1
|
Li S, Wei Y, Li H. A Numerical Study on the Drug Release Process of Biodegradable Polymer Drug-Loaded Vascular Stents. Polymers (Basel) 2025; 17:420. [PMID: 39940622 PMCID: PMC11819722 DOI: 10.3390/polym17030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Biodegradable polymer drug-loaded vascular stents are a typical and promising application in the field of invasive interventional therapy. The drug release process of drug-loaded vascular stents, as well as the drug concentration in the vascular wall and its change process, will affect the therapeutic effect of vascular stents on vascular stenosis. As a drug carrier, the degradation properties of the polymer will affect the drug release process. In this study, the drug release process from the biodegradable polymer stent and the drug delivery process in vascular lumens and intravascular walls were studied by using 3D finite element method, with the effect of the biodegradation behavior of polymer on the drug release process being considered. The effects of the initial drug concentration, stent geometry, and polymer degradation rate on the drug release and delivery process were investigated. The results showed that the initial drug concentration and the thickness of the polymer stent significantly affected the drug concentration in the middle layer of the vessel wall, but the initial drug concentration had no effect on the drug release duration. The degradation of the polymer causes its porosity to change with time, which affects the drug diffusion in polymer, and further affects the drug concentration in the vessel wall. The three-dimensional structure of the stent can affect the blood flow in the blood vessel, resulting in drug deposition near the struts, especially near the intersection of the support struts and the bridge struts.
Collapse
Affiliation(s)
- Shiyong Li
- Dalian Rubber & Plastics Machinery Co., Ltd., Dalian 116036, China; (S.L.); (Y.W.)
| | - Yunbo Wei
- Dalian Rubber & Plastics Machinery Co., Ltd., Dalian 116036, China; (S.L.); (Y.W.)
| | - Hongxia Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Wen Y, Li Y, Yang R, Chen Y, Shen Y, Liu Y, Liu X, Zhang B, Li H. Biofunctional coatings and drug-coated stents for restenosis therapy. Mater Today Bio 2024; 29:101259. [PMID: 39391793 PMCID: PMC11465131 DOI: 10.1016/j.mtbio.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Palliative therapy utilizing interventional stents, such as vascular stents, biliary stents, esophageal stents, and other stents, has been a prevalent clinical strategy for treating duct narrowing and partial blockage. However, stent restenosis after implantation usually significantly compromises therapeutic efficacy and patient safety. Clinically, vascular stent restenosis is primarily attributed to endothelial hyperplasia and coagulation, while the risk of biliary stent occlusion is heightened by bacterial adhesion and bile sludge accumulation. Similarly, granulation tissue hyperplasia leads to tracheal stent restenosis. To address these issues, surface modifications of stents are extensively adopted as effective strategies to reduce the probability of restenosis and extend their functional lifespan. Applying coatings is one of the technical routes involving a complex selection of materials, drug loading capacities, release rates, and other factors. This paper provides an extensive overview of state of the art drug-coated stents, addressing both challenges and future prospects in this domain. We aim to contribute positively to the ongoing development and potential clinical applications of drug-coated stents in interventional therapy.
Collapse
Affiliation(s)
- Yanghui Wen
- Departments of General Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Yihuan Li
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Rui Yang
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yunjie Chen
- Departments of General Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Yan Shen
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yi Liu
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaomei Liu
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Botao Zhang
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hua Li
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
Zan R, Wang H, Shen S, Yang S, Yu H, Zhang X, Zhang X, Chen X, Shu M, Lu X, Xia J, Gu Y, Liu H, Zhou Y, Zhang X, Suo T. Biomimicking covalent organic frameworks nanocomposite coating for integrated enhanced anticorrosion and antifouling properties of a biodegradable magnesium stent. Acta Biomater 2024; 180:183-196. [PMID: 38604465 DOI: 10.1016/j.actbio.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The utilization of biodegradable magnesium (Mg) alloys in the fabrication of temporary non-vascular stents is an innovative trend in biomedical engineering. However, the heterogeneous degradation profiles of these biomaterials, together with potential bacterial colonization that could precipitate infectious or stenotic complications, are critical obstacles precluding their widespread clinical application. In pursuit of overcoming these limitations, this study applies the principles of biomimicry, particularly the hydrophobic and anti-fouling characteristics of lotus leaves, to pioneer the creation of nanocomposite coatings. These coatings integrate poly-trimethylene carbonate (PTMC) with covalent organic frameworks (COFs), to modify the stent's surface property. The strategic design of the coating's topography, porosity, and self-polishing capabilities collectively aims to decelerate degradation processes and minimize biological adhesion. The protective qualities of the coatings were substantiated through rigorous testing in both in vitro dynamic bile tests and in vivo New Zealand rabbit choledochal models. Empirical findings from these trials confirmed that the implementation of COF-based nanocomposite coatings robustly fortifies Mg implantations, conferring heightened resistance to both biocorrosion and biofouling as well as improved biocompatibility within bodily environments. The outcomes of this research elucidate a comprehensive framework for the multifaceted strategies against stent corrosion and fouling, thereby charting a visionary pathway toward the systematic conception of a new class of reliable COF-derived surface modifications poised to amplify the efficacy of Mg-based stents. STATEMENT OF SIGNIFICANCE: Biodegradable magnesium (Mg) alloys are widely utilized in temporary stents, though their rapid degradation and susceptibility to bacterial infection pose significant challenges. Our research has developed a nanocomposite coating inspired by the lotus, integrating poly-trimethylene carbonate with covalent organic frameworks (COF). The coating achieved self-polishing property and optimal surface energy on the Mg substrate, which decelerates stent degradation and reduces biofilm formation. Comprehensive evaluations utilizing dynamic bile simulations and implantation in New Zealand rabbit choledochal models reveal that the coating improves the durability and longevity of the stent. The implications of these findings suggest the potential COF-based Mg alloy stent surface treatments and a leap forward in advancing stent performance and endurance in clinical applications.
Collapse
Affiliation(s)
- Rui Zan
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Yiwu Research Institute of Fudan University, Yiwu, 322000, China
| | - Hao Wang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, 214000, China
| | - Sheng Shen
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, 200032, China
| | - Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiyue Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xian Zhang
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiang Chen
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital affiliated to Anhui University of Science and Technology, Huainan, 232000, China
| | - Mengxuan Shu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiao Lu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiazeng Xia
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, 214000, China
| | - Yaqi Gu
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital affiliated to Anhui University of Science and Technology, Huainan, 232000, China
| | - Houbao Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, 200032, China.
| | - Yongping Zhou
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, 214000, China.
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, 200032, China.
| |
Collapse
|
4
|
Yang Y, Yang Y, Hou Z, Wang T, Wu P, Shen L, Li P, Zhang K, Yang L, Sun S. Comprehensive review of materials, applications, and future innovations in biodegradable esophageal stents. Front Bioeng Biotechnol 2023; 11:1327517. [PMID: 38125305 PMCID: PMC10731276 DOI: 10.3389/fbioe.2023.1327517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Esophageal stricture (ES) results from benign and malignant conditions, such as uncontrolled gastroesophageal reflux disease (GERD) and esophageal neoplasms. Upper gastrointestinal endoscopy is the preferred diagnostic approach for ES and its underlying causes. Stent insertion using an endoscope is a prevalent method for alleviating or treating ES. Nevertheless, the widely used self-expandable metal stents (SEMS) and self-expandable plastic stents (SEPS) can result in complications such as migration and restenosis. Furthermore, they necessitate secondary extraction in cases of benign esophageal stricture (BES), rendering them unsatisfactory for clinical requirements. Over the past 3 decades, significant attention has been devoted to biodegradable materials, including synthetic polyester polymers and magnesium-based alloys, owing to their exceptional biocompatibility and biodegradability while addressing the challenges associated with recurring procedures after BES resolves. Novel esophageal stents have been developed and are undergoing experimental and clinical trials. Drug-eluting stents (DES) with drug-loading and drug-releasing capabilities are currently a research focal point, offering more efficient and precise ES treatments. Functional innovations have been investigated to optimize stent performance, including unidirectional drug-release and anti-migration features. Emerging manufacturing technologies such as three-dimensional (3D) printing and new biodegradable materials such as hydrogels have also contributed to the innovation of esophageal stents. The ultimate objective of the research and development of these materials is their clinical application in the treatment of ES and other benign conditions and the palliative treatment of malignant esophageal stricture (MES). This review aimed to offer a comprehensive overview of current biodegradable esophageal stent materials and their applications, highlight current research limitations and innovations, and offer insights into future development priorities and directions.
Collapse
Affiliation(s)
- Yaochen Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Li
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Chen X, Xia Y, Shen S, Wang C, Zan R, Yu H, Yang S, Zheng X, Yang J, Suo T, Gu Y, Zhang X. Research on the Current Application Status of Magnesium Metal Stents in Human Luminal Cavities. J Funct Biomater 2023; 14:462. [PMID: 37754876 PMCID: PMC10532415 DOI: 10.3390/jfb14090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
The human body comprises various tubular structures that have essential functions in different bodily systems. These structures are responsible for transporting food, liquids, waste, and other substances throughout the body. However, factors such as inflammation, tumors, stones, infections, or the accumulation of substances can lead to the narrowing or blockage of these tubular structures, which can impair the normal function of the corresponding organs or tissues. To address luminal obstructions, stenting is a commonly used treatment. However, to minimize complications associated with the long-term implantation of permanent stents, there is an increasing demand for biodegradable stents (BDS). Magnesium (Mg) metal is an exceptional choice for creating BDS due to its degradability, good mechanical properties, and biocompatibility. Currently, the Magmaris® coronary stents and UNITY-BTM biliary stent have obtained Conformité Européene (CE) certification. Moreover, there are several other types of stents undergoing research and development as well as clinical trials. In this review, we discuss the required degradation cycle and the specific properties (anti-inflammatory effect, antibacterial effect, etc.) of BDS in different lumen areas based on the biocompatibility and degradability of currently available magnesium-based scaffolds. We also offer potential insights into the future development of BDS.
Collapse
Affiliation(s)
- Xiang Chen
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China;
| | - Yan Xia
- School of Stomatology, Anhui Medical College, Hefei 230601, China;
| | - Sheng Shen
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Chunyan Wang
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
- Department of General Surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Rui Zan
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| | - Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| | - Xiaohong Zheng
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Jiankang Yang
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Yaqi Gu
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China;
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| |
Collapse
|
6
|
Zhang L, Li X, Yue G, Guo L, Hu Y, Cui Q, Wang J, Tang J, Liu H. Nanodrugs systems for therapy and diagnosis of esophageal cancer. Front Bioeng Biotechnol 2023; 11:1233476. [PMID: 37520291 PMCID: PMC10373894 DOI: 10.3389/fbioe.2023.1233476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
With the increasing incidence of esophageal cancer, its diagnosis and treatment have become one of the key issues in medical research today. However, the current diagnostic and treatment methods face many unresolved issues, such as low accuracy of early diagnosis, painful treatment process for patients, and high recurrence rate after recovery. Therefore, new methods for the diagnosis and treatment of esophageal cancer need to be further explored, and the rapid development of nanomaterials has brought new ideas for solving this problem. Nanomaterials used as drugs or drug delivery systems possess several advantages, such as high drug capacity, adjustably specific targeting capability, and stable structure, which endow nanomaterials great application potential in cancer therapy. However, even though the nanomaterials have been widely used in cancer therapy, there are still few reviews on their application in esophageal cancer, and systematical overview and analysis are deficient. Herein, we overviewed the application of nanodrug systems in therapy and diagnosis of esophageal cancer and summarized some representative case of their application in diagnosis, chemotherapy, targeted drug, radiotherapy, immunity, surgery and new therapeutic method of esophageal cancer. In addition, the nanomaterials used for therapy of esophageal cancer complications, esophageal stenosis or obstruction and oesophagitis, are also listed here. Finally, the challenge and the future of nanomaterials used in cancer therapy were discussed.
Collapse
Affiliation(s)
- Lihan Zhang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xing Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Guangxing Yue
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lihao Guo
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China
| | - Yanhui Hu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qingli Cui
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Wang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jingwen Tang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|