1
|
Tran NA, Moonshi SS, Lam AK, Lu CT, Vu CQ, Arai S, Ta HT. Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges. Cancer Metastasis Rev 2025; 44:51. [PMID: 40347350 PMCID: PMC12065774 DOI: 10.1007/s10555-025-10267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Gaining significant attention in recent years, starvation therapy based on the blocking nutrients supply to cancer cells via blood occlusion and metabolic interventions is a promisingly novel approach in cancer treatment. However, there are many crucial obstacles to overcome to achieve effective treatment, for example, poor-targeting delivery, cellular hypoxia, adverse effects, and ineffective monotherapy. The starvation-based multitherapy based on multifunctional nanomaterials can narrow these gaps and pave a promising way for future clinical translation. This review focuses on the progression in nanomaterials-mediated muti-therapeutic modalities based on starvation therapy in recent years and therapeutic limitations that prevent their clinical applications. Moreover, unlike previous reviews that focused on a single aspect of the field, this comprehensive review presents a broader perspective on starvation therapy by summarising advancements across its various therapeutic strategies.
Collapse
Affiliation(s)
- Nam Anh Tran
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cu Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
2
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
3
|
Szyk P, Czarczynska-Goslinska B, Ziegler-Borowska M, Larrosa I, Goslinski T. Sorafenib-Drug Delivery Strategies in Primary Liver Cancer. J Funct Biomater 2025; 16:148. [PMID: 40278256 PMCID: PMC12027913 DOI: 10.3390/jfb16040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Current primary liver cancer therapies, including sorafenib and transarterial chemoembolization, face significant limitations due to chemoresistance caused by impaired drug uptake, altered metabolism, and other genetic modulations. These challenges contribute to relapse rates of 50-80% within five years. The need for improved treatment strategies (adjuvant therapy, unsatisfactory enhanced permeability and retention (EPR) effect) has driven research into advanced drug delivery systems, including targeted nanoparticles, biomaterials, and combinatory approaches. Therefore, this review evaluates recent advancements in primary liver cancer pharmacotherapy, focusing on the potential of drug delivery systems for sorafenib and its derivatives. Approaches such as leveraging Kupffer cells for tumor migration or utilizing smaller NPs for inter-/intracellular delivery, address EPR limitations. Biomaterials and targeted therapies focusing on targeting have demonstrated effectiveness in increasing tumor-specific delivery, but clinical evidence remains limited. Combination therapies have emerged as an interesting solution to overcoming chemoresistance or to broadening therapeutic functionality. Biomimetic delivery systems, employing blood cells or exosomes, provide methods for targeting tumors, preventing metastasis, and strengthening immune responses. However, significant differences between preclinical models and human physiology remain a barrier to translating these findings into clinical success. Future research must focus on the development of adjuvant therapy and refining drug delivery systems to overcome the limitations of tumor heterogeneity and low drug accumulation.
Collapse
Affiliation(s)
- Piotr Szyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Igor Larrosa
- Department of Chemistry, University of Manchester, Chemistry Building, Oxford Road, Manchester M13 9PL, UK;
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
4
|
Li S, Wang X, Xiao J, Yi J. SLC7A11, a disulfidptosis-related gene, correlates with multi-omics prognostic analysis in hepatocellular carcinoma. Eur J Med Res 2025; 30:161. [PMID: 40069889 PMCID: PMC11900568 DOI: 10.1186/s40001-025-02411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND This study sought to establish a risk score signature based on disulfidptosis-related genes (DRGs) to predict the prognosis of hepatocellular carcinoma (HCC) patients. METHODS The expression data of DRGs from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) was analyzed to develop and validate a DRG prognostic signature (DRGPS). In vitro, experiments were conducted to explore DRG expressions and roles in HCC tissues and cell lines. HCC tissue microarrays were employed to analyze SLC7A11 expression and its association with clinicopathological characteristics. RESULTS The DRGPS consisted of 5 DRGs (SLC7A11, MATN3, CLEC3B, CCNJL, and PON1). The survival rate of HCC patients in high-risk group was significantly lower than that in low-risk group. The DRGPS was also associated with the modulation of tumor microenvironment (TME), tumor mutation burden (TMB), stemness and chemosensitivity. Furthermore, pan-cancer analysis suggested that the DRGPS risk score was associated with immune infiltration and stemness in multiple cancers. Moreover, our DRGPS had potential for predicting treatment efficacy in HCC patients. Finally, we confirmed that downregulation of SLC7A11, a DRG, inhibited the proliferation and migration of HCC cells, while its high expression correlated with advanced TNM clinical stage and larger tumor size. CONCLUSIONS This study systematically describes a novel DRGPS constructed for predicting HCC prognosis, providing a new approach to risk stratification and treatment options. It also investigates the expression and function of SLC7A11, contributing to further exploration of the molecular mechanism underlying disulfidptosis in HCC, as well as its prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China
| | - Xiaotong Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China
| | - Junbo Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Agrawal S, Singh GK, Tiwari S. Focused starvation of tumor cells using glucose oxidase: A comprehensive review. Int J Biol Macromol 2024; 281:136444. [PMID: 39389487 DOI: 10.1016/j.ijbiomac.2024.136444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Starvation therapy targets the high metabolic demand of tumor cells. It primarily leans over the consumption of intracellular glucose and simultaneous blockade of alternative metabolic pathways. The strategy involves the use of glucose oxidase (GOx) for catalyzing the conversion of glucose into gluconic acid and hydrogen peroxide. Under these conditions, metabolic re-programming of tumor cells enables the utilization of substrates such as amino acids, fatty acids and lipids. This can be overcome by co-administration of chemo-, photo- and immuno-therapeutics together with glucose oxidase. Targeted delivery of glucose oxidase at tumor site can be enabled with the use of nanoformulations. In this review, we highlight that the outcomes of starvation therapy can be improved using rationally developed nano-formulations. It is possible to load synergistically acting bioactives in these formulations and deliver in site-specific manner and hence achieve the elimination of tumors cells with greater efficacy.
Collapse
Affiliation(s)
- Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gireesh K Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya 824236, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
6
|
Lu X, Fu Y, Zhu Y, Xi C, Luo Q, Pang H. Construction of in-situ self-assembled agent for NIR/PET dual-modal imaging and photodynamic therapy for hepatocellular cancer. J Nanobiotechnology 2024; 22:614. [PMID: 39385303 PMCID: PMC11465773 DOI: 10.1186/s12951-024-02879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Hepatocellular cancer (HCC) remained a life-threatening carcinoma. Agents for HCC imaging and therapy were expected to possess different intratumoral retention time. To construct an agent with different intratumoral retention time when applied for tumor imaging or therapy remained great values. A lasialoglycoprotein receptor (ASGPR) targeted lactobionic acid derivative (LABO) was constructed for fluorescent imaging and photodynamic therapy of HCC. 18F labeled LABO (18F-LABO) was developed for PET imaging of HCC. LABO and 18F-LABO showed similar molecular structure. LABO exhibited characteristic of viscosity and concentration-induced intratumoral in-situ self-assembly to expand the intratumoral retention. LABO was non-fluorescent at free stage, but emitted NIR fluorescence and generated irradiation-induced ROS after self-assembly for fluorescent imaging and photodynamic therapy. ASGPR specificity of LABO and 18F-LABO was confirmed using HepG2 cell. Biodistribution and fluorescent imaging confirmed the different tumor retention time of LABO and 18F-LABO when used for photodynamic therapy and PET imaging. PET imaging and photodynamic therapy were performed on HepG2 tumor bearing mice, which revealed that 18F-LABO/LABO could specifically accumulated in the HepG2 tumor for tumor location/inhibition. LABO/18F-LABO with excellent HCC specificity but different intratumoral behaviors showed great values for the PET/NIR imaging and photodynamic therapy for HCC.
Collapse
Affiliation(s)
- Xinmiao Lu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Yucheng Fu
- Department of Orthopaedic, School of Medicine, Ruijin Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yunyun Zhu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Chuang Xi
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China.
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| |
Collapse
|
7
|
Li Y, Song Y, Yin J, Pan W, Li N, Tang B. GalNAc-modified FeS nanoparticles for specific chemodynamic and gas therapy against orthotopic hepatocellular carcinoma. Chem Commun (Camb) 2024; 60:10882-10885. [PMID: 39253789 DOI: 10.1039/d4cc03207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
GalNAc-modified ferrous sulfide nanoparticles have been developed to conduct chemodynamic and gas therapy for fighting against orthotopic hepatocellular carcinoma. This nanomedicine owns good liver targeting ability, which takes full advantage of the tumor microenvironment to ensure the therapy effect and improve the safety.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yingying Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Jiaqi Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
- Laoshan Laboratory, Qingdao, 266237, P. R. China.
| |
Collapse
|
8
|
Han Z, Yuan M, Nguyen N, Zhou HC, Hubbard JE, Wang Y. Brain-specific targeted delivery of therapeutic agents using metal–organic framework-based nanomedicine. Coord Chem Rev 2024; 514:215926. [DOI: 10.1016/j.ccr.2024.215926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Hu Y, Wang H, Liu Y. NETosis: Sculpting tumor metastasis and immunotherapy. Immunol Rev 2024; 321:263-279. [PMID: 37712361 DOI: 10.1111/imr.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, recent work has revealed the unique biology of NETosis in facilitating tumor metastatic process. Neutrophil extracellular traps released by the tumor microenvironment (TME) shield tumor cells from cytotoxic immunity, leading to impaired tumor clearance. Besides, tumor cells tapped by NETs enable to travel through vessels and subsequently seed distant organs. Targeted ablation of NETosis has been proven to be beneficial in potentiating the efficacy of cancer immunotherapy in the metastatic settings. This review outlines the impact of NETosis at almost all stages of tumor metastasis. Furthermore, understanding the multifaceted interplay between NETosis and the TME components is crucial for supporting the rational development of highly effective combination immunotherapeutic strategies with anti-NETosis for patients with metastatic disease.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Houhong Wang
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Yang Liu
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
10
|
Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology 2023; 21:400. [PMID: 37907972 PMCID: PMC10617118 DOI: 10.1186/s12951-023-02158-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Biological Science and Technology Department, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
11
|
Li W, Solenne TOSB, Wang H, Li B, Liu Y, Wang F, Yang T. Core-shell cisplatin/SiO 2 nanocapsules combined with PTC-209 overcome chemotherapy-Acquired and intrinsic resistance in hepatocellular carcinoma. Acta Biomater 2023; 170:273-287. [PMID: 37597681 DOI: 10.1016/j.actbio.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The primary cause of cisplatin resistance in liver cancer is reduced intracellular drug accumulation and altered DNA repair/apoptosis signaling. Existing strategies to reverse cisplatin resistance have limited efficacy, as they target individual factors. This study proposes a drug delivery system consisting of a cisplatin core, a silica shell with a tetra-sulfide bond, and a PEG-coated surface (Core/shell-PGCN). The system is designed to consume glutathione (GSH) and reduce cisplatin excretion from cells, thereby overcoming acquired cisplatin resistance. In addition, Core/shell-PGCN incorporates PTC-209 (Core/shell-PGCN@PTC-209), a Bmi1 inhibitor that suppresses liver cancer stem cells (CSC), to mitigate DNA repair/apoptosis signaling and reverse intrinsic cisplatin resistance. In vivo and in vitro results demonstrate that Core/shell-PGCN@PTC-209 can comprehensively regulate GSH and CSC, reverse intrinsic and acquired cisplatin resistance, and enhance the efficacy of cisplatin in treating liver cancer. This "inner cultivation, outer action" approach may offer a new strategy for reversing cisplatin resistance in liver cancer. STATEMENT OF SIGNIFICANCE: Cisplatin resistance is widely observed in liver cancer (HCC) chemotherapy, with two mechanisms identified: acquired and intrinsic. Most strategies aimed at overcoming cisplatin resistance focus on a single perspective. This study introduces a core-shell drug delivery system (DDS) combined with HCC stem cell inhibitors, which can effectively address cisplatin resistance in HCC by targeting both acquisition and internality. Specifically, the core-shell drug delivery system can impede cisplatin efflux by neutralizing the acquired resistance factor (GSH), thus overcoming acquired resistance. Additionally, HCC stem cell inhibitors can reverse intrinsic resistance by inhibiting HCC stem cells. Therefore, this study contributes to the application of DDS in combating drug resistance in HCC and enhances its potential for clinical implementation.
Collapse
Affiliation(s)
- Weijie Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | - Han Wang
- Xiehe Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tan Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver Cell Type-Specific Targeting by Nanoformulations for Therapeutic Applications. Int J Mol Sci 2023; 24:11869. [PMID: 37511628 PMCID: PMC10380755 DOI: 10.3390/ijms241411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders. This review aims to summarize current preclinical nanodrug-based approaches for the treatment of liver disorders. So far, nano-vaccines that aim to induce hepatitis virus-specific immune responses and nanoformulated adjuvants to overcome the default tolerogenic state of liver NPCs for the treatment of chronic hepatitis have been tested. Moreover, liver cancer may be treated using nanodrugs which specifically target and kill tumor cells. Alternatively, nanodrugs may target and reprogram or deplete immunosuppressive cells of the tumor microenvironment, such as tumor-associated macrophages. Here, combination therapies have been demonstrated to yield synergistic effects. In the case of autoimmune hepatitis and other inflammatory liver diseases, anti-inflammatory agents can be encapsulated into nanoparticles to dampen inflammatory processes specifically in the liver. Finally, the tolerance-promoting activity especially of LSECs has been exploited to induce antigen-specific tolerance for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - María José Limeres
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Paul Schneider
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Malin Svensson
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silvia Fraude
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
13
|
Yue M, Guo T, Nie DY, Zhu YX, Lin M. Advances of nanotechnology applied to cancer stem cells. World J Stem Cells 2023; 15:514-529. [PMID: 37424953 PMCID: PMC10324502 DOI: 10.4252/wjsc.v15.i6.514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 04/18/2023] [Indexed: 06/26/2023] Open
Abstract
Cancer stem cells (CSCs) are a small proportion of the cells that exist in cancer tissues. They are considered to be the culprit of tumor genesis, development, drug resistance, metastasis and recurrence because of their self-renewal, proliferation, and differentiation potential. The elimination of CSCs is thus the key to cure cancer, and targeting CSCs provides a new method for tumor treatment. Due to the advantages of controlled sustained release, targeting and high biocompatibility, a variety of nanomaterials are used in the diagnosis and treatments targeting CSCs and promote the recognition and removal of tumor cells and CSCs. This article mainly reviews the research progress of nanotechnology in sorting CSCs and nanodrug delivery systems targeting CSCs. Furthermore, we identify the problems and future research directions of nanotechnology in CSC therapy. We hope that this review will provide guidance for the design of nanotechnology as a drug carrier so that it can be used in clinic for cancer therapy as soon as possible.
Collapse
Affiliation(s)
- Miao Yue
- Clinical Laboratory, Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu Province, China
| | - Ting Guo
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu Province, China
| | - Deng-Yun Nie
- Clinical Laboratory, Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu Province, China
| | - Yin-Xing Zhu
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu Province, China
| | - Mei Lin
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu Province, China.
| |
Collapse
|
14
|
Tang R, Zheng L, Zheng J, Wu J, Chen P, Chen J, Xu D, Zeng Y, Li Q, Zhang Z. Secukinumab plays a synergistic role with starvation therapy in promoting autophagic cell death of hepatocellular carcinoma via inhibiting IL-17A-increased BCL2 level. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00770-6. [PMID: 37195553 DOI: 10.1007/s11626-023-00770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
It is known that IL-17A inhibits autophagy of hepatocellular carcinoma (HCC) cells, thus contributing to the carcinogenesis of HCC. Starvation therapy can promote the autophagic death of HCC cells by blocking the nutrition supply. The purpose of this study was to explore whether the pharmacological antagonist of IL-17A, secukinumab, and starvation therapy have a synergistic effect on the autophagic cell death of HCC. Here, it could be observed that compared with serum-free condition, the combination of secukinumab and serum-free status better promoted autophagy (observed by LC3 conversion rate, p62 protein expression and the formation of autophagosomes), and more significantly inhibited the survival and function (observed by Trypan blue staining, CCK-8, Transwell, and scratch assays) in HCC HepG2 cells. Moreover, secukinumab significantly decreased BCL2 protein expression under serum-normal and serum-free conditions. However, both the addition of recombinant IL-17A and overexpression of BCL2 blocked the regulation of secukinumab on the survival and autophagy in HepG2 cells. Nude mice experiments demonstrated that compared to the lenvatinib-alone group, the combination group of lenvatinib and secukinumab better inhibited the in vivo tumorigenesis of HepG2 cells and enhanced autophagy in xenotumor tissues. Furthermore, secukinumab significantly decreased BCL2 protein expression in xenotumor tissues without or with lenvatinib application. In conclusion, the antagonism of IL-17A with secukinumab, due to the upregulation on BCL2-related autophagic cell death, can cooperate with starvation therapy in inhibiting HCC carcinogenesis. Our data suggested that secukinumab can become an effective adjuvant for the treatment of HCC.
Collapse
Affiliation(s)
- Rong Tang
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Jinfang Zheng
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Jincai Wu
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Pingping Chen
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Jiacheng Chen
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Dafeng Xu
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Yongchao Zeng
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Qijin Li
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Zhensheng Zhang
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China.
| |
Collapse
|
15
|
Luo D, Wang X, Luo X, Wu S. Low-dose of zeolitic imidazolate framework-8 nanoparticle cause energy metabolism disorder through lysosome-mitochondria dysfunction. Toxicology 2023; 489:153473. [PMID: 36870412 DOI: 10.1016/j.tox.2023.153473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Understanding the underlying interaction between nanoparticle and organelles is conclusive to the nanotoxicology. According to existing literatures, lysosome is a crucial target of the nanoparticle carrier. Meanwhile, mitochondria could provide the essential energy for nanopaticles entering/exiting the cell. Based on the investigation of lysosome-mitochondria connection, we decoded the effects of low-dose ZIF-8 on energy metabolism, which are still largely obscure beforehand. In this research, low-dose ZIF-8 NPs were utilized to explore the effects on vascular endothelial cells, the first cells exposed to NPs during intravenous injection. Consequently, ZIF-8 could damage the energy metabolism, mainly manifested as mitochondrial fission, the decreased ATP production, and lysosomal dysfuction, which would subsequently affect the cell survival, proliferation and protein expression. This study highlights the fundamental understanding for exploring the regulation of nanoscale ZIF-8 in biological processes and its further application in biomedical field.
Collapse
Affiliation(s)
- Dan Luo
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojiao Wang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Xin Luo
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Sisi Wu
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Heh E, Allen J, Ramirez F, Lovasz D, Fernandez L, Hogg T, Riva H, Holland N, Chacon J. Peptide Drug Conjugates and Their Role in Cancer Therapy. Int J Mol Sci 2023; 24:829. [PMID: 36614268 PMCID: PMC9820985 DOI: 10.3390/ijms24010829] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Drug conjugates have become a significant focus of research in the field of targeted medicine for cancer treatments. Peptide-drug conjugates (PDCs), a subset of drug conjugates, are composed of carrier peptides ranging from 5 to 30 amino acid residues, toxic payloads, and linkers that connect the payload to the peptide. PDCs are further broken down into cell-penetrating peptides (CPPs) and cell-targeting peptides (CTPs), each having their own differences in the delivery of cytotoxic payloads. Generally, PDCs as compared to other drug conjugates-like antibody-drug conjugates (ADCs)-have advantages in tumor penetration, ease of synthesis and cost, and reduced off-target effects. Further, as compared to traditional cancer treatments (e.g., chemotherapy and radiation), PDCs have higher specificity for the target cancer with generally less toxic side effects in smaller doses. However, PDCs can have disadvantages such as poor stability and rapid renal clearance due to their smaller size and limited oral bioavailability due to digestion of its peptide structure. Some of these challenges can be overcome with modifications, and despite drawbacks, the intrinsic small size of PDCs with high target specificity still makes them an attractive area of research for cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jessica Chacon
- Paul L. Foster School of Medicine, Department of Medical Education, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
17
|
Sukowati CHC, Weiz G, Lestari WW, Tiribelli C. Glycosylated-drug Delivery as Targeted Therapy for Hepatocellular Carcinoma: Are We There Yet? Curr Pharm Des 2023; 29:2439-2441. [PMID: 37899637 DOI: 10.2174/0113816128269619231018074301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Affiliation(s)
- Caecilia H C Sukowati
- Liver Cancer Unit, Italian Liver Foundation NPO, AREA Science Park, Basovizza, Trieste 34149, Italy
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia
| | - Gisela Weiz
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), School of Natural Sciences (CONICET-UNLPam), National University of La Pampa, Santa Rosa 6300, La Pampa, Argentina
| | - Witri W Lestari
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Claudio Tiribelli
- Liver Cancer Unit, Italian Liver Foundation NPO, AREA Science Park, Basovizza, Trieste 34149, Italy
| |
Collapse
|