1
|
Zhang K, Li S, Li J, Zhou X, Qin Y, Wu L, Ling J. Ultra-pH-sensitive nanoplatform for precise tumor therapy. Biomaterials 2025; 314:122858. [PMID: 39366182 DOI: 10.1016/j.biomaterials.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The emergence of precision cancer treatment has triggered a paradigm shift in the field of oncology, facilitating the implementation of more effective and personalized therapeutic approaches that enhance patient outcomes. The pH of the tumor microenvironment (TME) plays a pivotal role in both the initiation and progression of cancer, thus emerging as a promising focal point for precision cancer treatment. By specifically targeting the acidic conditions inherent to the tumor microenvironment, innovative therapeutic interventions have been proposed, exhibiting significant potential in augmenting treatment efficacy and ameliorating patient prognosis. The concept of ultra-pH-sensitive (UPS) nanoplatform was proposed several years ago, demonstrating exceptional pH sensitivity and an adjustable pH transition point. Subsequently, diverse UPS nanoplatforms have been actively explored for biomedical applications, enabling the loading of fluorophores, therapeutic drugs, and photosensitizers. This review aims to elucidate the design strategy and response mechanism of the UPS nanoplatform, with a specific emphasis on its applications in surgical therapy, immunotherapy, drug delivery, photodynamic therapy, and photothermal therapy. The potential and challenges of translating in the clinic on UPS nanoplatforms are finally explored. Thanks to its responsive and easily modifiable nature, the integration of multiple functional units within a UPS nanoplatform holds great promise for future advancements in tumor precision theranositcs.
Collapse
Affiliation(s)
- Ke Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Shijie Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jiaying Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China; School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Jue Ling
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Liu X, Ullah I, Yuan Y. Tumor Acidity-Triggered Bioorthogonal Reactions for Biomedical Applications. Chembiochem 2024; 25:e202400452. [PMID: 38940000 DOI: 10.1002/cbic.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Cancer is one of the most serious threats to human health. Over the past few years, researchers have incrementally uncovered the pivotal role of tumor acidity in tumor formation, development, and treatment. In addition, bioorthogonal reactions have been widely used in tumor diagnosis and therapy, owing to their advantageous characteristics, including small ligand size, biocompatibility, fast reaction kinetics, and high chemospecificity. Consequently, bioorthogonal reactions triggered by tumor acidity have become an emerging strategy in biomedical applications. On this basis, we first elucidate the concept and major strategies of tumor acidity-triggered bioorthogonal reactions. Additionally, we review the progress in biomedical applications, with a particular focus on their importance in disease diagnosis and treatment. Finally, clinical challenges and future trends are also outlooked.
Collapse
Affiliation(s)
- Xiajian Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Ihsan Ullah
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Zhang JA, Haddleton D, Wilson P, Zhu LH, Dai CY, Zhao LL. pH-Responsive Amphiphilic Triblock Fluoropolymers as Assemble Oxygen Nanoshuttles for Enhancing PDT against Hypoxic Tumor. Bioconjug Chem 2024; 35:400-411. [PMID: 38366969 DOI: 10.1021/acs.bioconjchem.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Photodynamic therapy (PDT) is a cancer treatment strategy that utilizes photosensitizers to convert oxygen within tumors into reactive singlet oxygen (1O2) to lyse tumor cells. Nevertheless, pre-existing tumor hypoxia and oxygen consumption during PDT can lead to an insufficient oxygen supply, potentially reducing the photodynamic efficacy. In response to this issue, we have devised a pH-responsive amphiphilic triblock fluorinated polymer (PDP) using copper-mediated RDRP. This polymer, composed of poly(ethylene glycol) methyl ether acrylate, 2-(diethylamino)ethyl methacrylate, and (perfluorooctyl)ethyl acrylate, self-assembles in an aqueous environment. Oxygen, chlorine e6 (Ce6), and doxorubicin (DOX) can be codelivered efficiently by PDP. The incorporation of perfluorocarbon into the formulation enhances the oxygen-carrying capacity of PDP, consequently extending the lifetime of 1O2. This increased lifetime, in turn, amplifies the PDT effect and escalates the cellular cytotoxicity. Compared with PDT alone, PDP@Ce6-DOX-O2 NPs demonstrated significant inhibition of tumor growth. This study proposes a novel strategy for enhancing the efficacy of PDT.
Collapse
Affiliation(s)
- Jun-An Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
| | - David Haddleton
- Department of Chemistry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Paul Wilson
- Department of Chemistry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Lin-Hua Zhu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
- Department of Chemistry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Key Laboratory of Functional Organic Polymers of Haikou, Tropical Functional Polymer Materials Engineering Research Center of Hainan, Haikou 571158, China
| | - Chun-Yan Dai
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
- Department of Chemistry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Key Laboratory of Functional Organic Polymers of Haikou, Tropical Functional Polymer Materials Engineering Research Center of Hainan, Haikou 571158, China
| | - Lin-Lu Zhao
- College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
4
|
Liu Y, Jiang M, Zhao Z, Wang N, Wang K, Yuan Y. Cyclic amplification of intracellular ROS boosts enzymatic prodrug activation for enhanced chemo-immunotherapy. Acta Biomater 2023; 166:567-580. [PMID: 37207741 DOI: 10.1016/j.actbio.2023.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Tumor-associated enzyme activated prodrug is a potential strategy to overcome the limitations of chemotherapeutic agents. However, the efficiency of enzymatic prodrug activation is limited by the inability to reach adequate enzyme levels in vivo. Herein, we report an intelligent nanoplatform with cyclic amplification of intracellular reactive oxygen species (ROS) that significantly up-regulates the expression of tumor-associated enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to efficiently activate the prodrug of doxorubicin (DOX) for enhanced chemo-immunotherapy. The nanoplatform termed as CF@NDOX was fabricated by self-assembly of the amphiphilic cinnamaldehyde (CA) containing poly(thioacetal) conjugated with ferrocene (Fc) and poly(ethylene glycol) (PEG) (TK-CA-Fc-PEG), which further encapsulated the NQO1 responsive prodrug of DOX (NDOX). After CF@NDOX accumulates in tumors, the TK-CA-Fc-PEG with ROS responsive thioacetal group responds to endogenous ROS in tumor to release CA, Fc or NDOX. CA induces mitochondria dysfunction and elevates the intracellular hydrogen peroxide (H2O2) levels, which react with Fc to generate highly oxidative hydroxyl radical (•OH) through Fenton reaction. The •OH not only promotes ROS cyclic amplification but also increase the expression of NQO1 through Keap1-Nrf2 pathway regulation, which further boost the prodrug activation of NDOX for enhanced chemo-immunotherapy. Overall, our well-designed intelligent nanoplatform provides a tactic to enhance the antitumor efficacy of tumor-associated enzyme activated prodrug. STATEMENT OF SIGNIFICANCE: In this work, a smart nanoplatform CF@NDOX with intracellular ROS cyclic amplification for continuous upregulation of NQO1 enzyme expression was innovatively designed. It could utilize Fenton reaction of Fc to increase the level of NQO1 enzyme and CA to increase the level of intracellular H2O2, thereby facilitating the continuous Fenton reaction. This design allowed for a sustained elevation of the NQO1 enzyme, and a more complete activation of the NQO1 enzyme in response to the prodrug NDOX. This smart nanoplatform can achieve a desirable anti-tumor effect with the combined therapy of chemotherapy and ICD effects.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Maolin Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Zhongyi Zhao
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Nianhua Wang
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Kewei Wang
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Zhang G, Li T, Liu J, Wu X, Yi H. Cinnamaldehyde-Contained Polymers and Their Biomedical Applications. Polymers (Basel) 2023; 15:polym15061517. [PMID: 36987298 PMCID: PMC10051895 DOI: 10.3390/polym15061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Cinnamaldehyde, a natural product that can be extracted from a variety of plants of the genus Cinnamomum, exhibits excellent biological activities including antibacterial, antifungal, anti-inflammatory, and anticancer properties. To overcome the disadvantages (e.g., poor water solubility and sensitivity to light) or enhance the advantages (e.g., high reactivity and promoting cellular reactive oxygen species production) of cinnamaldehyde, cinnamaldehyde can be loaded into or conjugated with polymers for sustained or controlled release, thereby prolonging the effective action time of its biological activities. Moreover, when cinnamaldehyde is conjugated with a polymer, it can also introduce environmental responsiveness to the polymer through the form of stimuli-sensitive linkages between its aldehyde group and various functional groups of polymers. The environmental responsiveness provides the great potential of cinnamaldehyde-conjugated polymers for applications in the biomedical field. In this review, the strategies for preparing cinnamaldehyde-contained polymers are summarized and their biomedical applications are also reviewed.
Collapse
Affiliation(s)
- Guangyan Zhang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
- Correspondence: (G.Z.); (J.L.)
| | - Tianlong Li
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jia Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (G.Z.); (J.L.)
| | - Xinran Wu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hui Yi
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
6
|
He Z, Guo Y, Chen J, Luo H, Liu X, Zhang X, Sun Y, Ge D, Ye S, Shi W. Unsaturated phospholipid modified FeOCl nanosheets for enhancing tumor ferroptosis. J Mater Chem B 2023; 11:1891-1903. [PMID: 36744515 DOI: 10.1039/d2tb01854c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Iron-dependent accumulation of reactive oxygen species (ROS) and lipid peroxidation play key roles in ferroptosis, which has been an attractive strategy to kill tumor cells. However, the rapid annihilation of hydroxyl radicals (˙OH) produced from the Fenton reaction has become a major obstacle in inducing lipid peroxidation in cells. In this study, we develop a nano-delivery system of unsaturated phospholipid (Lip) and polyacrylic acid (PAA) functionalized FeOCl nanosheets (FeOCl@PAA-Lip). In this system, the ˙OH radicals produced from the Fenton reaction between FeOCl nanosheets and endogenous H2O2 of tumor cells attack Lip on the nanosheets in situ to initiate the lipid peroxidation chain reaction, which not only realizes free radical conversion but also leads to the amplification of ROS and lipid peroxides, thus enhancing tumor ferroptosis. The in vitro and in vivo results confirmed that FeOCl@PAA-Lip nanosheets exhibited specific tumor cell-killing effects, good biocompatibility, long circulation time, low side effects, high tumor targeting and an excellent tumor inhibition rate (73%). The Lip functionalization strategy offers a paradigm of enhancing ferroptosis treatment by conversion of ˙OH/phospholipid radicals/lipid peroxyl radicals and strengthening lipid peroxidation.
Collapse
Affiliation(s)
- Zi He
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yijun Guo
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Jinzhu Chen
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Huiling Luo
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Xinxin Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Xiuming Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Shefang Ye
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
7
|
Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater 2023; 10:rbad004. [PMID: 36817975 PMCID: PMC9926950 DOI: 10.1093/rb/rbad004] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
Ferroptosis, a completely new form of regulated cell death, is mainly caused by an imbalance between oxidative damage and reductive protection and has shown great anti-cancer potential. However, existing small-molecule ferroptosis inducers have various limitations, such as poor water solubility, drug resistance and low targeting ability, hindering their clinical applications. Nanotechnology provides new opportunities for ferroptosis-driven tumor therapy. Especially, stimuli-responsive nanomaterials stand out among others and have been widely researched because of their unique spatiotemporal control advantages. Therefore, it's necessary to summarize the application of those stimuli-responsive nanomaterials in ferroptosis. Here, we describe the physiological feature of ferroptosis and illustrate the current challenges to induce ferroptosis for cancer therapy. Then, nanomaterials that induce ferroptosis are classified and elaborated according to the external and internal stimuli. Finally, the future perspectives in the field are proposed. We hope this review facilitates paving the way for the design of intelligent nano-ferroptosis inducers.
Collapse
Affiliation(s)
- Qiaolin Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
8
|
Ling YY, Wang WJ, Hao L, Wu XW, Liang JH, Zhang H, Mao ZW, Tan CP. Self-Amplifying Iridium(III) Photosensitizer for Ferroptosis-Mediated Immunotherapy Against Transferrin Receptor-Overexpressing Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203659. [PMID: 36310137 DOI: 10.1002/smll.202203659] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Photoimmunotherapy is attractive for cancer treatment due to its spatial controllability and sustained responses. This work presents a ferrocene-containing Ir(III) photosensitizer (IrFc1) that can bind with transferrin and be transported into triple-negative breast cancer (TNBC) cells via a transferrin receptor-mediated pathway. When the ferrocene in IrFc1 is oxidized by reactive oxygen species, its capability to photosensitize both type I (electron transfer) and type II (energy transfer) pathways is activated through a self-amplifying process. Upon irradiation, IrFc1 induces the generation of lipid oxidation to cause ferroptosis in TNBC cells, which promotes immunogenic cell death (ICD) under both normoxia and hypoxia. In vivo, IrFc1 treatment elicits a CD8+ T-cell response, which activates ICD in TNBC resulting in enhanced anticancer immunity. In summary, this work reports a small molecule-based photosensitizer with enhanced cancer immunotherapeutic properties by eliciting ferroptosis through a self-amplifying process.
Collapse
Affiliation(s)
- Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wen-Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiao-Wen Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jing-Hao Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Li J, Duan Q, Wei X, Wu J, Yang Q. Kidney-Targeted Nanoparticles Loaded with the Natural Antioxidant Rosmarinic Acid for Acute Kidney Injury Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204388. [PMID: 36253133 DOI: 10.1002/smll.202204388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Acute kidney injury (AKI) is a common clinical disease with high morbidity and mortality, and with a lack of effective drugs for treatment. Oxidative stress is very important in the occurrence and progression of AKI, and antioxidants use is one of the promising treatments. Rosmarinic acid (RA) is a ubiquitous natural polyphenol with powerful antioxidant and anti-inflammatory activities. Due to its inherent characteristic with poor water solubility and inferior bioavailability, its clinical application is impeded. Hence, the authors design a nanoparticle for effectively delivering RA, which is a chemical complex of RA and fourth-generation poly-amidoamine-based amphiphilic polymer (G4-PAMAM). The nanoparticle is modified with l-serine due to the specific interaction between kidney injury molecule-1 (Kim-1) and serine, which eventually generates a promising AKI kidney-targeting nanoparticle (S-G-R). The S-G-R is rapidly cumulated and long-term retained in ischemia-reperfusion-induced AKI kidneys, especially in the damaged renal tubular cells. The S-G-R exhibits more excellent antioxidative and antiapoptotic effects in vitro and has a more outstanding ability to improve the renal function, repair damaged renal tissue, and decrease oxidative stress, inflammatory response and apoptosis of tubular cells in vivo. Overall, this study might develop a safe and effective targeting strategy for the therapy of AKI.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Qijia Duan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaona Wei
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Jianping Wu
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Qiongqiong Yang
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
10
|
Li Z, Zhang S, Liu M, Zhong T, Li H, Wang J, Zhao H, Tian Y, Wang H, Wang J, Xu M, Wang S, Zhang X. Antitumor Activity of the Zinc Oxide Nanoparticles Coated with Low-Molecular-Weight Heparin and Doxorubicin Complex In Vitro and In Vivo. Mol Pharm 2022; 19:4179-4190. [PMID: 36223494 DOI: 10.1021/acs.molpharmaceut.2c00553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various metal oxide nanomaterials have been widely used as carriers to prepare pH-sensitive nanomedicines to respond to the acidic tumor microenvironment promoting antitumor efficiency. Herein, we used zinc oxide nanoparticles (ZnO NPs) as metal oxide nanomaterial coated with low-molecular-weight heparin (LMHP) and doxorubicin (DOX) complex (LMHP-DOX) to prepare ZnO-LD NPs for controllable pH-triggered DOX release on the targeted site. Our results indicated that the released DOX from ZnO-LD NPs was pH-sensitive. The oxygen produced by ZnO-LD NPs in H2O2 solution was observed in in vitro experiment. The ZnO-LD NPs entered into both PC-3M and 4T1 tumor cells via clathrin-mediated endocytosis and micropinocytosis pathway. The intracellular reactive oxygen species (ROS) generated by ZnO-LD NPs could significantly increase the caspase 3/7 level, leading to tumor cell apoptosis. The in vitro and in vivo antitumor activity was confirmed in PC-3M and 4T1 cell lines or tumor-bearing mice models. The in vivo and in vitro tumor images via second-order nonlinearity of ZnO-LD NPs indicated that ZnO-LD NPs could penetrate deep into the tumor tissues. Therefore, the ZnO-LD NPs developed in our study could provide an efficient approach for the preparation of pH-sensitive nano delivery systems suitable for tumor therapy and imaging.
Collapse
Affiliation(s)
- Zhuoyue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Shuang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Man Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Ting Zhong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Hui Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Jingru Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Heng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Yubo Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Hui Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Jingwen Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Meiqi Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| |
Collapse
|
11
|
Yan Z, Wu S, Zhou Y, Li F. Acid-Responsive Micelles Releasing Cinnamaldehyde Enhance RSL3-Induced Ferroptosis in Tumor Cells. ACS Biomater Sci Eng 2022; 8:2508-2517. [PMID: 35648631 DOI: 10.1021/acsbiomaterials.2c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ferroptosis is a novel type of regulated cell death characterized by the accumulation of lipid peroxides to lethal levels. Most tumor cells are extremely vulnerable to ferroptosis due to the high levels of reactive oxygen species (ROS) produced by their active metabolism. Therefore, tumor cells rely on glutathione (GSH) to reduce lipid peroxides catalyzed by glutathione peroxidase 4 (GPX4), and this pathway is also an important target for a variety of drugs that promote tumor cell ferroptosis. Herein, RSL3@PCA was designed to simultaneously deplete intracellular GSH and inhibit the activity of GPX4, thereby significantly promoting tumor cell ferroptosis. RSL3@PCA was successfully prepared by encapsulating a selective inhibitor of GPX4 into acid-responsive nanoparticle PCA. After being taken up by tumor cells, the acid-responsive nanoparticle gradually degraded to release cinnamaldehyde (CA) and the encapsulated RSL3. CA and RSL3 block the reduction of lipid peroxides in cells, thereby inducing ferroptosis. By a cytotoxicity assay and 4T1 cell xenotransplantation model, we confirmed that RSL3@PCA has excellent inhibition of tumor growth without significant toxicity to normal cells and tissues and still has a good therapeutic effect on tumor cells that are resistant to conventional chemotherapy drugs. This work provides new drug combinations for promoting ferroptosis in tumor cells without severe side effects in normal organs.
Collapse
Affiliation(s)
- Ziliang Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P. R. China
| | - Shaojie Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P. R. China
| | - Yue Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P. R. China
| | - Feng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|