1
|
Zhao L, Shi Z, Zhang X, Wang J, Yang S, Wang F, Li T, Zhou Q, Wang T, Shi W. Artificial Cornea Substitute Based on Hydrogel Skeletons with Natural Stromal Hierarchical Structure and Extracellular Matrix for Sutureless Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411540. [PMID: 39853921 PMCID: PMC12097023 DOI: 10.1002/advs.202411540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Corneal substitutes with structural and compositional characteristics resembling those of natural corneas have attracted considerable attention. However, biomimicking the complex hierarchical organization of corneal stroma is challenging. In this study, humanized corneal stroma-like adhesive patches (HCSPs) are prepared through a multi-step process. First, polyethylene glycol diacrylate is cast and cured within decellularized porcine cornea (DPC) templates. The DPCs are then enzymatically digested to obtain hydrogel skeletons, which are finally integrated with human corneal extracellular matrix and methacrylate gelatin. HCSPs replicate the ultrastructure, protein components, and optical properties of human corneas and exhibit improved anti-swelling and anti-degradation capabilities compared with conventional DPCs and recombinant human collagen patches. HCSPs can deliver methacrylate gelatin at the ocular surface temperature (37 °C) and achieve stable adhesion to the corneal stroma upon 405 nm light irradiation. Furthermore, HCSPs promote the survival and migration of corneal epithelial and stromal cells while preserving their phenotypes. In rabbit models of lamellar keratoplasty and microperforation repair, HCSPs accelerate epithelial healing, minimize suture-associated complications, and maintain structural stability. These findings suggest that HCSPs are promising donor corneal substitutes for clinical applications.
Collapse
Affiliation(s)
- Long Zhao
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Zhen Shi
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiaoyu Zhang
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Jingting Wang
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Shang Yang
- Binzhou Medical UniversityBinzhou264003China
| | - Fuyan Wang
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Tan Li
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Qingjun Zhou
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Ting Wang
- Eye Institute of Shandong First Medical UniversityEye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250021China
| | - Weiyun Shi
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| |
Collapse
|
2
|
Afshari R, Roy A, Jain S, Lum K, Huang J, Denton S, Annabi N. One-Pot Synthesis of Antibacterial and Antioxidant Self-Healing Bioadhesives Using Ugi Four-Component Reactions. J Biomed Mater Res B Appl Biomater 2025; 113:e35584. [PMID: 40317897 DOI: 10.1002/jbm.b.35584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 05/07/2025]
Abstract
Bioadhesive materials are extensively utilized as alternatives to surgical sutures and wound dressings. Despite significant advancements in their synthesis, current bioadhesives suffer from inadequate mechanical stability, suboptimal wet tissue adhesion, and a lack of inherent antibacterial and antioxidant properties, while requiring multistep synthesis processes, complicating their production for biomedical applications. To address these limitations, we developed a new bioadhesive, named UgiGel, synthesized through a one-pot Ugi four-component reaction (Ugi-4CR). Our strategy utilized gelatin as the backbone, 4-formylphenylboronic acid (4-FPBA) as an aldehyde source for improved adhesion and antibacterial activity, gallic acid (GA) as a carboxylic acid source for improved antioxidant activity and wound healing, and cyclohexyl isocyanide (CyIso) to induce pseudopeptide structures. The internal crosslinking between GA and 4-FPBA via dynamic boronate ester bond formation, triggered by slight pH changes (7.4-7.8) and temperature elevation (25°C-40°C), resulted in the formation of viscoelastic and self-healing hydrogels with water as the only byproduct without the need for initiator/light activation. UgiGel showed higher adhesion to porcine skin tissue (139.8 ± 8.7 kPa) as compared to commercially available bioadhesives, Evicel (26.3 ± 2.6 kPa) and Coseal (19.3 ± 9.9 kPa). It also demonstrated effective antibacterial properties against both Gram-negative and Gram-positive bacteria, as well as antioxidant activity. Additionally, the in vitro studies using NIH-3T3 cells confirmed the biocompatibility of the UgiGel over 7 days of culture. Moreover, in vivo biocompatibility and biodegradation of UgiGel were confirmed via subcutaneous implantation in rats for up to 28 days. Our results demonstrated that UgiGel outperformed commercially available bioadhesives in terms of adhesion, self-healing, and antibacterial activity, without compromising biocompatibility or physical properties, representing a promising multifunctional bioadhesive for wound sealing and repair.
Collapse
Affiliation(s)
- Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kaimana Lum
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Joyce Huang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Sam Denton
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Li Q, Zhang R, Ouyang C, Wang S, Li S, Yin X, Deng Z, Han B, Chi J. Photocurable Dual-Network Hydrogels Based on Natural Polymers for Sutureless Repair of Large Corneal Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500150. [PMID: 40159843 DOI: 10.1002/smll.202500150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Corneal transplantation remains the prevailing treatment for corneal defects, which is always restricted by donor shortages and numerous postoperative complications accompanying suturing. Photocurable hydrogels have emerged as alternative therapeutic strategies for the repair of corneal defects, but most hydrogels focus on repairing focal corneal defects and still suffer from low transparency and poor mechanical properties. Herein, photocurable hydrogel GelMA/OCS composed of gelatin methacryloyl (GelMA) and oxidized chondroitin sulfate (OCS) is developed for sutureless repair of large corneal defects (6 mm). This injectable hybridized hydrogel demonstrates excellent transparency, low swelling rate, enhanced mechanical properties, and superior adhesion properties. In vitro experiments reveal that GelMA/OCS hydrogel can support the proliferation and migration, and adhesion growth of human corneal epithelial cells (HCECs), demonstrating satisfactory cytocompatibility and cell affinity. In addition, GelMA/OCS hydrogel is capable of accurately filling the large corneal defects in rabbits and forming hydrogel grafts with smooth surfaces. Postoperative slit lamp, histological evaluation, and transcriptomic analysis reveal that GelMA/OCS hydrogel can significantly facilitate corneal re-epithelialization and the integration and reconstruction of stromal structures, as well as reduce inflammation responses and scar formation. Therefore, GelMA/OCS hydrogel may provide a promising alternative for the sutureless treatment of large corneal defects.
Collapse
Affiliation(s)
- Qing Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ruyin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chengpei Ouyang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shanshan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xinchao Yin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zimeng Deng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jinhua Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
4
|
Zhao L, Shi Z, Wang J, Dou S, Sun X, Yang S, Wang H, Zhou Q, Wang T, Shi W. Natural Extracellular Matrix Scaffold-Based Hydrogel Corneal Patch with Temperature and Light-Responsiveness for Penetrating Keratoplasty and Sutureless Stromal Defect Repair. Adv Healthc Mater 2025; 14:e2402567. [PMID: 39558795 DOI: 10.1002/adhm.202402567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Corneal transplantation remains the gold standard for treating corneal blindness; however, it is hampered globally by donor shortages and the complexity of suture-dependent procedures. Tissue-engineered corneas have demonstrated potential as corneal equivalents. Nevertheless, the development of adhesive corneal patches and full-thickness corneal substitutes remains challenging. In this study, a multifunctional hydrogel corneal patch (MHCP) is constructed by integrating a dual-crosslinked hybrid hydrogel with temperature and light responsiveness with a natural extracellular matrix scaffold. When applied to the ocular surface, MHCP spontaneously releases adhesives at body temperature and forms a stable adhesion with the recipient cornea through photocuring. In addition to its inherent mechanical, optical, and ultrastructural characteristics, which are similar to those of the natural stroma, MHCP demonstrates excellent suture resistance, anti-swelling, and anti-degradation properties after curing. MHCP promotes the proliferation and migration of corneal epithelial cells in vitro and maintains the phenotype of corneal stromal cells. In vivo, MHCP maintains graft hydration and restores corneal structural integrity and transparency during penetrating keratoplasty of various sizes and sutureless lamellar keratoplasty. Collectively, given the advantages of native stroma-like characteristics, operation-facilitating multiple functions, and convenient preparation, MHCP is a promising corneal substitute for clinical applications.
Collapse
Affiliation(s)
- Long Zhao
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Zhen Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Jingting Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Shengqian Dou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xiuli Sun
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Shang Yang
- Binzhou Medical University, Binzhou, 264003, China
| | - Hongwei Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| |
Collapse
|
5
|
Yan K, Zhang Q, Liu Q, Han Y, Liu Z. Advances in adhesive hydrogels applied for ophthalmology: An overview focused on the treatment. Theranostics 2025; 15:915-942. [PMID: 39776812 PMCID: PMC11700875 DOI: 10.7150/thno.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Adhesive hydrogels, composed of hydrophilic polymers arranged in a three-dimensional network, have emerged as a pivotal innovation in ophthalmology due to their ability to securely adhere to ocular tissues while providing sustained therapeutic effects. The eye, with its delicate structure and specific needs, presents unique challenges for drug delivery and tissue regeneration. This review explores the transformative potential of adhesive hydrogels in addressing these challenges across a range of ocular conditions, including corneal injuries, cataracts, glaucoma, vitreoretinal disorders, and ocular trauma. By detailing the mechanisms of polymerization and adhesion, this paper highlights how these materials can be customized for specific ophthalmic applications, offering insights into their current use and future possibilities. The emphasis is placed on the clinical significance and future directions of adhesive hydrogels in advancing ophthalmic therapy, potentially revolutionizing the treatment of complex eye diseases.
Collapse
Affiliation(s)
- Ke Yan
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Qinghe Zhang
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Qiuping Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Zuguo Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen Fujian 361005, China
| |
Collapse
|
6
|
Jafari A, Al‐Ostaz A, Nouranian S. Recent Advances in Multifunctional Naturally Derived Bioadhesives for Tissue Engineering and Wound Management. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACTRecent advancements in naturally derived bioadhesives have transformed their application across diverse medical fields, including tissue engineering, wound management, and surgery. This review focuses on the innovative development and multifunctional nature of these bioadhesives, particularly emphasizing their role in enhancing adhesion performance in wet environments and optimizing mechanical properties for use in dynamic tissues. Key areas covered include the chemical and physical mechanisms of adhesion, the incorporation of multi‐adhesion strategies that combine covalent and non‐covalent bonding, and bioinspired designs mimicking natural adhesives such as those of barnacles and mussels. Additionally, the review discusses emerging applications of bioadhesives in the regeneration of musculoskeletal, cardiac, neural, and ocular tissues, highlighting the potential for bioadhesive‐based therapies in complex biological settings. Despite substantial progress, challenges such as scaling lab‐based innovations for clinical use and overcoming environmental and mechanical constraints remain critical. Ongoing research in bioadhesive technologies aims to bridge these gaps, promising significant improvements in medical adhesives tailored for diverse therapeutic needs.
Collapse
Affiliation(s)
- Aliakbar Jafari
- Department of Chemical Engineering University of Mississippi University Mississippi USA
- Center for Graphene Research and Innovation University of Mississippi University Mississippi USA
| | - Ahmed Al‐Ostaz
- Center for Graphene Research and Innovation University of Mississippi University Mississippi USA
- Department of Civil Engineering University of Mississippi University Mississippi USA
| | - Sasan Nouranian
- Department of Chemical Engineering University of Mississippi University Mississippi USA
- Center for Graphene Research and Innovation University of Mississippi University Mississippi USA
| |
Collapse
|
7
|
Xiang Y, Pan Z, Qi X, Ge X, Xiang J, Xu H, Cai E, Lan Y, Chen X, Li Y, Shi Y, Shen J, Liu J. A cuttlefish ink nanoparticle-reinforced biopolymer hydrogel with robust adhesive and immunomodulatory features for treating oral ulcers in diabetes. Bioact Mater 2024; 39:562-581. [PMID: 38883310 PMCID: PMC11179175 DOI: 10.1016/j.bioactmat.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024] Open
Abstract
Oral ulcers can be managed using a variety of biomaterials that deliver drugs or cytokines. However, many patients experience minimal benefits from certain medical treatments because of poor compliance, short retention times in the oral cavity, and inadequate drug efficacy. Herein, we present a novel hydrogel patch (SCE2) composed of a biopolymer matrix (featuring ultraviolet-triggered adhesion properties) loaded with cuttlefish ink nanoparticles (possessing pro-healing functions). Applying a straightforward local method initiates the formation of a hydrogel barrier that adheres to mucosal injuries under the influence of ultraviolet light. SCE2 then demonstrates exceptional capabilities for near-infrared photothermal sterilization and neutralization of reactive oxygen species. These properties contribute to the elimination of bacteria and the management of the oxidation process, thus accelerating the healing phase's progression from inflammation to proliferation. In studies involving diabetic rats with oral ulcers, the SCE2 adhesive patch significantly quickens recovery by altering the inflamed state of the injured area, facilitating rapid re-epithelialization, and fostering angiogenesis. In conclusion, this light-sensitive hydrogel patch offers a promising path to expedited wound healing, potentially transforming treatment strategies for clinical oral ulcers.
Collapse
Affiliation(s)
- Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhuge Pan
- Department of Otolaryngology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - XinXin Ge
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Junbo Xiang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Hangbin Xu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Erya Cai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yulong Lan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaojing Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Ying Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yizuo Shi
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jinsong Liu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
8
|
Donaldson RI, Chou E, Tanen DA, Armstrong JK, Buchanan OJ, Graham TL, Cristerna NN, Cambridge JS, Goldenberg D, Tolles J, Ross JD. Novel Thermoreversible Reverse-Phase-Shift Foam With Deployment System for Treatment of Penetrating Globe Trauma in a Newly Described Porcine Model. Mil Med 2024; 189:254-261. [PMID: 39160838 PMCID: PMC11332267 DOI: 10.1093/milmed/usae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION The initial management of penetrating ocular injuries is a major sight-threatening problem for both civilian and military medicine. A novel device (Eye-Aid) temporarily tamponades leakage from such injuries while being easy to remove upon arrival to specialized ophthalmologic care. Eye-Aid consists of a protective eye shield with an adhesive backing that connects to a portable canister containing rapidly deployable thermoresponsive foam. The aim of this study was to compare the use of the novel Eye-Aid device to control in a new live swine ocular injury model. MATERIALS AND METHODS Bilateral penetrating ocular injuries were created on 14 male Yorkshire swine in a standardized manner using a 16-gauge needle device to puncture the central cornea and cause a full-thickness wound. Researchers randomized eye intervention side, with the contralateral eye used as paired control. Two minutes after the injury, the eye shield components of the Eye-Aid system, which has a sticky pad for attachment to the skin and a luer-lock for foam deployment, were placed bilaterally. Eight minutes after the injury, foam was deployed for the intervention eye according to the device instructions for use. For the control eye, no additional procedures were performed. Six hours post-injury, end A-scan and intraocular pressure (IOP) were measured. Primary study outcome was change in axial length of the globe. Secondary outcomes were as follows: (1) Presence of full anterior chamber collapse, defined as a lack of measurable anterior lens capsule-reflex (ALC-reflex) on A-scan and (2) change in IOP. Outcomes were analyzed as paired intra-animal data, with intervention and control data for each animal. A paired t-test was used to analyze the difference in axial length change and IOP change between treatment groups, whereas a conditional logistic regression was used to analyze dichotomous ALC-reflex outcome and estimate the odds ratio associated with the Eye-Aid device. RESULTS A significant difference (P < .0001) in mean change in axial length between intervention (-210 μm) and control (-1,202 μm) groups was found. There was a significant difference in ALC-reflex presence, with 79% of eyes having an ALC-reflex in the intervention group, compared to 14% in the control (P = .008). IOP remained higher in the intervention group, with a mean change of -1.5 mmHg for the intervention group compared to -4.0 mmHg in the control (P = .0001). CONCLUSIONS This study describes the first development of an in vivo large animal ocular injury model that realistically approximates the emergent time course and pathophysiology of patients with full-thickness corneal open globe injuries. It also gives the first description of using thermoreversible hydrogel foam for such injuries. Eye-Aid was found to be significantly better than control for treatment of such injuries, based on measurements of both structure and pressure. Assuming that the absence of an ALC-reflex demonstrates complete anterior chamber collapse, the Eye-Aid group demonstrated a 79% eye "save" rate compared to only 14% in the control group, as described earlier. This results in a Number Needed to Treat of 3 for this finding. Eye-Aid additionally demonstrated several characteristics that would be beneficial in a device targeted for emergent deployment by non-ophthalmologists.
Collapse
Affiliation(s)
- Ross I Donaldson
- Critical Innovations LLC, Los Angeles, CA 90260, USA
- Department of Emergency Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Emergency Medicine, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
- Department of Epidemiology, UCLA-Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Eva Chou
- Ophthalmology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - David A Tanen
- Department of Emergency Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Emergency Medicine, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | | | | | | | | - Juliana Tolles
- Department of Emergency Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Emergency Medicine, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | |
Collapse
|
9
|
Li X, Lin H, Yu Y, Lu Y, He B, Liu M, Zhuang L, Xu Y, Li W. In Situ Rapid-Formation Sprayable Hydrogels for Challenging Tissue Injury Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400310. [PMID: 38298099 DOI: 10.1002/adma.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/20/2024] [Indexed: 02/02/2024]
Abstract
Rapid-acting, convenient, and broadly applicable medical materials are in high demand for the treatment of extensive and intricate tissue injuries in extremely medical scarcity environment, such as battlefields, wilderness, and traffic accidents. Conventional biomaterials fail to meet all the high criteria simultaneously for emergency management. Here, a multifunctional hydrogel system capable of rapid gelation and in situ spraying, addressing clinical challenges related to hemostasis, barrier establishment, support, and subsequent therapeutic treatment of irregular, complex, and urgent injured tissues, is designed. This hydrogel can be fast formed in less than 0.5 s under ultraviolet initiation. The precursor maintains an impressively low viscosity of 0.018 Pa s, while the hydrogel demonstrates a storage modulus of 0.65 MPa, achieving the delicate balance between sprayable fluidity and the mechanical strength requirements in practice, allowing flexible customization of the hydrogel system for differentiated handling and treatment of various tissues. Notably, the interactions between the component of this hydrogel and the cell surface protein confer upon its inherently bioactive functionalities such as osteogenesis, anti-inflammation, and angiogenesis. This research endeavors to provide new insights and designs into emergency management and complex tissue injuries treatment.
Collapse
Affiliation(s)
- Xiaolei Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Han Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Yilin Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Yukun Lu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Bin He
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Meng Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Lin Zhuang
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yue Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Weichang Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| |
Collapse
|
10
|
Sokol JT, Rossin EJ. Ophthalmic Trauma-Related Instruments-Critical Tools for Winning the Case. Int Ophthalmol Clin 2024; 64:187-207. [PMID: 38525991 PMCID: PMC11969233 DOI: 10.1097/iio.0000000000000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
|
11
|
Yang Y, Nan W, Zhang R, Shen S, Wu M, Zhong S, Zhang Y, Cui X. Fabrication of carboxymethyl cellulose-based thermo-sensitive hydrogels and inhibition of corneal neovascularization. Int J Biol Macromol 2024; 261:129933. [PMID: 38309411 DOI: 10.1016/j.ijbiomac.2024.129933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Corneal neovascularization (CNV) is a common multifactorial sequela of anterior corneal segment inflammation, which could lead to visual impairment and even blindness. The main treatments available are surgical sutures and invasive drug injections, which could cause serious ocular complications. To solve this problem, a thermo-sensitive drug-loaded hydrogel with high transparency was prepared in this study, which could achieve the sustained-release of drugs without affecting normal vision. In briefly, the thermo-sensitive hydrogel (PFNOCMC) was prepared from oxidized carboxymethyl cellulose (OCMC) and aminated poloxamer 407 (PF127-NH2). The results proved the PFNOCMC hydrogels possess high transparency, suitable gel temperature and time. In the CNV model, the PFNOCMC hydrogel loading bone morphogenetic protein 4 (BMP4) showed significant inhibition of CNV, this is due to the hydrogel allowed the drug to stay longer in the target area. The animal experiments on the ocular surface were carried out, which proved the hydrogel had excellent biocompatibility, and could realize the sustained-release of loaded drugs, and had a significant inhibitory effect on the neovascularization after ocular surface surgery. In conclusion, PFNOCMC hydrogels have great potential as sustained-release drug carriers in the biomedical field and provide a new minimally invasive option for the treatment of neovascular ocular diseases.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Weijin Nan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Sitong Shen
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Meiliang Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Yan Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
12
|
Wang Q, Zhao X, Yu F, Fang PH, Liu L, Du X, Li W, He D, Bai Y, Li S, Yuan J. Photocurable and Temperature-Sensitive Bioadhesive Hydrogels for Sutureless Sealing of Full-Thickness Corneal Wounds. SMALL METHODS 2024; 8:e2300996. [PMID: 37997553 DOI: 10.1002/smtd.202300996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Indexed: 11/25/2023]
Abstract
Penetrating corneal wounds can cause severe vision impairment and require prompt intervention to restore globe integrity and minimize the risk of infection. Tissue adhesives have emerged as a promising alternative to suturing for mitigating postoperative complications. However, conventional water-soluble adhesives suffer formidable challenges in sealing penetrating corneal wounds due to dilution or loss in a moist environment. Inspired by the robust adhesion of mussels in aquatic conditions, an injectable photocurable bioadhesive hydrogel (referred to as F20HD5) composed of polyether F127 diacrylate and dopamine-modified hyaluronic acid methacrylate is developed for sutureless closure of corneal full-thickness wounds. F20HD5 exhibits high transparency, wound-sealing ability, proper viscosity, biodegradability, and excellent biocompatibility. It allows in situ cross-linking via visible light, thereby providing sufficient mechanical strength and adhesiveness. In vivo, the adhesive hydrogel effectively closed penetrating linear corneal incisions and corneal injuries with minimal tissue loss in rabbits. During the 56-day follow-up, the hydrogel facilitates the repair of the injured corneas, resulting in more symmetrical curvatures and less scarring in distinction to the untreated control. Thus, bioinspired hydrogel holds promise as an effective adhesive for sealing full-thickness corneal wounds.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Fei Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Po-Han Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Liu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, SunYat-sen University, Guangzhou, 510006, China
| | - Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| |
Collapse
|
13
|
Zheng Y, Baidya A, Annabi N. Molecular design of an ultra-strong tissue adhesive hydrogel with tunable multifunctionality. Bioact Mater 2023; 29:214-229. [PMID: 37520304 PMCID: PMC10372327 DOI: 10.1016/j.bioactmat.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023] Open
Abstract
Designing adhesive hydrogels with optimal properties for the treatment of injured tissues is challenging due to the tradeoff between material stiffness and toughness while maintaining adherence to wet tissue surfaces. In most cases, bioadhesives with improved mechanical strength often lack an appropriate elastic compliance, hindering their application for sealing soft, elastic, and dynamic tissues. Here, we present a novel strategy for engineering tissue adhesives in which molecular building blocks are manipulated to allow for precise control and optimization of the various aforementioned properties without any tradeoffs. To introduce tunable mechanical properties and robust tissue adhesion, the hydrogel network presents different modes of covalent and noncovalent interactions using N-hydroxysuccinimide ester (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Through combining and tuning different molecular interactions and a variety of crosslinking mechanisms, we were able to design an extremely elastic (924%) and tough (4697 kJ/m3) multifunctional hydrogel that could quickly adhere to wet tissue surfaces within 5 s of gentle pressing and deform to support physiological tissue function over time under wet conditions. While Alg-NHS provides covalent bonding with the tissue surfaces, the catechol moieties of TA molecules synergistically adopt a mussel-inspired adhesive mechanism to establish robust adherence to the wet tissue. The strong adhesion of the engineered bioadhesive patch is showcased by its application to rabbit conjunctiva and porcine cornea. Meanwhile, the engineered bioadhesive demonstrated painless detachable characteristics and in vitro biocompatibility. Additionally, due to the molecular interactions between TA and Fe3+, antioxidant and antibacterial properties required to support the wound healing pathways were also highlighted. Overall, by tuning various molecular interactions, we were able to develop a single-hydrogel platform with an "all-in-one" multifunctionality that can address current challenges of engineering hydrogel-based bioadhesives for tissue repair and sealing.
Collapse
Affiliation(s)
- Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| |
Collapse
|
14
|
Liu C, Peng K, Wu Y, Fu F. Functional adhesive hydrogels for biological interfaces. SMART MEDICINE 2023; 2:e20230024. [PMID: 39188302 PMCID: PMC11235964 DOI: 10.1002/smmd.20230024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/09/2023] [Indexed: 08/28/2024]
Abstract
Hydrogel adhesives are extensively employed in biological interfaces such as epidermal flexible electronics, tissue engineering, and implanted device. The development of functional hydrogel adhesives is a critical, yet challenging task since combining two or more attributes that seem incompatible into one adhesive hydrogel without sacrificing the hydrogel's pristine capabilities. In this Review, we highlight current developments in the fabrication of functional adhesive hydrogels, which are suitable for a variety of application scenarios, particularly those that occur underwater or on tissue/organ surface conditions. The design strategies for a multifunctional adhesive hydrogel with desirable properties including underwater adhesion, self-healing, good biocompatibility, electrical conductivity, and anti-swelling are discussed comprehensively. We then discuss the challenges faced by adhesive hydrogels, as well as their potential applications in biological interfaces. Adhesive hydrogels are the star building blocks of bio-interface materials for individualized healthcare and other bioengineering areas.
Collapse
Affiliation(s)
- Changyi Liu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Kexin Peng
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
15
|
Wiedenmann CJ, Böhringer D, Maier P, Lapp T, Wacker K, Heinzelmann S, Reinhard T, Lang SJ. Indications, techniques, and graft survival of mini and corneo-scleral tectonic keratoplasties: A retrospective single-center case series. PLoS One 2023; 18:e0289601. [PMID: 37540664 PMCID: PMC10403125 DOI: 10.1371/journal.pone.0289601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/22/2023] [Indexed: 08/06/2023] Open
Abstract
PURPOSE Tectonic keratoplasties (TK) are used to treat corneal and scleral perforations and to prevent the loss of the eye. In this study, we retrospectively analyzed indications, surgical procedures, and outcomes of eccentric mini and corneo-scleral tectonic keratoplasties with respect to anatomical survival and clear graft survival rates to identify risk factors for graft failure. METHODS This retrospective study includes 33 eccentric mini (graft diameter <6 mm) and/or corneo-scleral TK of 32 consecutive patients of a total of 41 TK carried out between 2005 and 2020 in the Eye Center, University of Freiburg, Germany, making up 0.7% of all keratoplasties performed during this period (n = 5557). Patient and graft specific data were extracted from medical files. Anatomical survival-defined as achieving integrity of the globe without further surgical interventions-and clear graft survival-defined as persisting graft clarity-were estimated using the Kaplan-Meier method. We also fitted Cox proportional hazard models to account for factors influencing anatomical and clear graft survival. RESULTS Median duration of anatomical success was 72.5 months (95% confidence interval (CI) 18.1-infinite (inf.)) and median duration of clear graft survival was 29.6 months (95% CI 12.5-Inf.). The 1-year survival rate for anatomical survival was 67.6% (95% CI 52.2% - 87.6%) and for clear graft survival 66.4% (95% CI 50.5%- 87.1%). No enucleation was necessary during this time-period. Non-inflammatory primary causes (n = 14) presented a trend towards better anatomical survival rates (median remained above 0.75 during follow-up) compared to inflammatory primary causes (n = 19, median 18.1 months (95% CI 2.8 - inf.)) and longer clear graft survival (median 29.6 months (95% CI 12.5 - inf.) versus 13.1 months (95% CI 3.2 - inf.)). Corneo-scleral grafts (n = 18) compared to corneal grafts (n = 15) showed a trend towards better anatomical survival (more than 50% of eyes did not fail during follow-up period (95% CI 21.9-Inf. months) versus 18.1 months (95% CI 2.4-Inf.)) and clear graft survival (median 29.6 months (95% CI 12.6-Inf.) versus 6.2 months (95% CI 2.8-Inf.)). Old age (n = 11, 75.2 - 90.1 years) compared to young age (n = 11, 6.2 - 60.2 years) was the only hazard ratio (hazard ratio 0.04 (95% CI 0.002-0.8)) that reached the level of significance (p = 0.03). CONCLUSION Eccentric TK is helpful in the successful treatment of a variety of severe eye diseases. Patients at young age, with pre-existing inflammatory conditions or corneal TK are at higher risk for anatomical failure as well as clear graft failure and therefore need to be monitored closely.
Collapse
Affiliation(s)
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Philip Maier
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Katrin Wacker
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sonja Heinzelmann
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefan Johann Lang
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
16
|
Chen X, Gholizadeh S, Ghovvati M, Wang Z, Jellen MJ, Mostafavi A, Dana R, Annabi N. Engineering a drug eluting ocular patch for delivery and sustained release of anti-inflammatory therapeutics. AIChE J 2023; 69:e18067. [PMID: 38250665 PMCID: PMC10798673 DOI: 10.1002/aic.18067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/25/2023] [Indexed: 01/23/2024]
Abstract
Ocular inflammation is commonly associated with eye disease or injury. Effective and sustained ocular delivery of therapeutics remains a challenge due to the eye physiology and structural barriers. Herein, we engineered a photocrosslinkable adhesive patch (GelPatch) incorporated with micelles (MCs) loaded with Loteprednol etabonate (LE) for delivery and sustained release of drug. The engineered drug loaded adhesive hydrogel, with controlled physical properties, provided a matrix with high adhesion to the ocular surfaces. The incorporation of MCs within the GelPatch enabled solubilization of LE and its sustained release within 15 days. In vitro studies showed that MC loaded GelPatch supported cell viability and growth. In addition, subcutaneous implantation of the MC loaded GelPatch in rats confirmed its in vivo biocompatibility and stability within 28 days. This non-invasive, adhesive, and biocompatible drug eluting patch can be used as a matrix for the delivery and sustained release of hydrophobic drugs.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Shima Gholizadeh
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Ziqing Wang
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Marcus J. Jellen
- Department of Chemistry and Biochemistry, University of California- Los Angeles, Los Angeles, CA, USA
| | - Azadeh Mostafavi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California- Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
17
|
Gholizadeh S, Chen X, Yung A, Naderi A, Ghovvati M, Liu Y, Farzad A, Mostafavi A, Dana R, Annabi N. Development and optimization of an ocular hydrogel adhesive patch using definitive screening design (DSD). Biomater Sci 2023; 11:1318-1334. [PMID: 36350113 DOI: 10.1039/d2bm01013e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adhesive hydrogels based on chemically modified photocrosslinkable polymers with specific physicochemical properties are frequently utilized for sealing wounds or incisions. These adhesive hydrogels offer tunable characteristics such as tailorable tissue adhesion, mechanical properties, swelling ratios, and enzymatic degradability. In this study, we developed and optimized a photocrosslinkable adhesive patch, GelPatch, with high burst pressure, minimal swelling, and specific mechanical properties for application as an ocular (sclera and subconjunctival) tissue adhesive. To achieve this, we formulated a series of hydrogel patches composed of different polymers with various levels of methacrylation, molecular weights, and hydrophobic/hydrophilic properties. A computerized multifactorial definitive screening design (DSD) analysis was performed to identify the most prominent components impacting critical response parameters such as adhesion, swelling ratio, elastic modulus, and second order interactions between applied components. These parameters were mathematically processed to generate a predictive model that identifies the linear and non-linear correlations between these factors. In conclusion, an optimized formulation of GelPatch was selected based on two modified polymers: gelatin methacryloyl (GelMA) and glycidyl methacrylated hyaluronic acid (HAGM). The ex vivo results confirmed adhesion and retention of the optimized hydrogel subconjunctivally and on the sclera for up to 4 days. The developed formulation has potential to be used as an ocular sealant for quick repair of laceration type ocular injuries.
Collapse
Affiliation(s)
- Shima Gholizadeh
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Xi Chen
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Ann Yung
- Schepens Eye Research Institute, Mass Eye and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA
| | - Amirreza Naderi
- Schepens Eye Research Institute, Mass Eye and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA
| | - Mahsa Ghovvati
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Yangcheng Liu
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Ashkan Farzad
- Sanquin Product Support and Development, Sanquin Plasma Products B.V., Amsterdam, The Netherlands
| | - Azadeh Mostafavi
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Reza Dana
- Schepens Eye Research Institute, Mass Eye and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
18
|
Shen X, Li S, Zhao X, Han J, Chen J, Rao Z, Zhang K, Quan D, Yuan J, Bai Y. Dual-crosslinked regenerative hydrogel for sutureless long-term repair of corneal defect. Bioact Mater 2023; 20:434-448. [PMID: 35800407 PMCID: PMC9234351 DOI: 10.1016/j.bioactmat.2022.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022] Open
Abstract
Corneal transplantation is the most effective clinical treatment for corneal defects, but it requires precise size of donor corneas, surgical sutures, and overcoming other technical challenges. Postoperative patients may suffer graft rejection and complications caused by sutures. Ophthalmic glues that can long-term integrate with the corneal tissue and effectively repair the focal corneal damage are highly desirable. Herein, a hybrid hydrogel consisting of porcine decellularized corneal stroma matrix (pDCSM) and methacrylated hyaluronic acid (HAMA) was developed through a non-competitive dual-crosslinking process. It can be directly filled into corneal defects with various shapes. More importantly, through formation of interpenetrating network and stable amide bonds between the hydrogel and adjacent tissue, the hydrogel manifested excellent adhesion properties to achieve suture-free repair. Meanwhile, the hybrid hydrogel not only preserved bioactive components from pDCSM, but also exhibited cornea-matching transparency, low swelling ratio, slow degradation, and enhanced mechanical properties, which was capable of withstanding superhigh intraocular pressure. The combinatorial hydrogel greatly improved the poor cell adhesion performance of HAMA, supported the viability, proliferation of corneal cells, and preservation of keratocyte phenotype. In a rabbit corneal stromal defect model, the experimental eyes treated with the hybrid hydrogel remained transparent and adhered intimately to the stroma bed with long-term retention, accelerated corneal re-epithelialization and wound healing. Giving the advantages of high bioactivity, low-cost, and good practicality, the dual-crosslinked hybrid hydrogel served effectively for long-term suture-free treatment and tissue regeneration after corneal defect. Double-network hydrogel contains regenerative decellularized corneal stroma matrix. Suture-free easy operation, high transparency, strong attachment to stroma bed. Long-term retention on corneal defect with excellent force and pressure resistance. Rapid re-epithelialization, minimal scar formation, sustained cornea regeneration. A functional biomaterial-based strategy for in situ corneal wound healing.
Collapse
Affiliation(s)
- Xuanren Shen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Jiandong Han
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiaxin Chen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kexin Zhang
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Schulz A, Germann A, Heinz WR, Engelhard M, Menz H, Rickmann A, Meiser I, Wien S, Wagner S, Januschowski K, Szurman P. Translation of hyaluronic acid–based vitreous substitutes towards current regulations for medical devices. Acta Ophthalmol 2022; 101:422-432. [PMID: 36457299 DOI: 10.1111/aos.15301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE Hydrogel-based vitreous substitutes have the potential to overcome the limitations of current clinically used endotamponades. With the goal of entering clinical trials, the present study aimed to (I) transfer the material synthesis of hyaluronic acid-based hydrogels into a routine, pharmaceutical-appropriate production and (II) evaluate the properties of the vitreous substitutes in terms of the current regulations for medical devices (MDR/ISO standards). METHODS The multistep manufacturing process of the vitreous substitutes, including the modification of hyaluronic acid with glycidyl methacrylate, photocopolymerization with N-vinylpyrrolidone, and successive hydrogel purification, was developed under laboratory conditions, characterized using 1 H-NMR, FT-IR and UV/Vis spectroscopies and HPLC, and transferred towards a pharmaceutical production environment considering GMP standards. The optical and viscoelastic characteristics of the hyaluronic acid-based hydrogels were compared with those of extracted human vitreous and silicone oil. The effect of the hydrogels on the metabolic activity, proliferation and apoptosis of fibroblast (MRC-5, BJ, L929), retinal pigment epithelial (ARPE-19, hiPSC-derived RPE) and photoreceptor cells (661W) was studied as well as their mucosal tolerance via a HET-CAM assay. RESULTS Hyaluronic acid-based hydrogels having a suitable purity, sterility, high transparency (>90%), appropriate refractive index (1.3365) and viscoelasticity (G' > G″) were prepared in a standardized manner under controlled process conditions. The metabolic activity, proliferation and apoptosis of various cell types as well as egg choroid were unaffected by the hyaluronic acid-based vitreous substitutes, demonstrating their biocompatibility. CONCLUSIONS The present study demonstrates the successful transferability of the crucial synthesis steps of hyaluronic acid-based hydrogels into a routine, GMP-compliant production process while achieving the optical and viscoelastic properties, biocompatibility and purity required for their clinical use as vitreous substitutes.
Collapse
Affiliation(s)
- André Schulz
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| | - Anja Germann
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | | | | | | | - Annekatrin Rickmann
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| | - Ina Meiser
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | - Sascha Wien
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | - Kai Januschowski
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| | - Peter Szurman
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| |
Collapse
|
20
|
Chen F, Mundy DC, Le P, Seo YA, Logan CM, Fernandes-Cunha GM, Basco CA, Myung D. In Situ-Forming Collagen-Hyaluronate Semi-Interpenetrating Network Hydrogel Enhances Corneal Defect Repair. Transl Vis Sci Technol 2022; 11:22. [PMID: 36239965 PMCID: PMC9586141 DOI: 10.1167/tvst.11.10.22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Millions worldwide suffer vision impairment or blindness from corneal injury, and there remains an urgent need for a more effective and accessible way to treat corneal defects. We have designed and characterized an in situ-forming semi-interpenetrating polymer network (SIPN) hydrogel using biomaterials widely used in ophthalmology and medicine. Methods The SIPN was formed by cross-linking collagen type I with bifunctional polyethylene glycol using N-hydroxysuccinimide ester chemistry in the presence of linear hyaluronic acid (HA). Gelation time and the mechanical, optical, swelling, and degradation properties of the SIPN were assessed. Cytocompatibility with human corneal epithelial cells and corneal stromal stem cells (CSSCs) was determined in vitro, as was the spatial distribution of encapsulated CSSCs within the SIPN. In vivo wound healing was evaluated by multimodal imaging in an anterior lamellar keratectomy injury model in rabbits, followed by immunohistochemical analysis of treated and untreated tissues. Results The collagen-hyaluronate SIPN formed in situ without an external energy source and demonstrated mechanical and optical properties similar to the cornea. It was biocompatible with human corneal cells, enhancing CSSC viability when compared with collagen gel controls and preventing encapsulated CSSC sedimentation. In vivo application of the SIPN significantly reduced stromal defect size compared with controls after 7 days and promoted multilayered epithelial regeneration. Conclusions This in situ-forming SIPN hydrogel may be a promising alternative to keratoplasty and represents a step toward expanding treatment options for patients suffering from corneal injury. Translational Relevance We detail the synthesis and initial characterization of an SIPN hydrogel as a potential alternative to lamellar keratoplasty and a tunable platform for further development in corneal tissue engineering and therapeutic cell delivery.
Collapse
Affiliation(s)
- Fang Chen
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto HealthCare System, Palo Alto, CA, USA
| | - David C Mundy
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Peter Le
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto HealthCare System, Palo Alto, CA, USA
| | - Youngyoon Amy Seo
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Caitlin M Logan
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Chris A Basco
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Myung
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto HealthCare System, Palo Alto, CA, USA.,Department of Chemical Engineering, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
21
|
Sutureless transplantation using a semi-interpenetrating polymer network bioadhesive for ocular surface reconstruction. Acta Biomater 2022; 153:273-286. [PMID: 36162761 DOI: 10.1016/j.actbio.2022.09.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
The conjunctiva covers the largest area of ocular surface and is responsible for tear balance and clear vision. After trauma or surgery, the conjunctiva is prone to scarring and contracture. Transplantation with suture often implies numerous complications, such as inflammation, suture erosion, granuloma. And the suture needs to be removed, which means a secondary trauma. In this study, a (GMO) for sutureless conjunctival transplantation was developed based on a semi-interpenetrating polymer network (sIPN) consisting of gelatin methacrylate (GelMA) and oxidized hyaluronic acid (OHA). The maximum adhesion strength was 157 ± 17 kPa, and the burst pressure was 357 ± 29 kPa, which was 15 times higher than the human intraocular pressure (IOP). GMO bioadhesive hydrogel significantly improved surgical efficiency and secured the collagen scaffold firmly to a rabbit conjunctival defect. The sutureless transplantation approach revealed the promoted tissue repair without scar. In conclusion, GMO bioadhesive may be an attractive alternative to suture for ocular surface reconstruction by avoiding suture-related complications and improving clinical outcome. STATEMENT OF SIGNIFICANCE: Conjunctival tissue is prone to scarring and contracture after trauma, and surgery with sutures often implies numerous complications. In this study, the ocular surface reconstruction was achieved by sutureless transplantation of conjunctival scaffold using bioadhesive hydrogel. The prepared GMO bioadhesive based on the semi-interpenetrating network of gelatin methacrylate (GelMA) and oxidized hyaluronic acid (OHA) had favorable adhesion and mechanical properties. The sutureless transplantation approach significantly improved the operation efficiency, avoided suture-related complications, and promoted the regeneration of conjunctiva. This study highlights the great potential of the sutureless repair strategy for clinical application in ocular surface reconstruction.
Collapse
|
22
|
Yang M, Fei X, Tian J, Xu L, Wang Y, Li Y. A starch-regulated adhesive hydrogel dressing with controllable separation properties for painless dressing change. J Mater Chem B 2022; 10:6026-6037. [PMID: 35894134 DOI: 10.1039/d2tb01021f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of hydrogel dressings provides unprecedented opportunities for clinical medicine. However, the traditional hydrogel dressings cannot achieve controllable adhesion and separation, which often brings unbearable pain and secondary damage to patients during removal. In this work, a starch-regulated adhesive hydrogel dressing with controllable separation properties is reported. This hydrogel dressing can achieve rapid separation through the dissociation competition mechanism of polar small molecules, which will not cause any damage or discomfort to the skin or tissues, and greatly facilitate dressing replacement. The adhesive strength of the hydrogel reaches 0.06 MPa, and remains relatively stable after repeated utilization. Meanwhile, the inhibition rate of the hydrogel for E. coli, S. aureus and C. albicans is more than 99.9%. At the same time, the hydrogel also has good swelling properties, mechanical properties and biocompatibility, and exhibits a high healing efficiency (95.01 ± 3.76%) in a rat full-thickness skin defect model. This novel hydrogel dressing with controllable separation properties provides a facile and effective method for wound management and treatment, and has great promise for long-term application of wound dressings.
Collapse
Affiliation(s)
- Minwei Yang
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian 116034, P. R. China. .,School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian 116034, P. R. China.
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian 116034, P. R. China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian 116034, P. R. China.
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian 116034, P. R. China.
| |
Collapse
|
23
|
Synthesis of bovine serum albumin-gelatin composite adhesive hydrogels by physical crosslinking. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03130-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Yazdanpanah G, Shen X, Nguyen T, Anwar KN, Jeon O, Jiang Y, Pachenari M, Pan Y, Shokuhfar T, Rosenblatt MI, Alsberg E, Djalilian AR. A Light-Curable and Tunable Extracellular Matrix Hydrogel for In Situ Suture-Free Corneal Repair. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2113383. [PMID: 35692510 PMCID: PMC9187264 DOI: 10.1002/adfm.202113383] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 05/15/2023]
Abstract
Corneal injuries are a major cause of blindness worldwide. To restore corneal integrity and clarity, there is a need for regenerative bio-integrating materials for in-situ repair and replacement of corneal tissue. Here, we introduce Light-curable COrnea Matrix (LC-COMatrix), a tunable material derived from decellularized porcine cornea extracellular matrix containing un-denatured collagen and sulfated glycosaminoglycans. It is a functionalized hydrogel with proper swelling behavior, biodegradation, and viscosity that can be cross-linked in situ with visible light, providing significantly enhanced biomechanical strength, stability, and adhesiveness. Cross-linked LC-COMatrix strongly adheres to human corneas ex vivo and effectively closes full-thickness corneal perforations with tissue loss. Likewise, in vivo, LC-COMatrix seals large corneal perforations, replaces partial-corneal stromal defects and bio-integrates into the tissue in rabbit models. LC-COMatrix is a natural ready-to-apply bio-integrating adhesive that is representative of native corneal matrix with potential applications in corneal and ocular surgeries.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Yizhou Jiang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Mohammad Pachenari
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| |
Collapse
|