1
|
Chan SSL, Black JR, Franks GV, Heath DE. Hierarchically porous 3D-printed ceramic scaffolds for bone tissue engineering. BIOMATERIALS ADVANCES 2025; 169:214149. [PMID: 39693871 DOI: 10.1016/j.bioadv.2024.214149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Sacrificial templating offers the ability to create interconnected pores within 3D printed filaments and to control pore morphology. Beta-tricalcium phosphate (TCP) bone tissue engineering (BTE) scaffolds were fabricated with multiscale porosity: (i) macropores from direct ink writing (DIW, a material extrusion 3D printing technique), (ii) micropores from oil templating, and (iii) smaller micropores from partial sintering. The hierarchically porous scaffolds possessed a total porosity of 58-70 %, comprising 54-63 % interconnected open pores. The in vitro results demonstrated that scaffolds with macroporosity promoted human osteoblast growth more than scaffolds with only microporosity. The elongated pores from the capillary suspension filament microstructure induced greater cell spreading than the sphere-like pores from the emulsion. Overall, the hierarchically porous scaffold with capillary suspension TCP filaments provided a superior microenvironment for significantly higher cell viability and proliferation than the other scaffolds, including a poly(ε-caprolactone) (PCL) control, a material currently used clinically as porous BTE scaffolds. The cellular response was further enhanced when macropore size was in the range of 570-590 μm. Therefore, the hierarchically porous scaffolds in this study are promising as BTE scaffolds, and the reported process of DIW of oil-templated colloidal pastes is a feasible strategy with potential for further customization.
Collapse
Affiliation(s)
- Shareen S L Chan
- Chemical Engineering, The University of Melbourne, VIC 3010, Australia
| | - Jay R Black
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, VIC 3010, Australia; Trace Analysis for Chemical, Earth and Environmental Sciences (TrACEES) Platform, The University of Melbourne, VIC 3010, Australia
| | - George V Franks
- Chemical Engineering, The University of Melbourne, VIC 3010, Australia
| | - Daniel E Heath
- Biomedical Engineering, The University of Melbourne, VIC 3010, Australia; The Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
2
|
Simpson MJ, Murphy KM, McCue SW, Buenzli PR. Discrete and continuous mathematical models of sharp-fronted collective cell migration and invasion. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240126. [PMID: 39076824 PMCID: PMC11286127 DOI: 10.1098/rsos.240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 07/31/2024]
Abstract
Mathematical models describing the spatial spreading and invasion of populations of biological cells are often developed in a continuum modelling framework using reaction-diffusion equations. While continuum models based on linear diffusion are routinely employed and known to capture key experimental observations, linear diffusion fails to predict well-defined sharp fronts that are often observed experimentally. This observation has motivated the use of nonlinear degenerate diffusion; however, these nonlinear models and the associated parameters lack a clear biological motivation and interpretation. Here, we take a different approach by developing a stochastic discrete lattice-based model incorporating biologically inspired mechanisms and then deriving the reaction-diffusion continuum limit. Inspired by experimental observations, agents in the simulation deposit extracellular material, which we call a substrate, locally onto the lattice, and the motility of agents is taken to be proportional to the substrate density. Discrete simulations that mimic a two-dimensional circular barrier assay illustrate how the discrete model supports both smooth and sharp-fronted density profiles depending on the rate of substrate deposition. Coarse-graining the discrete model leads to a novel partial differential equation (PDE) model whose solution accurately approximates averaged data from the discrete model. The new discrete model and PDE approximation provide a simple, biologically motivated framework for modelling the spreading, growth and invasion of cell populations with well-defined sharp fronts. Open-source Julia code to replicate all results in this work is available on GitHub.
Collapse
Affiliation(s)
- Matthew J. Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Keeley M. Murphy
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Scott W. McCue
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Pascal R. Buenzli
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Ritzau-Reid KI, Callens SJP, Xie R, Cihova M, Reumann D, Grigsby CL, Prados-Martin L, Wang R, Moore AC, Armstrong JPK, Knoblich JA, Stevens MM. Microfibrous Scaffolds Guide Stem Cell Lumenogenesis and Brain Organoid Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300305. [PMID: 37572376 PMCID: PMC7617127 DOI: 10.1002/adma.202300305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/21/2023] [Indexed: 08/14/2023]
Abstract
3D organoids are widely used as tractable in vitro models capable of elucidating aspects of human development and disease. However, the manual and low-throughput culture methods, coupled with a low reproducibility and geometric heterogeneity, restrict the scope and application of organoid research. Combining expertise from stem cell biology and bioengineering offers a promising approach to address some of these limitations. Here, melt electrospinning writing is used to generate tuneable grid scaffolds that can guide the self-organization of pluripotent stem cells into patterned arrays of embryoid bodies. Grid geometry is shown to be a key determinant of stem cell self-organization, guiding the position and size of emerging lumens via curvature-controlled tissue growth. Two distinct methods for culturing scaffold-grown embryoid bodies into either interconnected or spatially discrete cerebral organoids are reported. These scaffolds provide a high-throughput method to generate, culture, and analyze large numbers of organoids, substantially reducing the time investment and manual labor involved in conventional methods of organoid culture. It is anticipated that this methodological development will open up new opportunities for guiding pluripotent stem cell culture, studying lumenogenesis, and generating large numbers of uniform organoids for high-throughput screening.
Collapse
Affiliation(s)
- Kaja I Ritzau-Reid
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Sebastien J P Callens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Ruoxiao Xie
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Martina Cihova
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Daniel Reumann
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, 1030, Austria
| | - Christopher L Grigsby
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Lino Prados-Martin
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Richard Wang
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Axel C Moore
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James P K Armstrong
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, 1030, Austria
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
4
|
Arjoca S, Robu A, Neagu M, Neagu A. Mathematical and computational models in spheroid-based biofabrication. Acta Biomater 2022:S1742-7061(22)00418-4. [PMID: 35853599 DOI: 10.1016/j.actbio.2022.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 11/01/2022]
Abstract
Ubiquitous in embryonic development, tissue fusion is of interest to tissue engineers who use tissue spheroids or organoids as building blocks of three-dimensional (3D) multicellular constructs. This review presents mathematical models and computer simulations of the fusion of tissue spheroids. The motivation of this study stems from the need to predict the post-printing evolution of 3D bioprinted constructs. First, we provide a brief overview of differential adhesion, the main morphogenetic mechanism involved in post-printing structure formation. It will be shown that clusters of cohesive cells behave as an incompressible viscous fluid on the time scale of hours. The discussion turns then to mathematical models based on the continuum hydrodynamics of highly viscous liquids and on statistical mechanics. Next, we analyze the validity and practical use of computational models of multicellular self-assembly in live constructs created by tissue spheroid bioprinting. Finally, we discuss the perspectives of the field as machine learning starts to reshape experimental design, and modular robotic workstations tend to alleviate the burden of repetitive tasks in biofabrication. STATEMENT OF SIGNIFICANCE: Bioprinted constructs are living systems, which evolve via morphogenetic mechanisms known from developmental biology. This review presents mathematical and computational tools devised for modeling post-printing structure formation. They help achieving a desirable outcome without expensive optimization experiments. While previous reviews mainly focused on assumptions, technical details, strengths, and limitations of computational models of multicellular self-assembly, this article discusses their validity and practical use in biofabrication. It also presents an overview of mathematical models that proved to be useful in the evaluation of experimental data on tissue spheroid fusion, and in the calibration of computational models. Finally, the perspectives of the field are discussed in the advent of robotic biofabrication platforms and bioprinting process optimization by machine learning.
Collapse
Affiliation(s)
- Stelian Arjoca
- Center for Modeling Biological Systems and Data Analysis, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, Piata Eftimie Murgu Nr. 2-4, Timisoara 300041, Romania
| | - Andreea Robu
- Department of Automation and Applied Informatics, Politehnica University of Timisoara, Timisoara 300006, Romania
| | - Monica Neagu
- Center for Modeling Biological Systems and Data Analysis, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, Piata Eftimie Murgu Nr. 2-4, Timisoara 300041, Romania
| | - Adrian Neagu
- Center for Modeling Biological Systems and Data Analysis, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, Piata Eftimie Murgu Nr. 2-4, Timisoara 300041, Romania; Department of Physics & Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
5
|
El-Hachem M, McCue SW, Simpson MJ. A Continuum Mathematical Model of Substrate-Mediated Tissue Growth. Bull Math Biol 2022; 84:49. [PMID: 35237899 PMCID: PMC8891221 DOI: 10.1007/s11538-022-01005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
We consider a continuum mathematical model of biological tissue formation inspired by recent experiments describing thin tissue growth in 3D-printed bioscaffolds. The continuum model, which we call the substrate model, involves a partial differential equation describing the density of tissue, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hat{u}}(\hat{{\mathbf {x}}},{\hat{t}})$$\end{document}u^(x^,t^) that is coupled to the concentration of an immobile extracellular substrate, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hat{s}}(\hat{{\mathbf {x}}},{\hat{t}})$$\end{document}s^(x^,t^). Cell migration is modelled with a nonlinear diffusion term, where the diffusive flux is proportional to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hat{s}}$$\end{document}s^, while a logistic growth term models cell proliferation. The extracellular substrate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hat{s}}$$\end{document}s^ is produced by cells and undergoes linear decay. Preliminary numerical simulations show that this mathematical model is able to recapitulate key features of recent tissue growth experiments, including the formation of sharp fronts. To provide a deeper understanding of the model we analyse travelling wave solutions of the substrate model, showing that the model supports both sharp-fronted travelling wave solutions that move with a minimum wave speed, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c = c_{\mathrm{min}}$$\end{document}c=cmin, as well as smooth-fronted travelling wave solutions that move with a faster travelling wave speed, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c > c_{\mathrm{min}}$$\end{document}c>cmin. We provide a geometric interpretation that explains the difference between smooth and sharp-fronted travelling wave solutions that is based on a slow manifold reduction of the desingularised three-dimensional phase space. In addition, we also develop and test a series of useful approximations that describe the shape of the travelling wave solutions in various limits. These approximations apply to both the sharp-fronted and smooth-fronted travelling wave solutions. Software to implement all calculations is available at GitHub.
Collapse
Affiliation(s)
- Maud El-Hachem
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Scott W McCue
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
6
|
Han P, Vaquette C, Abdal-hay A, Ivanovski S. The Mechanosensing and Global DNA Methylation of Human Osteoblasts on MEW Fibers. NANOMATERIALS 2021; 11:nano11112943. [PMID: 34835707 PMCID: PMC8621030 DOI: 10.3390/nano11112943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/02/2023]
Abstract
Cells interact with 3D fibrous platform topography via a nano-scaled focal adhesion complex, and more research is required on how osteoblasts sense and respond to random and aligned fibers through nano-sized focal adhesions and their downstream events. The present study assessed human primary osteoblast cells’ sensing and response to random and aligned medical-grade polycaprolactone (PCL) fibrous 3D scaffolds fabricated via the melt electrowriting (MEW) technique. Cells cultured on a tissue culture plate (TCP) were used as 2D controls. Compared to 2D TCP, 3D MEW fibrous substrates led to immature vinculin focal adhesion formation and significantly reduced nuclear localization of the mechanosensor-yes-associated protein (YAP). Notably, aligned MEW fibers induced elongated cell and nucleus shape and highly activated global DNA methylation of 5-methylcytosine, 5-hydroxymethylcytosine, and N-6 methylated deoxyadenosine compared to the random fibers. Furthermore, although osteogenic markers (osterix-OSX and bone sialoprotein-BSP) were significantly enhanced in PCL-R and PCL-A groups at seven days post-osteogenic differentiation, calcium deposits on all seeded samples did not show a difference after normalizing for DNA content after three weeks of osteogenic induction. Overall, our study linked 3D extracellular fiber alignment to nano-focal adhesion complex, nuclear mechanosensing, DNA epigenetics at an early point (24 h), and longer-term changes in osteoblast osteogenic differentiation.
Collapse
Affiliation(s)
- Pingping Han
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
| | - Abdalla Abdal-hay
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Sašo Ivanovski
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
- Correspondence:
| |
Collapse
|