1
|
Akanda SR, Kupratis ME, Bhattacharjee A, Benson J, Burris DL, Price C. Elevated Contact Stresses Compromise Activity-Mediated Cartilage Rehydration but not Lubrication. Ann Biomed Eng 2025:10.1007/s10439-025-03708-z. [PMID: 40319219 DOI: 10.1007/s10439-025-03708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/10/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE Understanding how obesity-a key risk factor for osteoarthritis-effects articular cartilage function is critical to understand OA pathoetiology. Cartilage, a biphasic material, supports vanishingly low friction coefficients in vivo, but is tribomechanically compromised by load-induced interstitial pressure/lubrication loss. To maintain tribomechanical function, cartilage must recover fluid lost to habitual/average contact stresses, a problem obesity likely exacerbates. Recently, we have shown that articulation/sliding drives robust interstitial fluid recovery and indefinite maintenance of biofidelic tissue strains and frictions through generation of hydrodynamic pressures within cartilage contact interfaces, i.e., via 'tribological rehydration.' However, the impact of elevated contact stresses on tribological rehydration and cartilage's function/lubrication remains unknown. METHODS Using our convergent stationary contact area (cSCA) testing approach on ovine stifle cartilage explants bathed in PBS, we aimed to elucidate several points: (1) the effect of elevated contact stress on tribological rehydration during high-speed articulation, and how (2) cartilage material properties and (3) sliding speed influence contact stress-dependent fluid exudation, rehydration, and lubrication. RESULTS Overall, we identified that (i) contact stress, across a narrow range, and (ii) static loading time are key controllers of tribological rehydration magnitude, compression accumulation, and equilibrium/total compression under biofidelic cSCA loading and sliding conditions. However, over the range tested (i.e., 0.2-0.8 MPa), (iii) contact stresses had no appreciable effect on cartilage's remarkable lubricity in the cSCA. CONCLUSIONS These results show that obesity is likely to directly physically impair articular cartilage function, and that obesity-driven tissue compression/strain, and not friction per se, may be the primary mechanical driver of cartilage dysfunction and OA risk.
Collapse
Affiliation(s)
| | - Meghan E Kupratis
- Biomedical Engineering Department, University of Delaware, 590 Avenue 1743, Newark, DE, USA
| | | | - Jamie Benson
- Biomedical Engineering Department, University of Delaware, 590 Avenue 1743, Newark, DE, USA
| | - David L Burris
- Mechanical Engineering, University of Delaware, Newark, DE, USA
- Biomedical Engineering Department, University of Delaware, 590 Avenue 1743, Newark, DE, USA
| | - Christopher Price
- Mechanical Engineering, University of Delaware, Newark, DE, USA.
- Biomedical Engineering Department, University of Delaware, 590 Avenue 1743, Newark, DE, USA.
| |
Collapse
|
2
|
Lawson TB, Joenathan A, DeMoya CD, Zheng L, Zhong Y, Xu J, Duan C, Snyder BD, Grinstaff MW. Nanoparticle Lubricant and Imaging Agent: Preventing and Assessing Cartilage Tissue Damage. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22352-22361. [PMID: 40178347 DOI: 10.1021/acsami.5c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Introducing additives to industrial lubricants reduces friction and wear between articulating metal surfaces by mechanistically impeding interfacial adhesion, heat dissipation, and abrasion. With this inspiration, we report the synthesis and use of tantalum oxide (Ta2O5) nanoparticles as a nanolubricant and tribosupplement (i.e., tribology-augmenting agent) for articular cartilage. Further, as tantalum oxide absorbs X-rays, the nanolubricant is also a contrast-agent for computed tomography (CT). These dual purpose nanoparticles, decorated with a short poly (ethylene glycol) and cationic trimethylammonium silane coating, suspend in aqueous fluid to form a CT active nanolubricant. In an ex vivo cartilage-on-cartilage model, the nanolubricant outperforms the clinical standard, Synvisc-One, as a viscosupplement during high load, low velocity sliding associated with low Hersey numbers and high static friction. Differential diffusion of the nanolubricants into healthy and degraded cartilage demonstrates the diagnostic capability of the nanolubricant to also distinguish disease state by μCT.
Collapse
Affiliation(s)
- Taylor B Lawson
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Anisha Joenathan
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Material Science, Boston University, Boston, Massachusetts 02215, United States
| | - Christian D DeMoya
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Liangwei Zheng
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yiding Zhong
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jiayi Xu
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Chuanhua Duan
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Material Science, Boston University, Boston, Massachusetts 02215, United States
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Mark W Grinstaff
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Material Science, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Plath AMS, de Lima PHC, Amicone A, Bissacco EG, Mosayebi M, Berton SBR, Ferguson SJ. Toward low-friction and high-adhesion solutions: Emerging strategies for nanofibrous scaffolds in articular cartilage engineering. BIOMATERIALS ADVANCES 2025; 169:214129. [PMID: 39642717 DOI: 10.1016/j.bioadv.2024.214129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Aging, trauma, pathology, and poor natural tissue regeneration are the leading causes of osteoarthritis (OA), an articular cartilage disease. Electrospun scaffolds have gained attention as potential matrices for the treatment of OA because of their high degree of ECM mimicry, which suits chondrocyte migration, adhesion, and proliferation. However, none of the products recently introduced in the market are nanofiber-based. This study aimed to review the scope and tribology of nanofibrous articular cartilage scaffolds. Herein, we briefly discuss cartilage lubrication and strategies for promoting cell adhesion in electrospun materials. Next, we discuss the emerging need to study the biotribological properties of scaffolds. Finally, we review new perspectives on surface functionalization, surface segregation, Janus membranes, layer-by-layer fabrication, and nanofibrous composites. We conclude that cell adhesion and low-friction conciliation remain poorly explored in the recent literature. The topic intersection might create novelties in the field.
Collapse
Affiliation(s)
| | - Pedro Henrique Correia de Lima
- Department of Physics and Chemistry, São Paulo State University (UNESP), Av. Brasil, 56, 15385007 Ilha Solteira, Brazil.
| | - Alessio Amicone
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37-39, 8092 Zurich, Switzerland
| | | | - Mahdieh Mosayebi
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37-39, 8092 Zurich, Switzerland
| | | | - Stephen J Ferguson
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37-39, 8092 Zurich, Switzerland
| |
Collapse
|
4
|
de Roy L, Metzger JW, Faschingbauer M, Ignatius A, Seitz AM. Friction of osteoarthritic cartilage with patient-specific synovial fluid: Effect of different loading conditions. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100568. [PMID: 39911295 PMCID: PMC11794063 DOI: 10.1016/j.ocarto.2025.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025] Open
Abstract
Objective The objective of this study was to quantify the friction coefficients of degenerated human cartilage lubricated with patient-specific synovial fluid under four different loading regimes in order to identify those regimes that cause the highest friction. Method Lateral tibial plateaus and synovial fluid samples were obtained from six patients undergoing total knee replacement surgery. Friction tests were performed on cylindrical samples using an established cartilage against glass tribometer. Four different loading regimes were applied, representing physiologic loads and velocities observed during daily activities. To account for effects of osteoarthritis (OA)-related alterations in the synovial fluid (SF) on friction, patient-specific SF was used as lubricant. Friction coefficients were derived from the first (μ0) and final 60 s (μend) of testing. Results Under stance phase conditions, friction was lowest at the beginning of testing (μ0 = 0.021), but increased the most (+276 %, μend = 0.079) compared to low (+47 %) and moderate loading regimes (+31 %). Under swing phase conditions low friction was maintained over time (+0 %, μ0 = 0.041, μend = 0.041). Conclusion The friction properties of degenerated cartilage samples indicated a strong dependency on the loading regime, whereby prolonged stance phase loading led to the highest time-dependent increase in friction. Moreover, our data suggested that osteoarthritic synovial fluid was sufficient to provide low cartilage friction.
Collapse
Affiliation(s)
- Luisa de Roy
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Jonas Walter Metzger
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Martin Faschingbauer
- Department of Orthopedic Surgery, RKU, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Andreas Martin Seitz
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
5
|
de Roy L, Teixeira GQ, Schwer J, Sukopp M, Faschingbauer M, Ignatius A, Seitz AM. Structure-function of cartilage in osteoarthritis: An ex-vivo correlation analysis between its structural, viscoelastic and frictional properties. Acta Biomater 2024:S1742-7061(24)00619-6. [PMID: 39427764 DOI: 10.1016/j.actbio.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Healthy articular cartilage is characterized by extremely low friction and high compressive stiffness. This dual-functionality is tailored by its biphasic structure, whereby a fluid phase interacts with the extracellular matrix. Osteoarthritis (OA) causes structural changes, thereby altering the biomechanical and frictional properties. How the structural and functional properties of human cartilage are associated with OA remain unknown. To address this, we identified relationships between structural parameters, viscoelastic and frictional properties of degenerated human cartilage through correlation analyses. We found that cartilage friction was mainly influenced by its microscopic structure, while the viscoelastic properties were also related to the macroscopic structure. The viscoelastic and frictional properties displayed a weak correlation. These findings provide insights into the interplay between cartilage structure and its functional properties in OA, which might provide a basis for advancements in diagnosing and treating degenerated human cartilage. STATEMENT OF SIGNIFICANCE: Osteoarthritis causes changes in the cartilages biphasic structure, thereby affecting functionality by altered biomechanical and frictional properties. Currently a cartilage-preserving therapeutic option remains lacking, because the disease is not fully understood. In our correlation analyses, we investigated relationships between the structural, the viscoelastic and frictional properties of degenerated human cartilage. We found that cartilage friction was particularly dependent on the microscopic structure, while the viscoelastic properties also correlated with the macroscopic structure. The frictional properties displayed only a weak dependency with the viscoelastic properties. These new insights into the structure-function and inter-functional relationships may provide new options to advance the diagnosis and treatment of degenerated cartilage.
Collapse
Affiliation(s)
- Luisa de Roy
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center Ulm, Germany.
| | - Graciosa Quelhas Teixeira
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center Ulm, Germany.
| | - Jonas Schwer
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center Ulm, Germany.
| | - Matthias Sukopp
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center Ulm, Germany.
| | - Martin Faschingbauer
- Department of Orthopedic Surgery, RKU, Ulm University Medical Center, Ulm, Germany.
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center Ulm, Germany.
| | - Andreas Martin Seitz
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center Ulm, Germany.
| |
Collapse
|
6
|
Benson JM, Moore AC, Schrader J, Burris DL. Adhesion-Lubrication Paradox of Articular Cartilage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13810-13818. [PMID: 38918081 DOI: 10.1021/acs.langmuir.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The friction of solids is primarily understood through the adhesive interactions between the surfaces. As a result, slick materials tend to be nonstick (e.g., Teflon), and sticky materials tend to produce high friction (e.g., tires and tape). Paradoxically, cartilage, the slippery bearing material of human joints, is also among the stickiest of known materials. This study aims to elucidate this apparent paradox. Cartilage is a biphasic material, and the most cited explanation is that both friction and adhesion increase as load transfers from the pressurized interstitial fluid to the solid matrix over time. In other words, cartilage is slippery and sticky under different times and conditions. This study challenges this explanation, demonstrating the strong adhesion of cartilage under high and low interstitial hydration conditions. Additionally, we find that cartilage clings to itself (a porous material) and Teflon (a nonstick material), as well as other surfaces. We conclude that the unusually strong interfacial tension produced by cartilage reflects suction (like a clingfish) rather than adhesion (like a gecko). This finding is surprising given its unusually large roughness, which typically allows for easy interfacial flow and defeats suction. The results provide compelling evidence that cartilage, like a clingfish, conforms to opposing surfaces and effectively seals submerged contacts. Further, we argue that interfacial sealing is itself a critical function, enabling cartilage to retain hydration, load support, and lubrication across long periods of inactivity.
Collapse
Affiliation(s)
- J M Benson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - A C Moore
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - J Schrader
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - D L Burris
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Kupratis ME, Gonzalez U, Rahman A, Burris DL, Corbin EA, Price C. Exogenous Collagen Crosslinking is Highly Detrimental to Articular Cartilage Lubrication. J Biomech Eng 2024; 146:071001. [PMID: 38323667 PMCID: PMC11005859 DOI: 10.1115/1.4064663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Healthy articular cartilage is a remarkable bearing material optimized for near-frictionless joint articulation. Because its limited self-repair capacity renders it susceptible to osteoarthritis (OA), approaches to reinforce or rebuild degenerative cartilage are of significant interest. While exogenous collagen crosslinking (CXL) treatments improve cartilage's mechanical properties and increase its resistance to enzymatic degradation, their effects on cartilage lubrication remain less clear. Here, we examined how the collagen crosslinking agents genipin (GP) and glutaraldehyde (GTA) impact cartilage lubrication using the convergent stationary contact area (cSCA) configuration. Unlike classical configurations, the cSCA sustains biofidelic kinetic friction coefficients (μk) via superposition of interstitial and hydrodynamic pressurization (i.e., tribological rehydration). As expected, glutaraldehyde- and genipin-mediated CXL increased cartilage's tensile and compressive moduli. Although net tribological rehydration was retained after CXL, GP or GTA treatment drastically elevated μk. Both healthy and "OA-like" cartilage (generated via enzymatic digestion) sustained remarkably low μk in saline- (≤0.02) and synovial fluid-lubricated contacts (≤0.006). After CXL, μk increased up to 30-fold, reaching values associated with marked chondrocyte death in vitro. These results demonstrate that mechanical properties (i.e., stiffness) are necessary, but not sufficient, metrics of cartilage function. Furthermore, the marked impairment in lubrication suggests that CXL-mediated stiffening is ill-suited to cartilage preservation or joint resurfacing.
Collapse
Affiliation(s)
- Meghan E. Kupratis
- Biomedical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - Uriel Gonzalez
- Biomedical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - Atia Rahman
- Mechanical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - David L. Burris
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Elise A. Corbin
- Biomedical Engineering, University of Delaware, Newark, DE 19713; Materials Science & Engineering, University of Delaware, Newark, DE 19716
- University of Delaware
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, DE 19713; Mechanical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
8
|
Rajankunte Mahadeshwara M, Al-Jawad M, Hall RM, Pandit H, El-Gendy R, Bryant M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering (Basel) 2024; 11:541. [PMID: 38927777 PMCID: PMC11200606 DOI: 10.3390/bioengineering11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical and tribological properties primarily attributed to lubrication failure. Understanding the reasons behind these failures and identifying potential solutions could have significant economic and societal implications, ultimately enhancing quality of life. This review provides an overview of developments in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the role of lubrication in degraded AC, offering insights into its structure and function relationship. Further, it explores the fundamental connection between AC mechano-tribological properties and the advancement of its degradation and puts forth recommendations for strategies to boost its lubrication efficiency.
Collapse
Affiliation(s)
- Manoj Rajankunte Mahadeshwara
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Maisoon Al-Jawad
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Richard M. Hall
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Chapel Allerton Hospital, Leeds LS7 4SA, UK;
| | - Reem El-Gendy
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 3, Ismailia Governorate 8366004, Egypt
| | - Michael Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
9
|
Kupratis ME, Rahman A, Burris DL, Corbin EA, Price C. Enzymatic digestion does not compromise sliding-mediated cartilage lubrication. Acta Biomater 2024; 178:196-207. [PMID: 38428511 DOI: 10.1016/j.actbio.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Articular cartilage's remarkable low-friction properties are essential to joint function. In osteoarthritis (OA), cartilage degeneration (e.g., proteoglycan loss and collagen damage) decreases tissue modulus and increases permeability. Although these changes impair lubrication in fully depressurized and slowly slid cartilage, new evidence suggests such relationships may not hold under biofidelic sliding conditions more representative of those encountered in vivo. Our recent studies using the convergent stationary contact area (cSCA) configuration demonstrate that articulation (i.e., sliding) generates interfacial hydrodynamic pressures capable of replenishing cartilage interstitial fluid/pressure lost to compressive loading through a mechanism termed tribological rehydration. This fluid recovery sustains in vivo-like kinetic friction coefficients (µk<0.02 in PBS and <0.005 in synovial fluid) with little sensitivity to mechanical properties in healthy tissue. However, the tribomechanical function of compromised cartilage under biofidelic sliding conditions remains unknown. Here, we investigated the effects of OA-like changes in cartilage mechanical properties, modeled via enzymatic digestion of mature bovine cartilage, on its tribomechanical function during cSCA sliding. We found no differences in sliding-driven tribological rehydration behaviors or µk between naïve and digested cSCA cartilage (in PBS or synovial fluid). This suggests that OA-like cartilage retains sufficient functional properties to support naïve-like fluid recovery and lubrication under biofidelic sliding conditions. However, OA-like cartilage accumulated greater total tissue strains due to elevated strain accrual during initial load application. Together, these results suggest that elevated total tissue strains-as opposed to activity-mediated strains or friction-driven wear-might be the key biomechanical mediator of OA pathology in cartilage. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) decreases cartilage's modulus and increases its permeability. While these changes compromise frictional performance in benchtop testing under low fluid load support (FLS) conditions, whether such observations hold under sliding conditions that better represent the joints' dynamic FLS conditions in vivo is unclear. Here, we leveraged biofidelic benchtop sliding experiments-that is, those mimicking joints' native sliding environment-to examine how OA-like changes in mechanical properties effect cartilage's natural lubrication. We found no differences in sliding-mediated fluid recovery or kinetic friction behaviors between naïve and OA-like cartilage. However, OA-like cartilage experienced greater strain accumulation during load application, suggesting that elevated tissue strains (not friction-driven wear) may be the primary biomechanical mediator of OA pathology.
Collapse
Affiliation(s)
| | - Atia Rahman
- Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - David L Burris
- Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Elise A Corbin
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Materials Science & Engineering, University of Delaware, Newark, DE, USA
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Mechanical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
10
|
de Roy L, Eichhorn K, Faschingbauer M, Schlickenrieder K, Ignatius A, Seitz AM. Impact of hyaluronic acid injection on the knee joint friction. Knee Surg Sports Traumatol Arthrosc 2023; 31:5554-5564. [PMID: 37843587 PMCID: PMC10719131 DOI: 10.1007/s00167-023-07602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE The purpose of this in vitro study was to investigate whether or not hyaluronic acid supplementation improves knee joint friction during osteoarthritis progression under gait-like loading conditions. METHODS Twelve human cadaveric knee joints were equally divided into mild and moderate osteoarthritic groups. After initial conservative preparation, a passive pendulum setup was used to test the whole joints under gait-like conditions before and after hyaluronic acid supplementation. The friction-related damping properties given by the coefficient of friction µ and the damping coefficient c (in kg m2/s) were calculated from the decaying flexion-extension motion of the knee. Subsequently, tibial and femoral cartilage and meniscus samples were extracted from the joints and tested in an established dynamic pin-on-plate tribometer using synthetic synovial fluid followed by synthetic synovial fluid supplemented with hyaluronic acid as lubricant. Friction was quantified by calculating the coefficient of friction. RESULTS In the pendulum tests, the moderate OA group indicated significantly lower c0 values (p < 0.05) under stance phase conditions and significantly lower µ0 (p = 0.01) values under swing phase conditions. No degeneration-related statistical differences were found for µend or cend. Friction was not significantly different (p > 0.05) with regard to mild and moderate osteoarthritis in the pin-on-plate tests. Additionally, hyaluronic acid did not affect friction in both, the pendulum (p > 0.05) and pin-on-plate friction tests (p > 0.05). CONCLUSION The results of this in vitro study suggested that the friction of cadaveric knee joint tissues does not increase with progressing degeneration. Moreover, hyaluronic acid viscosupplementation does not lead to an initial decrease in knee joint friction.
Collapse
Affiliation(s)
- Luisa de Roy
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Kerstin Eichhorn
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Martin Faschingbauer
- Department of Orthopedic Surgery, RKU, Ulm University Medical Center, Ulm, Germany
| | - Klaus Schlickenrieder
- Faculty of Production Engineering and Management, Ulm University of Applied Sciences, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Andreas Martin Seitz
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany.
| |
Collapse
|
11
|
Dou H, Wang S, Hu J, Song J, Zhang C, Wang J, Xiao L. Osteoarthritis models: From animals to tissue engineering. J Tissue Eng 2023; 14:20417314231172584. [PMID: 37223125 PMCID: PMC10201005 DOI: 10.1177/20417314231172584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative osteoarthropathy. Although it has been revealed that a variety of factors can cause or aggravate the symptoms of OA, the pathogenic mechanisms of OA remain unknown. Reliable OA models that accurately reflect human OA disease are crucial for studies on the pathogenic mechanism of OA and therapeutic drug evaluation. This review first demonstrated the importance of OA models by briefly introducing the OA pathological features and the current limitations in the pathogenesis and treatment of OA. Then, it mainly discusses the development of different OA models, including animal and engineered models, highlighting their advantages and disadvantages from the perspective of pathogenesis and pathology analysis. In particular, the state-of-the-art engineered models and their potential were emphasized, as they may represent the future direction in the development of OA models. Finally, the challenges in obtaining reliable OA models are also discussed, and possible future directions are outlined to shed some light on this area.
Collapse
Affiliation(s)
- Hongyuan Dou
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Shuhan Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, China
| | - Jiawei Hu
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
12
|
Yu P, Li Y, Sun H, Ke X, Xing J, Zhao Y, Xu X, Qin M, Xie J, Li J. Cartilage-Inspired Hydrogel with Mechanical Adaptability, Controllable Lubrication, and Inflammation Regulation Abilities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27360-27370. [PMID: 35658410 DOI: 10.1021/acsami.2c04609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cartilage is a key component in joints because of its load-bearing and lubricating abilities. However, osteoarthritis often leads to afunction of load-bearing/lubrication and occurrence of inflammation with overexpressed reactive oxygen species (ROS) and nitric oxide (NO). To address these issues, we fabricated a novel polyanionic hydrogel with abundant carboxylates/sulfonates ("CS" hydrogel), inspired by normal cartilage rich in anionic hyaluronate/sulfonate glycosaminoglycan/lubricin, and crosslinked it tightly by Fe3+ ("CS-Fe" hydrogel). The "CS-Fe" hydrogel displayed mechanical adaptability and shear resistance. A low coefficient of friction (∼0.02) appeared when a loose hydrogel layer was generated because of the photoreduction of Fe3+ to Fe2+ by UV irradiation. This biocompatible "CS-Fe" hydrogel suppressed the overexpressed hydroxyl radical (·OH) and NO in macrophages and protected chondrocytes/fibroblasts from aggressive inflammation. Moreover, the layered "CS-Fe" hydrogel avoided cell death of chondrocytes in sliding tests. The results demonstrate that this cartilage-inspired hydrogel is a promising candidate material in cartilage tissue engineering to especially address inflammation.
Collapse
Affiliation(s)
- Peng Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yanyan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Hui Sun
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xiang Ke
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jiaqi Xing
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yiran Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Meng Qin
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jing Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
13
|
Meng Y, Xu J, Ma L, Jin Z, Prakash B, Ma T, Wang W. A review of advances in tribology in 2020–2021. FRICTION 2022; 10:1443-1595. [PMCID: PMC9552739 DOI: 10.1007/s40544-022-0685-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 07/22/2023]
Abstract
Around 1,000 peer-reviewed papers were selected from 3,450 articles published during 2020–2021, and reviewed as the representative advances in tribology research worldwide. The survey highlights the development in lubrication, wear and surface engineering, biotribology, high temperature tribology, and computational tribology, providing a show window of the achievements of recent fundamental and application researches in the field of tribology.
Collapse
Affiliation(s)
- Yonggang Meng
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Jun Xu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Liran Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Zhongmin Jin
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 China
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT UK
| | - Braham Prakash
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Tianbao Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Wenzhong Wang
- School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing, 100082 China
| |
Collapse
|