1
|
Migita Y, Kageyama T, Ito N, Esaka N, Nanmo A, Seo J, Lei Y, Hamano S, Fukuda J. Preparation of hair follicle germs using centrifugal forces for hair regenerative medicine. J Biosci Bioeng 2025:S1389-1723(25)00082-9. [PMID: 40251095 DOI: 10.1016/j.jbiosc.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
Hair regenerative medicine presents a potential approach to treat hair loss. Mesenchymal and epithelial cells may be transplanted to regenerate de novo hair follicles, as epithelial-mesenchymal interactions are crucial for hair follicle morphogenesis. However, transplanting a mixture of the two cell types does not lead to efficient hair follicle formation, and engineering tissue grafts with these cell types before transplantation is necessary. Hair follicle germ-like aggregates (HFGs), which are found during hair follicle development, induced highly efficient de novo hair follicle formation. Although this is a sophisticated approach of mimicking in vivo hair follicle morphogenesis, further studies are required owing to its laborious and time-consuming nature. This study proposed a straightforward approach to prepare HFGs using centrifugal forces. We fabricated a centrifugal device consisting of tube tips that facilitate cell transplantation as a high cell dense aggregate, in contrast to conventional cell suspension injections. To prepare HFGs, mouse embryonic epithelial and mesenchymal cells were packed into the device using a two-step centrifugation method. Immediately after preparation, HFGs were directly injected into the back skin of nude mice, resulting in de novo hair follicle formation. This centrifugal approach significantly improved hair follicle regeneration efficiency compared with that of conventional cell suspension injection. Unlike previous studies, this approach does not require several days of culture, which could potentially facilitate rapid and cost-effective hair regenerative medicine.
Collapse
Affiliation(s)
- Yuki Migita
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Naoya Ito
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Naoki Esaka
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Ayaka Nanmo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Jieun Seo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Yan Lei
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Sayuri Hamano
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
2
|
Chen Y, Hou Y, Chen J, Bai J, Du L, Qiu C, Qi H, Liu X, Huang J. Construction of Large-Scale Bioengineered Hair Germs and In Vivo Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416361. [PMID: 40042061 PMCID: PMC12021125 DOI: 10.1002/advs.202416361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/21/2025] [Indexed: 04/26/2025]
Abstract
Hair follicle (HF) regeneration technology holds promise for treating hair loss, but creating a biomimetic structure that mimics the natural follicle microenvironment remains challenging. Here a novel bioengineered hair germ (BHG) is developed using thermodynamically incompatible mucopolysaccharides to enhance HF regeneration efficiency. Mucopolysaccharide-based hydrogels are synthesized by grafting amino and diethylamino groups (dihydroxyphenylalanine-grafted hyaluronic acid (HME) hydrogels) for rapid gelation and strong wetting adhesion. Dual-layered microspheres are fabricated using a co-flow microfluidic system, with HME as the outer shell and gelatin methacrylate (GelMA) as the core, achieving thermodynamic incompatibility. The Wnt3a protein is encapsulated for sustained release. RNA sequencing, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and functional validation are used to study the molecular mechanisms of HF regeneration. Results show that HME hydrogels exhibit excellent adhesion, shear-thinning behavior, and biocompatibility. The microspheres release Wnt3a for up to 9 days, with high-throughput sequencing revealing upregulation of HF regeneration genes like Ctnnb1 and Lef1, and activation of the Wnt signaling pathway, while hypoxia-related genes such as Hif-1ɑ are downregulated. Pathway enrichment analyses confirm the enrichment of HF regeneration pathways. In conclusion, the HME-based BHG microspheres effectively promote in vivo HF regeneration, offering a promising solution for hair loss treatment and regeneration.
Collapse
Affiliation(s)
- Yangpeng Chen
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yuhui Hou
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jiejian Chen
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Department of Medical OncologyGuangzhou First People's HospitalGuangzhou Medical UniversityGuangdong510180China
| | - Jiaojiao Bai
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Department of HaematologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)GuangzhouGuangdong510030China
| | - Lijuan Du
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Chen Qiu
- Department of OncologyShanghai General Hospital650 Xinsongjiang RoadSongjiang DistrictShanghai201620China
| | - Hanzhou Qi
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xuanbei Liu
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Junfei Huang
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
3
|
Chu X, Zhou Z, Qian X, Shen H, Cheng H, Zhang J. Functional regeneration strategies of hair follicles: advances and challenges. Stem Cell Res Ther 2025; 16:77. [PMID: 39985119 PMCID: PMC11846195 DOI: 10.1186/s13287-025-04210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
Hair follicles are essential appendages of human skin that function in protection, sensation, thermoregulation and social interactions. The multicellular components, particularly the dermal papilla, matrix and bulge housing stem cells, enable cyclic hair growth postnatally. However, miniaturization and loss of hair follicles can occur in the context of ageing, trauma and various alopecia-related diseases. Conventional treatments involve the redistribution of existing follicles, which may not be viable in patients lacking follicular resources. Recent progress in the comprehension of morphogenesis and the development of biomaterials has significantly advanced follicle reconstruction, incorporating organ germ assembling, stem cell induction and bioprinting techniques. Despite these advancements, fully restoring hair follicles remains challenging due to the complexities of replicating embryonic signals and sustaining growth cycles. Identifying suitable cell sources for clinical applications also presents a hurdle. Here, we retrospect the progress made in the field of hair follicle regeneration, aiming to offer an exhaustive analysis on the benefits and limitations of these methods, and to foster the development of innovative solutions.
Collapse
Affiliation(s)
- Xi Chu
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Zhentao Zhou
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Xifei Qian
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Haiyan Shen
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Hanxiao Cheng
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Jufang Zhang
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
4
|
Tu S, Kageyama T, Seo J, Zhou Y, Fukuda J. Development of in vitro hair pigmentation model using hair follicle organoids. J Biosci Bioeng 2025; 139:141-146. [PMID: 39672752 DOI: 10.1016/j.jbiosc.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Hair color is formed through a series of processes such as melanin synthesis and storage in melanosomes, transfer from melanocytes, and reception by hair matrix cells in the hair bulb. Because gray hair is caused by the deterioration of a single or multiple of these processes, understanding the mechanisms responsible for these processes is crucial for developing therapeutic strategies. Recently, a robust approach for preparing hair follicle organoids (HFOs) was reported, in which hair follicle morphogenesis, including hair shaft elongation, was tracked in vitro. Here, we investigated whether HFOs could be used to assess genes involved in hair pigmentation. HFOs generated hair follicles and pigmented shafts during the in vitro culturing process. The knockdown of genes associated with melanosome production (Bcl2 and Mitf) and transport (MyoX, PAR2, and Rab11b) significantly increased the number of gray hairs in HFOs. This organoid model may be a promising platform for better understanding hair pigmentation and screening drugs for gray hair.
Collapse
Affiliation(s)
- Shan Tu
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jieun Seo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Yinghui Zhou
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
5
|
Derman ID, Rivera T, Garriga Cerda L, Singh YP, Saini S, Abaci HE, Ozbolat IT. Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING 2025; 7:012009. [PMID: 39569402 PMCID: PMC11574952 DOI: 10.1088/2631-7990/ad878c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- I Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, United States of America
| | - Laura Garriga Cerda
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Shweta Saini
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States of America
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
- Biomedical Engineering Department, Penn State University, University Park, PA, United States of America
- Materials Research Institute, Penn State University, University Park, PA, United States of America
- Cancer Institute, Penn State University, University Park, PA, United States of America
- Neurosurgery Department, Penn State University, University Park, PA, United States of America
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
6
|
Lv Y, Yang W, Kannan PR, Zhang H, Zhang R, Zhao R, Kong X. Materials-based hair follicle engineering: Basic components and recent advances. Mater Today Bio 2024; 29:101303. [PMID: 39498149 PMCID: PMC11532916 DOI: 10.1016/j.mtbio.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The hair follicle (HF) is a significant skin appendage whose primary function is to produce the hair shaft. HFs are a non-renewable resource; skin damage or follicle closure may lead to permanent hair loss. Advances in biomaterials and biomedical engineering enable the feasibility of manipulating the HF-associated cell function for follicle reconstruction via rational design. The regeneration of bioengineered HF addresses the issue of limited resources and contributes to advancements in research and applications in hair loss treatment, HF development, and drug screening. Based on these requirements, this review summarizes the basic and recent advances in hair follicle regulation, including four components: acquisition of stem cells, signaling pathways, materials, and engineering methods. Recent studies have focused on efficiently combining these components and reproducing functionality, which would boost fabrication in HF rebuilding ex vivo, thereby eliminating the obstacles of transplantation into animals to promote mature development.
Collapse
Affiliation(s)
- Yudie Lv
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weili Yang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Han Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
7
|
Quílez C, Bebiano LB, Jones E, Maver U, Meesters L, Parzymies P, Petiot E, Rikken G, Risueño I, Zaidi H, Zidarič T, Bekeschus S, H van den Bogaard E, Caley M, Colley H, López NG, Letsiou S, Marquette C, Maver T, Pereira RF, Tobin DJ, Velasco D. Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments. J Invest Dermatol 2024; 144:2650-2670. [PMID: 39127929 DOI: 10.1016/j.jid.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 08/12/2024]
Abstract
Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.
Collapse
Affiliation(s)
- Cristina Quílez
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Luís B Bebiano
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Eleri Jones
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Luca Meesters
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Piotr Parzymies
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ignacio Risueño
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Hamza Zaidi
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sander Bekeschus
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | | | - Matthew Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Nuria Gago López
- Melanoma group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece; Department of Food Science and Technology, University of West Attica, Athens, Greece
| | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Diego Velasco
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
8
|
Chen Y, Fu D, Wu X, Zhang Y, Chen Y, Zhou Y, Lu M, Liu Q, Huang J. Biomimetic biphasic microsphere preparation based on the thermodynamic incompatibility of glycosaminoglycan with gelatin methacrylate for hair regeneration. Int J Biol Macromol 2024; 261:129934. [PMID: 38311145 DOI: 10.1016/j.ijbiomac.2024.129934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Hair follicle (HF) tissue engineering is promising for hair loss treatment especially for androgenetic alopecia. Physiologically, the initiation of HF morphogenesis relies on the interactions between hair germ mesenchymal and epithelial layers. To simulate this intricate process, in this study, a co-flowing microfluidic-assisted technology was developed to produce dual aqueous microdroplets capturing growth factors and double-layer cells for subsequent use in hair regeneration. Microspheres, called G/HAD, were generated using glycosaminoglycan-based photo-crosslinkable biological macromolecule (HAD) shells and gelatin methacrylate (GelMA) cores to enclose mesenchymal cells (MSCs) and mouse epidermal cells (EPCs). The findings indicated that the glycosaminoglycan-based HAD shells display thermodynamic incompatibility with GelMA cores, resulting in the aqueous phase separation of G/HAD cell spheres. These G/HAD microspheres exhibited favorable characteristics, including sustained growth factor release and wet adhesion properties. After transplantation into the dorsal skin of BALB/c nude mice, G/HAD cell microspheres efficiently induced the regeneration of HFs. This approach enables the mass production of approximately 250 dual-layer microspheres per minute. Thus, this dual-layer microsphere fabrication method holds great potential in improving current hair regeneration techniques and can also be combined with other tissue engineering techniques for various regenerative purposes.
Collapse
Affiliation(s)
- Yangpeng Chen
- Department of Plastic and Aesthetic Surgery, Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Danlan Fu
- Department of Plastic and Aesthetic Surgery, Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoqi Wu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Yufan Zhang
- Department of Plastic and Aesthetic Surgery, Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuxin Chen
- Department of Plastic and Aesthetic Surgery, Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Zhou
- Department of Plastic and Aesthetic Surgery, Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mujun Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| | - Qifa Liu
- Department of Plastic and Aesthetic Surgery, Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
9
|
Marinho PA, Jeong G, Shin SH, Kim SN, Choi H, Lee SH, Park BC, Hong YD, Kim HJ, Park WS. The development of an in vitrohuman hair follicle organoid with a complexity similar to that in vivo. Biomed Mater 2024; 19:025041. [PMID: 38324888 DOI: 10.1088/1748-605x/ad2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
In vitrohair follicle (HF) models are currently limited toex vivoHF organ cultures (HFOCs) or 2D models that are of low availability and do not reproduce the architecture or behavior of the hair, leading to poor screening systems. To resolve this issue, we developed a technology for the construction of a humanin vitrohair construct based on the assemblage of different types of cells present in the hair organ. First, we demonstrated that epithelial cells, when isolatedin vitro, have similar genetic signatures regardless of their dissection site, and their trichogenic potential is dependent on the culture conditions. Then, using cell aggregation techniques, 3D spheres of dermal papilla (DP) were constructed, and subsequently, epithelial cells were added, enabling the production and organization of keratins in hair, similar to what is seenin vivo. These reconstructed tissues resulted in the following hair compartments: K71 (inner root-sheath), K85 (matrix region), K75 (companion layer), and vimentin (DP). Furthermore, the new hair model was able to elongate similarly toex vivoHFOC, resulting in a shaft-like shape several hundred micrometers in length. As expected, when the model was exposed to hair growth enhancers, such as ginseng extract, or inhibitors, such as TGF-B-1, significant effects similar to thosein vivowere observed. Moreover, when transplanted into skin biopsies, the new constructs showed signs of integration and hair bud generation. Owing to its simplicity and scalability, this model fully enables high throughput screening of molecules, which allows understanding of the mechanism by which new actives treat hair loss, finding optimal concentrations, and determining the synergy and antagonism among different raw materials. Therefore, this model could be a starting point for applying regenerative medicine approaches to treat hair loss.
Collapse
Affiliation(s)
| | - Gyusang Jeong
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Seung Hyun Shin
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Su Na Kim
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Hyeongwon Choi
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Sung Hoon Lee
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Byung Cheol Park
- Department of Dermatology, College of Medicine, Dankook University, Cheonan-si, Republic of Korea
| | - Yong Deog Hong
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Hyoung-June Kim
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Won-Seok Park
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| |
Collapse
|
10
|
Sugiyama E, Nanmo A, Nie X, Chang SY, Hashimoto M, Suzuki A, Kageyama T, Fukuda J. Large-Scale Preparation of Hair Follicle Germs Using a Microfluidic Device. ACS Biomater Sci Eng 2024; 10:998-1005. [PMID: 38193447 PMCID: PMC10865290 DOI: 10.1021/acsbiomaterials.3c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Hair follicle morphogenesis during embryonic development is driven by the formation of hair follicle germs (HFGs) via interactions between epithelial and mesenchymal cells. Bioengineered HFGs are potential tissue grafts for hair regenerative medicine because they can replicate interactions and hair follicle morphogenesis after transplantation. However, a mass preparation approach for HFGs is necessary for clinical applications, given that thousands of de novo hair follicles are required to improve the appearance of a single patient with alopecia. In this study, we developed a microfluidics-based approach for the large-scale preparation of HFGs. A simple flow-focusing microfluidic device allowed collagen solutions containing epithelial and mesenchymal cells to flow and generate collagen microbeads with distinct Janus structures. During the 3 days of culture, the collagen beads contracted owing to cellular traction forces, resulting in collagen- and cell-dense HFGs. The transplantation of HFGs into nude mice resulted in highly efficient de novo hair follicle regeneration. This method provides a scalable and robust tissue graft preparation approach for hair regeneration.
Collapse
Affiliation(s)
- Ellen Sugiyama
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Ayaka Nanmo
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Xiaolei Nie
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital
Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Shu-Yung Chang
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital
Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Michinao Hashimoto
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital
Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Atsushi Suzuki
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa
Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Junji Fukuda
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa
Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| |
Collapse
|
11
|
Aoki M, Yokota R, Maruo S, Kageyama T, Fukuda J. Cryopreservation of engineered hair follicle germs for hair regenerative medicine. J Biosci Bioeng 2023; 136:246-252. [PMID: 37482479 DOI: 10.1016/j.jbiosc.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Hair regenerative medicine must involve practical procedures, such as cryopreservation of tissue grafts. This can aid in evaluating tissue safety and quality, as well as transportation to a clinic and multiple transplants. Hair follicle germs (HFGs), identified during in vivo development, are considered effective tissue grafts for hair regenerative medicine. However, to the best of our knowledge, methods for cryopreserving HFGs have not been explored yet. This study investigated the efficacy of slow vitrification methods for freezing HFGs. Cryoprotectants such as dimethyl sulfoxide (DMSO) and carboxylated poly-l-lysine were used for vitrification. The results indicate that DMSO vitrification yielded the most efficient de novo hair regeneration in mouse skin, comparable to that of non-cryoprotected HFGs. A microfinger was fabricated to scale up the cryopreservation method, considering that thousands of tissue grafts were required per patient in clinical practice. The microfinger can be used for a series of processes, holding the HFG, replacing it with a cryopreservation solution, freezing it in liquid nitrogen, thawing it in a warm medium, and transplanting it into the skin. Although de novo hair regeneration by HFGs cryopreserved using microfingers was reduced by approximately 20 % compared to those cryopreserved using flat plates for fertilized eggs, it exceeded 50 %. These findings demonstrate that vitrification with DMSO and microfingers could be a useful approach for the cryopreservation of tissue grafts in hair regenerative medicine for hair loss.
Collapse
Affiliation(s)
- Mio Aoki
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Ryoto Yokota
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Shoji Maruo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
12
|
Skylar-Scott M, Declercq H, Nakayama K. Special Issue: Biofabrication with Spheroid and Organoid Materials. Acta Biomater 2023; 165:1-3. [PMID: 37230440 DOI: 10.1016/j.actbio.2023.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Mark Skylar-Scott
- Department of Bioengineering and Basic Science and Engineering Initiative, Stanford University, Stanford, CA 94305, USA; Children's Heart Center, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Heidi Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, Faculty of Medicine, KU Leuven Campus Kulak, Kortrijk 8500, Belgium
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, SAGA University, Saga Honjomachi, 1, Japan
| |
Collapse
|
13
|
Abstract
Pathological hair loss (also known as alopecia) and shortage of hair follicle (HF) donors have posed an urgent requirement for HF regeneration. With the revelation of mechanisms in tissue engineering, the proliferation of HFs in vitro has achieved more promising trust for the treatments of alopecia and other skin impairments. Theoretically, HF organoids have great potential to develop into native HFs and attachments such as sweat glands after transplantation. However, since the rich extracellular matrix (ECM) deficiency, the induction characteristics of skin-derived cells gradually fade away along with their trichogenic capacity after continuous cell passaging in vitro. Therefore, ECM-mimicking support is an essential prelude before HF transplantation is implemented. This review summarizes the status of providing various epidermal and dermal cells with a three-dimensional (3D) scaffold to support the cell homeostasis and better mimic in vivo environments for the sake of HF regeneration. HF-relevant cells including dermal papilla cells (DPCs), hair follicle stem cells (HFSCs), and mesenchymal stem cells (MSCs) are able to be induced to form HF organoids in the vitro culture system. The niche microenvironment simulated by different forms of biomaterial scaffold can offer the cells a network of ordered growth environment to alleviate inductivity loss and promote the expression of functional proteins. The scaffolds often play the role of ECM substrates and bring about epithelial-mesenchymal interaction (EMI) through coculture to ensure the functional preservation of HF cells during in vitro passage. Functional HF organoids can be formed either before or after transplantation into the dermis layer. Here, we review and emphasize the importance of 3D culture in HF regeneration in vitro. Finally, the latest progress in treatment trials and critical analysis of the properties and benefits of different emerging biomaterials for HF regeneration along with the main challenges and prospects of HF regenerative approaches are discussed.
Collapse
Affiliation(s)
- Wei Zheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
14
|
Kageyama T, Miyata H, Seo J, Nanmo A, Fukuda J. In vitro hair follicle growth model for drug testing. Sci Rep 2023; 13:4847. [PMID: 36964149 PMCID: PMC10038375 DOI: 10.1038/s41598-023-31842-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
In vitro models of human hair follicle-like tissue could be fundamental tools to better understand hair follicle morphogenesis and hair drug screening. During prenatal development and postnatal cyclic hair regeneration, hair follicle morphogenesis is triggered by reciprocal interactions and the organization of the epithelial and mesenchymal cell populations. Given this mechanism, we developed an approach to induce hair peg-like sprouting in organoid cultures composed of epithelial and mesenchymal cells. Human fetal/adult epithelial and mesenchymal cells were cultured in a medium supplemented with a low concentration of either Matrigel or collagen I. These extracellular matrices significantly enhanced the self-organization capabilities of the epithelial and mesenchymal cells, resulting in spherical aggregation and subsequent hair peg-like sprouting. The length of the hair peg sprouting and associated gene expression significantly increased in the presence of a well-known hair drug, minoxidil. This approach may be beneficial for testing hair growth-promoting drug candidates.
Collapse
Affiliation(s)
- Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
- Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Hikaru Miyata
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Jieun Seo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Ayaka Nanmo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan.
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan.
| |
Collapse
|
15
|
Huang J, Fu D, Wu X, Li Y, Zheng B, Liu Z, Zhou Y, Gan Y, Miao Y, Hu Z. One-step generation of core-shell biomimetic microspheres encapsulating double-layer cells using microfluidics for hair regeneration. Biofabrication 2023; 15. [PMID: 36608335 DOI: 10.1088/1758-5090/acb107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
Tissue engineering of hair follicles (HFs) has enormous potential in the treatment of hair loss. HF morphogenesis is triggered by reciprocal interactions between HF germ epithelial and mesenchymal layers. Here, a microfluidic-assisted technology is developed for the preparation of double aqueous microdroplets that entrap double-layer cells and growth factors to ultimately be used for hair regeneration. Mouse mesenchymal cells (MSCs) and epidermal cells (EPCs) are encapsulated in gelatin methacrylate (GelMA) cores and photo-curable catechol-grafted hyaluronic acid (HAD) shells to fabricate GelMA-MSC/HAD-EPC (G/HAD) microspheres. The findings show that the G/HAD microspheres exhibit ultrafast gelation, aqueous phase separation, superior biocompatibility, and favorable wet adhesion properties. G/HAD microspheres can also support cell proliferation and sustain growth factor release. These composite cell microspheres are capable of efficient HF generation upon transplantation into the dorsal dermis of nude mice. This finding facilitates the large-scale preparation of approximately 80 double-layer cell spheres per min. This simple double-layer cell sphere preparation approach is a promising strategy for improving current hair-regenerative medicine techniques and can potentially be applied along with other organoid techniques for extended applications.
Collapse
Affiliation(s)
- Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Danlan Fu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Xiaoqi Wu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - BoWen Zheng
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Yi Zhou
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| |
Collapse
|
16
|
Jeong S, Na Y, Nam HM, Sung GY. Skin-on-a-chip strategies for human hair follicle regeneration. Exp Dermatol 2023; 32:13-23. [PMID: 36308297 DOI: 10.1111/exd.14699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 01/06/2023]
Abstract
The number of hair loss patients increases every year, and hair loss treatment has several limitations, so research on hair is attracting attention recently. However, most current hair follicle research models are limited by their inability to replicate several key functions of the hair follicle microenvironment. To complement this, an in vitro culture system similar to the in vivo environment must be constructed. It is necessary to develop a hair-on-a-chip that implements a fully functional hair follicle model by reproducing the main characteristics of hair follicle morphogenesis and cycle. In this review, we summarize the gradation of hair follicle morphogenesis and the roles and mechanisms of molecular signals involved in the hair follicle cycle. In addition, we discuss research results of various in vitro organoid products and organ-on-a-chip-based hair follicle tissue chips for the treatment of alopecia and present future research and development directions.
Collapse
Affiliation(s)
- Subin Jeong
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea
| | - Yoojin Na
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea
| | - Hyeon-Min Nam
- Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea.,Major in Materials Science and Engineering, Hallym University, Chuncheon, South Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea.,Major in Materials Science and Engineering, Hallym University, Chuncheon, South Korea
| |
Collapse
|
17
|
Zhang M, Zhang C, Li Z, Fu X, Huang S. Advances in 3D skin bioprinting for wound healing and disease modeling. Regen Biomater 2022; 10:rbac105. [PMID: 36683757 PMCID: PMC9845530 DOI: 10.1093/rb/rbac105] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Even with many advances in design strategies over the past three decades, an enormous gap remains between existing tissue engineering skin and natural skin. Currently available in vitro skin models still cannot replicate the three-dimensionality and heterogeneity of the dermal microenvironment sufficiently to recapitulate many of the known characteristics of skin disorder or disease in vivo. Three-dimensional (3D) bioprinting enables precise control over multiple compositions, spatial distributions and architectural complexity, therefore offering hope for filling the gap of structure and function between natural and artificial skin. Our understanding of wound healing process and skin disease would thus be boosted by the development of in vitro models that could more completely capture the heterogeneous features of skin biology. Here, we provide an overview of recent advances in 3D skin bioprinting, as well as design concepts of cells and bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering physiological or pathological skin model, focusing more specifically on the function of skin appendages and vasculature. We conclude with current challenges and the technical perspective for further development of 3D skin bioprinting.
Collapse
Affiliation(s)
| | | | | | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, China,School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin 300071, China
| | - Sha Huang
- Correspondence address. Tel: +86-10-66867384, E-mail:
| |
Collapse
|
18
|
Kageyama T, Akieda H, Sonoyama Y, Sato K, Yoshikawa H, Isono H, Hirota M, Kitajima H, Chun YS, Maruo S, Fukuda J. Bone Beads Enveloped with Vascular Endothelial Cells for Bone Regenerative Medicine. Acta Biomater 2022:S1742-7061(22)00520-7. [PMID: 36030051 DOI: 10.1016/j.actbio.2022.08.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
Abstract
The transplantation of pre-vascularized bone grafts is a promising strategy to improve the efficacy of engraftment and bone regeneration. We propose a hydrogel microbead-based approach for preparing vascularized and high-density tissue grafts. Mesenchymal stem cell-encapsulated collagen microgels (2 µL), termed bone beads, were prepared through spontaneous constriction, which improved the density of the mesenchymal stem cells and collagen molecules by more than 15-fold from the initial day of culture. Constriction was attributed to cell-attractive forces and involved better osteogenic differentiation of mesenchymal stem cells than that of spheroids. This approach was scalable, and ∼2,000 bone beads were prepared semi-automatically using a liquid dispenser and spinner flask. The mechanical stimuli in the spinner flask further improved the osteogenic differentiation of the mesenchymal stem cells in the bone beads compared with that in static culture. Vascular endothelial cells readily attach to and cover the surface of bone beads. The in vitro assembly of the endothelial cell-enveloped bone beads resulted in microchannel formation in the interspaces between the bone beads. Significant effects of endothelialization on in vivo bone regeneration were shown in rats with cranial bone defects. The use of endothelialized bone beads may be a scalable and robust approach for treating large bone defects. STATEMENT OF SIGNIFICANCE: A unique aspect of this study is that the hMSC-encapsulated collagen microgels were prepared through spontaneous constriction, leading to the enrichment of collagen and cell density. This constriction resulted in favorable microenvironments for the osteogenic differentiation of hMSCs, which is superior to conventional spheroid culture. The microgel beads were then enveloped with vascular endothelial cells and assembled to fabricate a tissue graft with vasculature in the interspaces among the beads. The significant effects of endothelialization on in vivo bone regeneration were clearly demonstrated in rats with cranial bone defects. We believe that microgel beads covered with vascular endothelial cells provide a promising approach for engineering better tissue grafts for bone-regenerative medicine.
Collapse
Affiliation(s)
- Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, JAPAN; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, JAPAN
| | - Hikaru Akieda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, JAPAN
| | - Yukie Sonoyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, JAPAN
| | - Ken Sato
- Department of Chemistry, Faculty of Science, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama City, Saitama 338-8570, JAPAN
| | - Hiroshi Yoshikawa
- Department of Chemistry, Faculty of Science, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama City, Saitama 338-8570, JAPAN
| | - Hitoshi Isono
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku Yokohama, Kanagawa 236-0004, JAPAN
| | - Makoto Hirota
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Ura-fune, Minami-ku Yokohama, Kanagawa 232-0024, JAPAN
| | - Hiroaki Kitajima
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Ura-fune, Minami-ku Yokohama, Kanagawa 232-0024, JAPAN
| | - Yang-Sook Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, KOREA
| | - Shoji Maruo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, JAPAN
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, JAPAN; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, JAPAN.
| |
Collapse
|