1
|
Huffer A, Mao M, Ballard K, Ozdemir T. Biomimetic Hyaluronan Binding Biomaterials to Capture the Complex Regulation of Hyaluronan in Tissue Development and Function. Biomimetics (Basel) 2024; 9:499. [PMID: 39194478 DOI: 10.3390/biomimetics9080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Within native ECM, Hyaluronan (HA) undergoes remarkable structural remodeling through its binding receptors and proteins called hyaladherins. Hyaladherins contain a group of tandem repeat sequences, such as LINK domains, BxB7 homologous sequences, or 20-50 amino acid long short peptide sequences that have high affinity towards side chains of HA. The HA binding sequences are critical players in HA distribution and regulation within tissues and potentially attractive therapeutic targets to regulate HA synthesis and organization. While HA is a versatile and successful biopolymer, most HA-based therapeutics have major differences from a native HA molecule, such as molecular weight discrepancies, crosslinking state, and remodeling with other HA binding proteins. Recent studies showed the promise of HA binding domains being used as therapeutic biomaterials for osteoarthritic, ocular, or cardiovascular therapeutic products. However, we propose that there is a significant potential for HA binding materials to reveal the physiological functions of HA in a more realistic setting. This review is focused on giving a comprehensive overview of the connections between HA's role in the body and the potential of HA binding material applications in therapeutics and regenerative medicine. We begin with an introduction to HA then discuss HA binding molecules and the process of HA binding. Finally, we discuss HA binding materials anf the future prospects of potential HA binding biomaterials systems in the field of biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Amelia Huffer
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| | - Mingyang Mao
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| | - Katherine Ballard
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines, Rapid City, SD 57701, USA
| |
Collapse
|
2
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Lei Y, Mungai R, Li J, Billiar K. Reducing retraction in engineered tissues through design of sequential growth factor treatment. Biofabrication 2023; 15:10.1088/1758-5090/accd24. [PMID: 37059087 PMCID: PMC10339712 DOI: 10.1088/1758-5090/accd24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/14/2023] [Indexed: 04/16/2023]
Abstract
Heart valve disease is associated with high morbidity and mortality worldwide, resulting in hundreds of thousands of heart valve replacements each year. Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction has led to the failure of TEHVs in preclinical studies. Sequentially varying growth factors over time has been utilized to promote maturation of engineered tissues and may be effective in reducing tissue retraction, yet it is difficult to predict the effects of such treatments due to complex interactions between the cells and the extracellular matrix (ECM), biochemical environment, and mechanical stimuli. We hypothesize that sequential treatments of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-β1) can be used to minimize cell-generated tissue retraction by decreasing active cell contractile forces exerted on the ECM and by inducing the cells to increase the ECM stiffness. Using a custom culturing and monitoring system for 3D tissue constructs, we designed and tested various TGF-β1 and FGF-2 based growth factor treatments, and successfully reduced tissue retraction by 85% and increased the ECM elastic modulus by 260% compared to non-growth factor treated controls, without significantly increasing the contractile force. We also developed and verified a mathematical model to predict the effects of various temporal variations in growth factor treatments and analyzed relationships between tissue properties, the contractile forces, and retraction. These findings improve our understanding of growth factor-induced cell-ECM biomechanical interactions, which can inform the design of next generation TEHVs with reduced retraction. The mathematical models could also potentially be applied toward fast screening and optimizing growth factors for use in the treatment of diseases including fibrosis.
Collapse
Affiliation(s)
- Ying Lei
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott Street, Worcester, MA 01605, United States of America
| | - Rozanne Mungai
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott Street, Worcester, MA 01605, United States of America
| | - Juanyong Li
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott Street, Worcester, MA 01605, United States of America
| | - Kristen Billiar
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott Street, Worcester, MA 01605, United States of America
| |
Collapse
|
4
|
Liu Y, Chen C, Lu T, Liu S, Wu Z, Tang Z. Free-aldehyde neutralized and oligohyaluronan loaded bovine pericardium with improved anti-calcification and endothelialization for bioprosthetic heart valves. Front Bioeng Biotechnol 2023; 11:1138972. [PMID: 37077226 PMCID: PMC10106738 DOI: 10.3389/fbioe.2023.1138972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
The number of patients with valvular heart disease is increasing yearly, and valve replacement is the most effective treatment, during which bioprosthetic heart valves (BHVs) are the most widely used. Commercial BHVs are mainly prepared with glutaraldehyde (Glut) cross-linked bovine pericardial or porcine aortic valves, but the residual free aldehyde groups in these tissues can cause calcification and cytotoxicity. Moreover, insufficient glycosaminoglycans (GAGs) in tissues can further reduce biocompatibility and durability. However, the anti-calcification performance and biocompatibility might be improved by blocking the free aldehyde groups and increasing the GAGs content in Glut-crosslinked tissues. In our study, adipic dihydrazide (ADH) was used to neutralize the residual free aldehyde groups in tissues and provide sites to blind with oligohyaluronan (OHA) to increase the content of GAGs in tissues. The modified bovine pericardium was evaluated for its content of residual aldehyde groups, the amount of OHA loaded, physical/chemical characteristics, biomechanical properties, biocompatibility, and in vivo anticalcification assay and endothelialization effects in juvenile Sprague-Dawley rats. The results showed that ADH could completely neutralize the free aldehyde groups in the Glut-crosslinked bovine pericardium, the amount of OHA loaded increased and the cytotoxicity was reduced. Moreover, the in vivo results also showed that the level of calcification and inflammatory response in the modified pericardial tissue was significantly reduced in a rat subcutaneous implantation model, and the results from the rat abdominal aorta vascular patch repair model further demonstrated the improved capability of the modified pericardial tissues for endothelialization. Furthermore, more α-SMA+ smooth muscle cells and fewer CD68+ macrophages infiltrated in the neointima of the modified pericardial patch. In summary, blocking free-aldehydes and loading OHA improved the anti-calcification, anti-inflammation and endothelialization properties of Glut-crosslinked BHVs and in particularly, this modified strategy may be a promising candidate for the next-generation of BHVs.
Collapse
Affiliation(s)
- Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Sixi Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
- *Correspondence: Zhongshi Wu, ; Zhenjie Tang,
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
- *Correspondence: Zhongshi Wu, ; Zhenjie Tang,
| |
Collapse
|
5
|
Snyder Y, Jana S. Elastomeric Trilayer Substrates with Native-like Mechanical Properties for Heart Valve Leaflet Tissue Engineering. ACS Biomater Sci Eng 2023; 9:1570-1584. [PMID: 36802499 DOI: 10.1021/acsbiomaterials.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart valve leaflets have a complex trilayered structure with layer-specific orientations, anisotropic tensile properties, and elastomeric characteristics that are difficult to mimic collectively. Previously, trilayer leaflet substrates intended for heart valve tissue engineering were developed with nonelastomeric biomaterials that cannot deliver native-like mechanical properties. In this study, by electrospinning polycaprolactone (PCL) polymer and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer, we created elastomeric trilayer PCL/PLCL leaflet substrates with native-like tensile, flexural, and anisotropic properties and compared them with trilayer PCL leaflet substrates (as control) to find their effectiveness in heart valve leaflet tissue engineering. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for 1 month in static conditions to produce cell-cultured constructs. The PCL/PLCL substrates had lower crystallinity and hydrophobicity but higher anisotropy and flexibility than PCL leaflet substrates. These attributes contributed to more significant cell proliferation, infiltration, extracellular matrix production, and superior gene expression in the PCL/PLCL cell-cultured constructs than in the PCL cell-cultured constructs. Further, the PCL/PLCL constructs showed better resistance to calcification than PCL constructs. Trilayer PCL/PLCL leaflet substrates with native-like mechanical and flexural properties could significantly improve heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Sun L, Wang Y, Xu D, Zhao Y. Emerging technologies for cardiac tissue engineering and artificial hearts. SMART MEDICINE 2023; 2:e20220040. [PMID: 39188557 PMCID: PMC11235648 DOI: 10.1002/smmd.20220040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 08/28/2024]
Abstract
Heart diseases, especially cardiovascular diseases, have brought heavy burden on society for their high morbidity and mortality. In clinical, heart transplantation is recognized as an effective strategy to rescue the lives of patients, while it may suffer from lack of donors and possible immune responses. In view of this, tremendous efforts have been devoted to developing alternative strategies to recover the function and promote the regeneration of cardiac tissues. As an emerging field blending cell biology and material science, tissue engineering technique allows the construction of biomimetic living complexes as organ substitutes for heart repair. In this review, we will present the recent progress in cardiac tissue engineering and artificial hearts. After introducing the critical elements in cardiac tissue engineering, we will present advanced fabrication methods to achieve scaffolds with desired micro/nanostructure design as well as the applications of these bioinspired scaffolds. We will also discuss the current dilemma and possible development direction from a biomedical perspective.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
7
|
Bramsen JA, Alber BR, Mendoza M, Murray BT, Chen MH, Huang P, Mahler GJ. Glycosaminoglycans affect endothelial to mesenchymal transformation, proliferation, and calcification in a 3D model of aortic valve disease. Front Cardiovasc Med 2022; 9:975732. [PMID: 36247482 PMCID: PMC9558823 DOI: 10.3389/fcvm.2022.975732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Calcific nodules form in the fibrosa layer of the aortic valve in calcific aortic valve disease (CAVD). Glycosaminoglycans (GAGs), which are normally found in the valve spongiosa, are located local to calcific nodules. Previous work suggests that GAGs induce endothelial to mesenchymal transformation (EndMT), a phenomenon described by endothelial cells’ loss of the endothelial markers, gaining of migratory properties, and expression of mesenchymal markers such as alpha smooth muscle actin (α-SMA). EndMT is known to play roles in valvulogenesis and may provide a source of activated fibroblast with a potential role in CAVD progression. In this study, a 3D collagen hydrogel co-culture model of the aortic valve fibrosa was created to study the role of EndMT-derived activated valvular interstitial cell behavior in CAVD progression. Porcine aortic valve interstitial cells (PAVIC) and porcine aortic valve endothelial cells (PAVEC) were cultured within collagen I hydrogels containing the GAGs chondroitin sulfate (CS) or hyaluronic acid (HA). The model was used to study alkaline phosphatase (ALP) enzyme activity, cellular proliferation and matrix invasion, protein expression, and calcific nodule formation of the resident cell populations. CS and HA were found to alter ALP activity and increase cell proliferation. CS increased the formation of calcified nodules without the addition of osteogenic culture medium. This model has applications in the improvement of bioprosthetic valves by making replacements more micro-compositionally dynamic, as well as providing a platform for testing new pharmaceutical treatments of CAVD.
Collapse
Affiliation(s)
| | - Bridget R. Alber
- Department of Biomedical Engineering, George Washington University, Washington, DC, United States
| | - Melissa Mendoza
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Bruce T. Murray
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mei-Hsiu Chen
- Department of Mathematics and Statistics, Binghamton University, Binghamton, NY, United States
| | - Peter Huang
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, United States
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- *Correspondence: Gretchen J. Mahler,
| |
Collapse
|