipka J, Saeb MR. Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction. Carbohydr Polym 2022; 295:119787. [DOI: 10.1016/j.carbpol.2022.119787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022]
|
13
|
Zhou J, Zhang H, Fareed MS, He Y, Lu Y, Yang C, Wang Z, Su J, Wang P, Yan W, Wang K. An Injectable Peptide Hydrogel Constructed of Natural Antimicrobial Peptide J-1 and ADP Shows Anti-Infection, Hemostasis, and Antiadhesion Efficacy. ACS NANO 2022; 16:7636-7650. [PMID: 35533290 DOI: 10.1021/acsnano.1c11206] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Postoperative adhesion is a common complication of abdominal surgery, which always has many adverse effects in patients. At present, there is still a lack of effective treatment measures and materials to prevent adhesion in the clinics. Herein, we report the potential use of J-1-ADP hydrogel formed by natural antimicrobial peptide jelleine-1 (J-1) self-assembling in adenosine diphosphate (ADP) sodium solution to prevent postsurgery adhesion formation. J-1-ADP hydrogel was found to have good antimicrobial activity against the bacteria and fungi tested and can be used to prevent tissue infection, which was thought to be one of the incitements of adhesion. Due to ADP being a platelet-activating factor, J-1-ADP hydrogel showed significant hemostatic activity in vitro verified by whole blood coagulation, plasma coagulation, platelet activation, and platelet adhesion assays. Further, it showed potent hemostatic activity in a mouse liver hemorrhage model. Bleeding was believed to be a cause of the formation of postsurgery adhesion. J-1-ADP hydrogel had a significant antiadhesion effect in a rat side wall defect-cecum abrasion model. In addition, it had good biocompatibility and degradation properties. So the present study may provide an alternative strategy for designing antimicrobial peptide hydrogel material to prevent postoperative adhesion formation in the clinic.
Collapse
Affiliation(s)
| | - Hanru Zhang
- Department of Obstetrics & Gynecology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou 730000, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|