1
|
Ng KY, Muhammad N, Mohd Noor SNF, Rahim SZA, Saleh MS, Muhammad NA, Ahmad AH, Muduli K. Effects of fused deposition modeling (FDM) printing parameters on quality aspects of polycaprolactone (PCL) for coronary stent applications: A review. J Biomater Appl 2025:8853282251334880. [PMID: 40241433 DOI: 10.1177/08853282251334880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Fused deposition modeling (FDM) is emerging as a promising technique for manufacturing bioresorbable stents (BRS), particularly for coronary artery disease treatment. Polycaprolactone (PCL) has emerged as a favored material due to its biocompatibility, controlled degradation rate and mechanical properties. This review provides a comprehensive analysis of the effects of key FDM printing parameters on the quality aspects of PCL-based BRS, focusing on morphological, mechanical and biological characteristics. This review also highlights inconsistencies in previous studies, particularly in the impact of these parameters on stent dimensions and mechanical properties, emphasizing the need for standardization in experimental methodologies. Additionally, the current gaps in research related to the mechanical and biological performances of PCL-based BRS are discussed, with a call for further studies on long-term effects. This review aims to guide future research by offering insights into optimizing FDM parameters for improving the overall performance and clinical outcomes of PCL-based BRS.
Collapse
Affiliation(s)
- Kuang Yee Ng
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia
| | - Noorhafiza Muhammad
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia
- Geopolymer and Green Technology, Centre of Excellence Geopolymer and Green Technology, Universiti Malaysia Perlis, Arau, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Shayfull Zamree Abd Rahim
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia
- Geopolymer and Green Technology, Centre of Excellence Geopolymer and Green Technology, Universiti Malaysia Perlis, Arau, Malaysia
| | - Mohd Shuhidan Saleh
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia
| | - Nur Amalina Muhammad
- School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Malaysia
| | - Asnul Hadi Ahmad
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Malaysia
| | - Kamalakanta Muduli
- Mechanical Engineering Department, Papua New Guinea University of Technology, Lae, Papua New Guinea
| |
Collapse
|
2
|
A Review on Microstructural Formations of Discontinuous Fiber-Reinforced Polymer Composites Prepared via Material Extrusion Additive Manufacturing: Fiber Orientation, Fiber Attrition, and Micro-Voids Distribution. Polymers (Basel) 2022; 14:polym14224941. [PMID: 36433068 PMCID: PMC9699595 DOI: 10.3390/polym14224941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
A discontinuous fiber-reinforced polymer composite (DFRPC) provides superior mechanical performances in material extrusion additive manufacturing (MEAM) parts, and thus promotes their implementations in engineering applications. However, the process-induced structural defects of DFRPCs increase the probability of pre-mature failures as the manufactured parts experience complicated external loads. In light of this, the meso-structures of the MEAM parts have been discussed previously, while systematic analyses reviewing the studies of the micro-structural formations of the composites are limited. This paper summarizes the current state-of-the-art in exploring the correlations between the MEAM processes and the associated micro-structures of the produced composites. Experimental studies and numerical analyses including fiber orientation, fiber attrition, and micro-voids are collected and discussed. Based on the review and parametric study results, it is considered that the theories and numerical characterizations on fiber length attrition and micro-porosities within the MEAM-produced composites are in high demand, which is a potential topic for further explorations.
Collapse
|
3
|
Li L, Zhu X, Yang H, Liang B, Yuan L, Hu Y, Chen F, Han X. Phase-Field Model for Drug Release of Water-Swellable Filaments for Fused Filament Fabrication. Mol Pharm 2022; 19:2854-2867. [PMID: 35801946 DOI: 10.1021/acs.molpharmaceut.2c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper treats the drug release process as a phase-field problem and a phase-field model capable of simulating the dynamics of multiple moving fronts, transient drug fluxes, and fractional drug release from swellable polymeric systems is proposed and validated experimentally. The model can not only capture accurately the positions and movements of the distinct fronts without tracking the locations of fronts explicitly but also predict well the release profile to the completion of the release process. The parametric study has shown that parameters including water diffusion coefficient, drug saturation solubility, drug diffusion coefficient, initial drug loading ratio, and initial porosity are critical in regulating the drug release kinetics. It has been also demonstrated that the model can be applied to the study of swellable filaments and has wide applicability for different materials. Due to explicit boundary position tracking being eliminated, the model paves the way for practical use and can be extended for dealing with geometrically complex drug delivery systems. It is a useful tool to guide the design of new controlled delivery systems fabricated by fused filament fabrication.
Collapse
Affiliation(s)
- Ling Li
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Xiaolong Zhu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Huaiyu Yang
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, U.K
| | - Bangchao Liang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Lei Yuan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Feng Chen
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Xiaoxiao Han
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| |
Collapse
|
4
|
Li S, Mo Y, Gao C, Shuai C, Peng S. A dual redox system for enhancing the biodegradability of Fe-C-Cu composite scaffold. Colloids Surf B Biointerfaces 2022; 213:112431. [PMID: 35259703 DOI: 10.1016/j.colsurfb.2022.112431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/11/2022] [Accepted: 02/27/2022] [Indexed: 11/28/2022]
Abstract
Fe-based biocomposites are emerging as temporary orthopedic implants due to natural biodegradability and high mechanical strength. Yet, the slow degradation kinetics restricts their biomedical applications. In this work, Cu-initiated redox system was established to accelerate the biodegradation of Fe-C composite scaffold prepared by selective laser melting. On the one hand, Cu induced micro-galvanic corrosion with Fe matrix due to their differences in potentials, accelerating the electron separation from Fe and further the dissolution of Fe matrix. On the other hand, Cu, as a good conductor of electron transfer, reduced the electron transfer impedance and increased the corrosion current density in Fe/C micro-galvanic cells. Consequently, the degradation rate of Fe-C scaffold was increased by 69% from 0.16 mm/y to 0.27 mm/y in the immersion tests. Additionally, the composite scaffold exhibited compression strength of 128 MPa and hardness of 148 HV, respectively. After co-culturing with the composite scaffold, MG-63 cells presented classical fusiform shape and good cell viability, indicating favorable biocompatibility. These results showed the potential applications of the developed redox systems as highly efficient initiator in accelerating the biodegradation of Fe-based biocomposites.
Collapse
Affiliation(s)
- Sheng Li
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yuqing Mo
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China
| |
Collapse
|
5
|
Sousa AM, Amaro AM, Piedade AP. 3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties. Polymers (Basel) 2022; 14:1099. [PMID: 35335430 PMCID: PMC8954590 DOI: 10.3390/polym14061099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
One of the leading causes of death is cardiovascular disease, and the most common cardiovascular disease is coronary artery disease. Percutaneous coronary intervention and vascular stents have emerged as a solution to treat coronary artery disease. Nowadays, several types of vascular stents share the same purpose: to reduce the percentage of restenosis, thrombosis, and neointimal hyperplasia and supply mechanical support to the blood vessels. Despite the numerous efforts to create an ideal stent, there is no coronary stent that simultaneously presents the appropriate cellular compatibility and mechanical properties to avoid stent collapse and failure. One of the emerging approaches to solve these problems is improving the mechanical performance of polymeric bioresorbable stents produced through additive manufacturing. Although there have been numerous studies in this field, normalized control parameters for 3D-printed polymeric vascular stents fabrication are absent. The present paper aims to present an overview of the current types of stents and the main polymeric materials used to fabricate the bioresorbable vascular stents. Furthermore, a detailed description of the printing parameters' influence on the mechanical performance and degradation profile of polymeric bioresorbable stents is presented.
Collapse
Affiliation(s)
| | | | - Ana P. Piedade
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, 3030-788 Coimbra, Portugal; (A.M.S.); (A.M.A.)
| |
Collapse
|