1
|
Qin Y, Yu C, Wang P, Yang H, Liu A, Wang S, Shen Z, Ma S, Huang Y, Yu B, Wen P, Zheng Y. Design and development of the additively manufactured Zn-Li scaffolds for posterolateral lumbar fusion. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2025; 215:180-191. [DOI: 10.1016/j.jmst.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
2
|
Tong X, Shen X, Lin Z, Zhou R, Han Y, Zhu L, Huang S, Ma J, Li Y, Wen C, Lin J. In situ phosphorus-modified Mg 2Ge/Zn-Cu composite with improved mechanical, degradation, biotribological properties, and in vitro and in vivo osteogenesis and osteointegration performance for biodegradable bone-implant applications. Bioact Mater 2025; 43:491-509. [PMID: 40115880 PMCID: PMC11923437 DOI: 10.1016/j.bioactmat.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 03/23/2025] Open
Abstract
Zinc (Zn)-based composites are promising biodegradable bone-implant materials because of their good biocompatibility, processability, and biodegradability. Nevertheless, the low interfacial bonding strength, coordinated deformation capacity, and mechanical strength of current Zn-based composites hinder their clinical application. In this study, we developed a biodegradable in situ 4Mg2Ge/Zn-0.3Cu-0.05P composite (denoted ZMGCP) via phosphorus (P) modification and hot-rolling for bone-implant applications. The mechanical properties, corrosion behavior, biotribological performance, in vitro cytocompatibility and osteogenic differentiation, and in vivo osteogenesis and osteointegration of the as-cast (AC) and hot-rolled (HR) ZMGCP samples were systematically evaluated and compared to those of 4Mg2Ge/Zn-0.3Cu (denoted ZMGC). The primary and eutectic reinforcement Mg2Ge phases formed during solidification were refined after P modification and hot-rolling. The HR ZMGCP exhibited the best tensile properties among all the samples with an ultimate tensile strength of 288.9 MPa, a yield strength of 194.5 MPa, and an elongation of 17.7 %. The HR ZMGCP showed the lowest corrosion rate of 336 μm/a, 186 μm/a, and 61.7 μm/a as measured by potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion testing, respectively, among all the samples in Hanks' solution. The HR ZMGCP also showed higher biotribological resistance than its ZMGC counterpart. The HR ZMGCP exhibited the highest in vitro cytocompatibility, the best osteogenesis capability and angiogenesis property among the HR samples of pure Zn, ZMGC, and ZMGCP. Furthermore, the HR ZMGCP displayed complete in vivo biocompatibility, osteogenesis, osteointegration capability, and an appropriate degradation rate, showing significant potential for a biodegradable bone-implant material.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Xinkun Shen
- Science and Education Division, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Zhiqiang Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Runqi Zhou
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering, Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| | - Yue Han
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Li Zhu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianfeng Ma
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
3
|
Li XM, Shi ZZ, Tuoliken A, Gou W, Li CH, Wang LN. Highly plastic Zn-0.3Ca alloy for guided bone regeneration membrane: Breaking the trade-off between antibacterial ability and biocompatibility. Bioact Mater 2024; 42:550-572. [PMID: 39308544 PMCID: PMC11416609 DOI: 10.1016/j.bioactmat.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
A common problem for Zn alloys is the trade-off between antibacterial ability and biocompatibility. This paper proposes a strategy to solve this problem by increasing release ratio of Ca2+ ions, which is realized by significant refinement of CaZn13 particles through bottom circulating water-cooled casting (BCWC) and rolling. Compared with conventionally fabricated Zn-0.3Ca alloy, the BCWC-rolled alloy shows higher antibacterial abilities against E. coli and S. aureus, meanwhile much less toxicity to MC3T3-E1 cells. Additionally, plasticity, degradation uniformity, and ability to induce osteogenic differentiation in vitro of the alloy are improved. The elongation up to 49 %, which is the highest among Zn alloys with Ca, and is achieved since the sizes of CaZn13 particles and Zn grains are small and close. As a result, the long-standing problem of low formability of Zn alloys containing Ca has also been solved due to the elimination of large CaZn13 particles. The BCWC-rolled alloy is a promising candidate of making GBR membrane.
Collapse
Affiliation(s)
- Xiang-Min Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhang-Zhi Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| | - Ayisulu Tuoliken
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Gou
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chang-Heng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
4
|
Palai D, Roy T, De A, Mukherjee S, Bandyopadhyay S, Dhara S, Das S, Das K. Study on the Bioactivity Response of the Newly Developed Zn-Cu-Mn/Mg Alloys for Biodegradable Implant Application. ACS Biomater Sci Eng 2024; 10:6167-6190. [PMID: 39230934 DOI: 10.1021/acsbiomaterials.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Scaffolds play a crucial role in bone tissue engineering to support the defect area through bone regeneration and defect reconstruction. Promising tissue regeneration without negative repercussions and avoidance of the lifelong presence inside the body make bioresorbable metals prosper in the field of regenerative medicine. Recently, Zn and its alloys have emerged as promising biodegradable materials for their moderate degradation rate and satisfactory biocompatibility. Nevertheless, it is very challenging for cells to adhere and grow over the Zn surface alone, which influences the tissue-implant integration. In this study, an attempt has been made to systematically investigate the bioactivity responses in terms of in vitro hemocompatibility, cytotoxicity, antibacterial activity, and in vivo biocompatibility of newly developed Zn-2Cu-0.5Mn/Mg alloy scaffolds with different surface roughness. The rough surface of Zn-2Cu-0.5Mg shows the highest degradation rate of 0.16 mm/yr. The rough surface exhibits a prominent role in the adsorption of protein, further enhancing cell adhesion. Concentration-dependent alloy extract shows the highest cell proliferation for 12.5% of the extract with a maximum cell viability of 101% in Zn-2Cu-0.5Mn and 108% in Zn-2Cu-0.5Mg after 3 d. Acceptable hemolysis percentages (less than 5%) with promising anticoagulation properties are observed for all of the conditions. Enhanced antibacterial (Staphylococcus aureus and Escherichia coli) activity due to a significant effect of ions illustrates the maximum killing effect on the bacterial colony for the rough Zn-2Cu-0.5Mg alloy. In addition, it is observed that for rough Zn-2Cu-0.5Mn/Mg alloys, the inflammatory response is minimal after subcutaneous implantation, and neo-bone tissue forms in the defect areas of the rat femur with satisfactory biosafety response. The osseointegration property of the Zn-2Cu-0.5Mg alloy is comparable to that of the Zn-2Cu-0.5Mn alloy. Therefore, the rough surface of the Zn-2Cu-0.5Mg alloy has the potential to enhance biocompatibility and promote better osseointegration activity with host tissues for various biomedical applications.
Collapse
Affiliation(s)
- Debajyoti Palai
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amiyangshu De
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayan Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sharba Bandyopadhyay
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Siddhartha Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Karabi Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Xu W, Gao X, Zhang M, Jiang Z, Xu X, Huang L, Yao H, Zhang Y, Tong X, Li Y, Lin J, Wen C, Ding X. Electrospun polycaprolactone-chitosan nanofibers on a zinc mesh as biodegradable guided bone-regeneration membranes with enhanced mechanical, antibacterial, and osteogenic properties for alveolar bone-repair applications. Acta Biomater 2024; 187:434-450. [PMID: 39197567 DOI: 10.1016/j.actbio.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Guided bone-regeneration membrane (GBRM) is commonly used in bone-repair surgery because it blocks fibroblast proliferation and provides spatial support in bone-defect spaces. However, the need for removal surgery and the lack of antibacterial properties of conventional GBRM limit its therapeutic applicability for alveolar bone defects. Here we developed a GBRM for alveolar bone-repair and -regeneration applications through double-sided electrospinning of polycaprolactone and chitosan layers on a Zn mesh surface (denoted DSZM). The DSZM showed a UTS of ∼25.6 MPa, elongation of ∼16.1%, strength-elongation product of ∼0.413 GPa%, and ultrahigh spatial maintenance ability, and the UTS was over 6 times higher than that of commercial Bio-Gide membrane. The DSZM exhibited a corrosion rate of ∼17 µm/y and a Zn ion concentration of ∼0.23 µg/ml after 1 month of immersion in Hanks' solution. The DSZM showed direct and indirect cytocompatibility with exceptional osteogenic differentiation and calcium deposition toward MC3T3-E1 cells. Further, the DSZM showed strongly sustained antibacterial activity against S. aureus and osteogenesis in a rat critical-sized maxillary defect model. Overall, the DSZM fits the requirements for alveolar bone-repair and -regeneration applications as a biodegradable GBRM material due to its spatial support, suitable degradability, cytocompatibility, and antibacterial and osteogenic capabilities. STATEMENT OF SIGNIFICANCE: This work reports the mechanical properties, antibacterial ability and osteogenic properties of electrospun PCL-CS nanofiber on Zn mesh as biodegradable guided bone-regeneration membrane for alveolar bone-repair applications. Our findings demonstrate that the DSZM prepared by double-sided electrospinning of PCL-CS layers on Zn mesh showed a UTS of ∼25.6 MPa, elongation of ∼16.1%, strength-elongation product of ∼0.413 GPa%, and ultrahigh spatial maintenance ability, and the UTS was over 6 times greater than that of commercial Bio-Gide® membrane. The DSZM showed direct and indirect cytocompatibility with exceptional osteogenic differentiation and calcium deposition toward MC3T3-E1 cells. Further, the DSZM showed strongly sustained antibacterial activity against S. aureus and osteogenesis in a rat critical-sized maxillary defect model.
Collapse
Affiliation(s)
- Wenjie Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; Xiamen Susong Hospital, Xiamen 361000, China
| | - Xue Gao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Menghan Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhengting Jiang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaomin Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Liangfu Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huiyu Yao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yitian Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Xi Ding
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
6
|
Peng W, Lu Z, Liu E, Wu W, Yu S, Sun J. Preparation, Mechanical Properties, and Degradation Behavior of Zn-1Fe- xSr Alloys for Biomedical Applications. J Funct Biomater 2024; 15:289. [PMID: 39452588 PMCID: PMC11508743 DOI: 10.3390/jfb15100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
As biodegradable materials, zinc (Zn) and zinc-based alloys have attracted wide attention owing to their great potential in biomedical applications. However, the poor strength of pure Zn and binary Zn alloys limits their wide application. In this work, a stir casting method was used to prepare the Zn-1Fe-xSr (x = 0.5, 1, 1.5, 2 wt.%) ternary alloys, and the phase composition, microstructure, tensile properties, hardness, and degradation behavior were studied. The results indicated that the SrZn13 phase was generated in the Zn matrix when the Sr element was added, and the grain size of Zn-1Fe-xSr alloy decreased with the increase in Sr content. The ultimate tensile strength (UTS) and Brinell hardness increased with the increase in Sr content. The UTS and hardness of Zn-1Fe-2Sr alloy were 141.65 MPa and 87.69 HBW, which were 55.7% and 58.4% higher than those of Zn-1Fe alloy, respectively. As the Sr content increased, the corrosion current density of Zn-1Fe-xSr alloy increased, and the charge transfer resistance decreased significantly. Zn-1Fe-2Sr alloy had a degradation rate of 0.157 mg·cm-2·d-1, which was 118.1% higher than the degradation rate of Zn-1Fe alloy. Moreover, the degradation rate of Zn-1Fe-xSr alloy decreased significantly with the increase in immersion time.
Collapse
Affiliation(s)
- Wen Peng
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; (W.W.); (J.S.)
| | - Zehang Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Z.L.); (E.L.); (S.Y.)
| | - Enyang Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Z.L.); (E.L.); (S.Y.)
| | - Wenteng Wu
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; (W.W.); (J.S.)
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Z.L.); (E.L.); (S.Y.)
| | - Jie Sun
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; (W.W.); (J.S.)
| |
Collapse
|
7
|
Zheng J, Zheng Y, Sun P, Zhu D, Fan W, Huang T, Fang Y, Yang Q, Xu M. Research on a new type of ureteral stent material Zn-2Cu-0.5Fe-xMn with controllable degradation rate. Heliyon 2024; 10:e37629. [PMID: 39290270 PMCID: PMC11407047 DOI: 10.1016/j.heliyon.2024.e37629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
The placement of ureteral stents plays a crucial role in the treatment of ureteral strictures, therefore requiring high material performance standards. In addition, depending on the etiology of ureteral strictures, there are significant differences in the retention time of ureteral stents, thus requiring different degradation rates for the stents. Therefore, it is crucial to develop stent materials with high performance and controllable degradation rates. This study explores the potential of Zn-2Cu-0.5Fe-xMn alloy as a ureteral stent material, utilizing the antibacterial effect of copper ions, the strengthening effect of Fe element on Zn-based alloys, and the accelerated degradation effect of Mn element. The research found that with the increase in Mn content, the average grain size of the alloy and the size of (Fe, Mn)Zn13 phase gradually increased, leading to a decrease in hardness. The corrosion rate of the alloy increased with the increase in Mn content, attributed to changes in grain size and standard electrode potential differences between elements. Due to the antibacterial effects of Zn ions and Cu ions, the Zn-2Cu-0.5Fe-xMn alloy exhibits good anti-stone formation capabilities. Furthermore, the alloy also demonstrates acceptable cytotoxicity. Therefore, the Zn-2Cu-0.5Fe-xMn alloy is expected to become an important implant material in urological surgery.
Collapse
Affiliation(s)
- Jiawen Zheng
- Department of Urology, Affiliated Jinhua Hospital of Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Yichun Zheng
- Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Peng Sun
- Department of Urology, Affiliated Jinhua Hospital of Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Desheng Zhu
- Department of Urology, Affiliated Jinhua Hospital of Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Wentao Fan
- Department of Urology, Affiliated Jinhua Hospital of Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Ting Huang
- Department of Urology, Affiliated Jinhua Hospital of Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Yanfei Fang
- Department of Urology, Affiliated Jinhua Hospital of Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Qing Yang
- Department of Urology, Affiliated Jinhua Hospital of Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Min Xu
- Department of Urology, Affiliated Jinhua Hospital of Zhejiang University School of Medicine, Jinhua, 321000, China
| |
Collapse
|
8
|
Tong X, Miao D, Zhou R, Shen X, Luo P, Ma J, Li Y, Lin J, Wen C, Sun X. Mechanical properties, corrosion behavior, and in vitro and in vivo biocompatibility of hot-extruded Zn-5RE (RE = Y, Ho, and Er) alloys for biodegradable bone-fixation applications. Acta Biomater 2024; 185:55-72. [PMID: 38997078 DOI: 10.1016/j.actbio.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Biodegradable Zn alloys have significant application potential for hard-tissue implantation devices owing to their suitable degradation behavior and favorable biocompatibility. Nonetheless, pure Zn and its alloys in the as-cast state are mechanically instable and low in strength, which restricts their clinical applicability. Here, we report the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded Zn-5RE (wt.%, RE = rare earth of Y; or Ho; or Er) alloys intended for use in biodegradable bone substitutes. The microstructural characteristics, mechanical behavior, corrosion resistance, cytocompatibility, osteogenic differentiation, and capacity of osteogenesis in vivo of the Zn-5RE alloys are comparatively investigated. The Zn-5Y alloy demonstrates the best tensile properties, encompassing a 138 MPa tensile yield strength, a 302 MPa ultimate tensile strength, and 63% elongation, while the Zn-5Ho alloy shows the highest compression yield strength of 260 MPa and Vickers hardness of 104 HV. The Zn-5Er alloy shows a 126 MPa tensile yield strength, a 279 MPa ultimate tensile strength, 52% elongation, a 196 MPa compression yield strength, and a 101 HV Vickers microhardness. Further, the Zn-5Er alloy has a 130 µm per year corrosion rate in electrochemical tests and a 26 µm per year degradation rate in immersion tests, which is the lowest among the tested alloys. It also has the best in vitro osteogenic differentiation ability and capacity for osteogenesis and osteointegration in vivo after implantation in rat femurs among the Zn-5RE alloys, indicating promising potential in load-bearing biodegradable internal bone-fixation applications. STATEMENT OF SIGNIFICANCE: This work reports the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded (HE) Zn-5 wt.%-rare earth (Zn-5RE) alloys using single yttrium (Y), holmium (Ho), and erbium (Er) alloying for biodegradable bone-implant applications. Our findings demonstrate that the HE Zn-5Er alloy showed σuts of 279 MPa, tensile yield strength of 126 MPa, elongation of 51.6%, compression yield strength of 196 MPa, and microhardness of 101.2 HV. Further, HE Zn-5Er showed the lowest electrochemical corrosion rate of 130 µm/y and lowest degradation rate of 26 µm/y, and the highest in vitro osteogenic differentiation ability, in vivo osteogenesis, and osteointegration ability after implantation in rat femurs among the Zn-5RE alloys, indicating promising potential in load-bearing biodegradable internal bone-fixation applications.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China; School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Daoyi Miao
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Runqi Zhou
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering, Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing 401174, China
| | - Xinkun Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Peng Luo
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Jianfeng Ma
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Yuncang Li
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China.
| | - Cuie Wen
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Xuecheng Sun
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
9
|
Tipan N, Pandey A, Mishra P. Material synthesis and design optimization of biomaterials for biomedical implant applications. BIOIMPACTS : BI 2024; 15:30010. [PMID: 40161937 PMCID: PMC11954756 DOI: 10.34172/bi.30010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/20/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2025]
Abstract
Introduction In the modern era, the use of biomaterials in orthopaedics has revolutionised the healthcare sector. Traditionally, some non-biodegradable materials such as titanium and stainless steel are used as biomaterials. However, issues such as toxicity, poor tissue adhesion, and stress-shielding effect can occur with non-biodegradable materials for bone fracture fixation. Several biodegradable materials have been developed to resolve these issues but have not yet been appropriately industrialized for implant applications. These substances can be classified into metals, ceramics, and polymers, which can be blended to create composites that enhance biocompatibility and biomechanical characteristics. Methods This study began by contrasting the biocompatibility and mechanical compatibility among various alloys: biodegradable low entropy (BLE) alloys, biodegradable medium entropy (BME) alloys, biodegradable high entropy (BHE) alloys, and non-biodegradable medium entropy (NBME) alloys. Additionally, the design morphology of bio-implants like plates, screws, and others was inspected. Moreover, a meta-analysis was conducted to optimize the design of biomaterials, ensuring appropriate biocompatibility and degradation rate. A subsequent statistical analysis was executed to determine the optimal material concentration for bio-implant alloy creation. Results Initially, in this paper, the advantages of biodegradable materials over conventional non-biodegradable materials are discussed and bibliometric analysis is done to show recent research contributions in the field of biomedical implant application. Then compared biocompatibility and mechanical compatibility among BLE alloys, BME alloys, BHE alloys, NBME alloys. Furthermore, investigated the design morphology of bio-implants such as plates and screws. Also presented a meta-analysis for design optimization of biomaterials to meet suitable biocompatibility and biodegradation rates and presented a statistical analysis among them, which helps to select the appropriate material concentration for bio-implant alloy formation. Conclusion It was observed that in biodegradable materials, tensile strength is in the pattern of NBME > BHE > BME > BLE, and the degradation rate is in the pattern of BME > NBME > BHE > BLE. This study suggests that biodegradable materials (BLE and BME) are a much better choice than non-biodegradable materials in orthopaedic applications. It was also observed that a Biodegradable locking compression plate (BLCP) can provide the necessary strength and performance. Further, the systematic meta-analysis presented herein furnishes crucial data to researchers, guiding them in enhancing the efficiency of diverse biomaterials and optimizing their designs.
Collapse
Affiliation(s)
- Nilesh Tipan
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal (M.P.), India, 462003
| | - Ajay Pandey
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal (M.P.), India, 462003
| | - Pushyamitra Mishra
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal (M.P.), India, 462003
| |
Collapse
|
10
|
Zhu Q, Hsu W, Wang S, Lin F, Wu Y, Fang Y, Chen J, Song L. Synthesis, antimicrobial activity and application of polymers of praseodymium complexes based on pyridine nitrogen oxide. RSC Adv 2024; 14:18519-18527. [PMID: 38860246 PMCID: PMC11164178 DOI: 10.1039/d4ra03003f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
The traditional pyridine nitrogen oxide-based antimicrobial agents are often associated with health risks due to heavy metal enrichment. To mitigate this concern, we synthesized two novel complexes, Pr2(mpo)6(H2O)2 and Pr(hpo)(mpo)2(H2O)2, and integrated rare-earth salts, Hhpo (2-hydroxypyridine-N-oxide) and Nampo (2-mercapto-pyridine-N-oxide sodium salt). These complexes were characterized through infrared analysis, elemental analysis, thermogravimetric analysis, and X-ray crystallographic analysis. Our comparative analyses demonstrate that the synthesized rare-earth complexes exhibit stronger antimicrobial activity against Staphylococcus aureus (S. aureus ATCC6538) and Escherichia coli (E. coli ATCC25922) compared to the ligands and rare-earth salts alone. Quantitative results revealed the lowest inhibitory concentrations of the two complexes against S. aureus ATCC6538 and E. coli ATCC25922 at 3.125 μg mL-1, 6.25 μg mL-1, 3.125 μg mL-1 and 6.25 μg mL-1, respectively. Preliminary investigations indicated that the antibacterial mechanism of these complexes involved promoting intracellular substance exudation to achieve antibacterial effects. Incorporation of these complexes into polymeric antimicrobial films resulted in a potent antimicrobial effect, achieving a 100% inhibition rate against S. aureus ATCC6538 and E. coli ATCC25922 at a low addition level of 0.6 wt%. Our results suggest that nitrogen oxide-based praseodymium complexes have potential for various antimicrobial applications.
Collapse
Affiliation(s)
- Qiuyin Zhu
- JiangXi University of Science and Technology Ganzhou Jiangxi 341000 China
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| | - Wayne Hsu
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| | - Shenglong Wang
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| | - Fenglong Lin
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| | - Yincai Wu
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| | - Yimin Fang
- Xiamen AXENT Co. Ltd Xiamen Fujian 361000 China
| | - Jinglin Chen
- JiangXi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Lijun Song
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| |
Collapse
|
11
|
Tong X, Dong Y, Zhou R, Shen X, Li Y, Jiang Y, Wang H, Wang J, Lin J, Wen C. Enhanced Mechanical Properties, Corrosion Resistance, Cytocompatibility, Osteogenesis, and Antibacterial Performance of Biodegradable Mg-2Zn-0.5Ca-0.5Sr/Zr Alloys for Bone-Implant Application. Adv Healthc Mater 2024; 13:e2303975. [PMID: 38235953 DOI: 10.1002/adhm.202303975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Indexed: 01/19/2024]
Abstract
Magnesium (Mg) alloys are widely used in bone fixation and bone repair as biodegradable bone-implant materials. However, their clinical application is limited due to their fast corrosion rate and poor mechanical stability. Here, the development of Mg-2Zn-0.5Ca-0.5Sr (MZCS) and Mg-2Zn-0.5Ca-0.5Zr (MZCZ) alloys with improved mechanical properties, corrosion resistance, cytocompatibility, osteogenesis performance, and antibacterial capability is reported. The hot-extruded (HE) MZCZ sample exhibits the highest ultimate tensile strength of 255.8 ± 2.4 MPa and the highest yield strength of 208.4 ± 2.8 MPa and an elongation of 15.7 ± 0.5%. The HE MZCS sample shows the highest corrosion resistance, with the lowest corrosion current density of 0.2 ± 0.1 µA cm-2 and the lowest corrosion rate of 4 ± 2 µm per year obtained from electrochemical testing, and a degradation rate of 368 µm per year and hydrogen evolution rate of 0.83 ± 0.03 mL cm-2 per day obtained from immersion testing. The MZCZ sample shows the highest cell viability in relation to MC3T3-E1 cells among all alloy extracts, indicating good cytocompatibility except at 25% concentration. Furthermore, the MZCZ alloy shows good antibacterial capability against Staphylococcus aureus.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Runqi Zhou
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering, Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| | - Xinkun Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Yuncang Li
- School of Engineering, RMIT University Melbourne, Victoria, 3001, Australia
| | - Yue Jiang
- Key Laboratory of Bionic Engineering of Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130025, China
| | - Jinguo Wang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130025, China
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Cuie Wen
- School of Engineering, RMIT University Melbourne, Victoria, 3001, Australia
| |
Collapse
|
12
|
Chen Z, Zhou X, Mo M, Hu X, Liu J, Chen L. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J Nanobiotechnology 2024; 22:185. [PMID: 38627717 PMCID: PMC11020458 DOI: 10.1186/s12951-024-02442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Han Y, Tong X, Zhou R, Wang Y, Chen Y, Chen L, Hong X, Wu L, Lin Z, Zhang Y, Zhang X, Hu C, Li B, Ping Y, Cao Z, Ye Z, Song Z, Li Y, Wen C, Zhou Y, Lin J, Huang S. Biodegradable Zn-5Dy Alloy with Enhanced Osteo/Angio-Genic Activity and Osteointegration Effect via Regulation of SIRT4-Dependent Mitochondrial Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307812. [PMID: 38243646 PMCID: PMC10987155 DOI: 10.1002/advs.202307812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Zinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed. Here, mechanical stability is further confirmed, proving that Zn-5Dy alloy can resist aging in the degradation process, thus meeting the mechanical requirements of fracture fixation. In vitro cellular experiments reveal that the Zn-5Dy alloy enhances osteogenesis and angiogenesis by elevating SIRT4-mediated mitochondrial function. In vivo Micro-CT, SEM-EDS, and immunohistochemistry analyses further indicate good biosafety, suitable biodegradation rate, and great osteointegration of Zn-5Dy alloy during bone healing, which also depends on the upregulation of SIRT4-mediated mitochondrial events. Overall, the study is the first to report a Zn-5Dy alloy that exerts remarkable osteointegration properties and has a strong potential to promote bone healing. Furthermore, the results highlight the importance of mitochondrial modulation and shall guide the future development of mitochondria-targeting materials in enhancing bone fracture healing.
Collapse
Affiliation(s)
- Yue Han
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xian Tong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Runqi Zhou
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yilin Wang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yuge Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
- Department of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonT6G2R3Canada
| | - Liang Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xinhua Hong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Linmei Wu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhiqiang Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yichi Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xuejia Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Chaoming Hu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Bin Li
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yifan Ping
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zelin Cao
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental CareFaculty of DentistryUniversity of Hong KongHong Kong999077China
| | - Zhongchen Song
- Department of PeriodontologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Yuncang Li
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Cuie Wen
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Yongsheng Zhou
- Department of ProsthodonticsNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyResearch Center of Engineering and Technology for Computerized Dentistry Ministry of HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Jixing Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Shengbin Huang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
14
|
Tong X, Dong Y, Han Y, Zhou R, Zhu L, Zhang D, Dai Y, Shen X, Li Y, Wen C, Lin J. A biodegradable Zn-5Gd alloy with biomechanical compatibility, cytocompatibility, antibacterial ability, and in vitro and in vivo osteogenesis for orthopedic applications. Acta Biomater 2024; 177:538-559. [PMID: 38253302 DOI: 10.1016/j.actbio.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Zinc (Zn) and some of its alloys are recognized as promising biodegradable implant materials due to their acceptable biocompatibility, facile processability, and moderate degradation rate. Nevertheless, the limited mechanical properties and stability of as-cast Zn alloys hinder their clinical application. In this work, hot-rolled (HR) and hot-extruded (HE) Zn-5 wt.% gadolinium (Zn-5Gd) samples were prepared by casting and respectively combining with hot rolling and hot extrusion for bone-implant applications. Their microstructure evolution, mechanical properties, corrosion behavior, cytotoxicity, antibacterial ability, and in vitro and in vivo osteogenesis were systematically evaluated. The HR and HE Zn-5Gd exhibited significantly improved mechanical properties compared with those of their pure Zn counterparts and the HR Zn-5Gd showed a unique combination of tensile properties with an ultimate tensile strength of ∼311.6 MPa, yield strength of ∼236.5 MPa, and elongation of ∼40.6%, all of which are greater than the mechanical properties required for bone-implant materials. The HR and HE Zn-5Gd showed higher corrosion resistance than their pure Zn counterpart in Hanks' solution and the HE Zn-5Gd had the lowest corrosion rate of 155 µm/y measured by electrochemical corrosion and degradation rate of 26.9 µm/y measured by immersion testing. The HR and HE Zn-5Gd showed high cytocompatibility toward MC3T3-E1 and MG-63 cells, high antibacterial effects against S. aureus, and better in vitro osteogenic activity than their pure Zn counterparts. Furthermore, the HE Zn-5Gd exhibited better in vivo biocompatibility, osteogenesis, and osteointegration ability than pure Zn and pure Ti. STATEMENT OF SIGNIFICANCE: This work reports the mechanical properties, corrosion behaviors, cytocompatibility, antibacterial ability, in vitro and in vivo osteogenesis of biodegradable Zn-Gd alloy for bone-implant applications. Our findings demonstrate that the hot-rolled (HR) Zn-5Gd showed a unique combination of tensile properties with an ultimate tensile strength of ∼311.6 MPa, yield strength of ∼236.5 MPa, and elongation of ∼40.6%. The HR and HE Zn-5Gd showed higher corrosion resistance than their pure Zn counterpart in Hanks' solution. The HR and HE Zn-5Gd showed high cytocompatibility toward MC3T3-E1 and MG-63 cells, good antibacterial effects against S. aureus, and better in vitro osteogenic activity. Furthermore, the HE Zn-5Gd exhibited better in vivo biocompatibility, osteogenesis, and osteointegration ability than pure Zn and pure Ti.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China; School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Yue Han
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Runqi Zhou
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Li Zhu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Dechuang Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yilong Dai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Xinkun Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
15
|
Sun Q, Zhang D, Tong X, Lin J, Li Y, Wen C. Mechanical properties, corrosion behavior, and cytotoxicity of biodegradable Zn/Mg multilayered composites prepared by accumulative roll bonding process. Acta Biomater 2024; 173:509-525. [PMID: 38006909 DOI: 10.1016/j.actbio.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Zinc (Zn), magnesium (Mg), and their respective alloys have attracted great attention as biodegradable bone-implant materials due to their excellent biocompatibility and biodegradability. However, the poor mechanical strength of Zn alloys and the rapid degradation rate of Mg alloys limit their clinical application. The manufacture of Zn and Mg bimetals may be a promising way to improve their mechanical and degradation properties. Here we report on Zn/Mg multilayered composites prepared via an accumulative roll bonding (ARB) process. With an increase in the number of ARB cycles, the thicknesses of the Zn layer and the Mg layer were reduced, while a large number of heterogeneous interfaces were introduced into the Zn/Mg multilayered composites. The composite samples after 14 ARB cycles showed the highest yield strength of 411±3 MPa and highest ultimate tensile strength of 501±3 MPa among all the ARB processed samples, significantly higher than those of the Zn/Zn and Mg/Mg multilayered samples. The Zn and Mg layers remained continuous in the Zn/Mg composite samples after annealing at 150 °C for 10 min, resulting in a decrease in yield strength from 411±3 MPa to 349±3 MPa but an increase in elongation from 8±1% to 28±1%. The degradation rate of the Zn/Mg multilayered composite samples in Hanks' solution was ranged from 127±18 µm/y to 6±1 µm/y. The Zn/Mg multilayered composites showed over 100% cell viability with their 25% and 12.5% extracts in relation to MG-63 cells after culturing for 3 d, indicating excellent cytocompatibility. STATEMENT OF SIGNIFICANCE: This work reports a biodegradable Zn/Mg multilayered composite prepared by accumulative roll bonding (ARB) process. The yield and ultimate tensile strength of the Zn/Mg multilayered composites were improved due to grain refinement and the introduction of a large number of heterogeneous interfaces. The composite samples after 14 ARB cycles showed the highest yield strength of 411±3 MPa and highest ultimate tensile strength of 501±3 MPa among all the ARB processed samples. The degradation rate of the Zn/Mg multilayered composite meets the required degradation rate for biodegradable bone-implant materials. The results demonstrated that it is a very promising approach to improve the strength and biocompatibility of biodegradable Zn-based alloys.
Collapse
Affiliation(s)
- Quanxiang Sun
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Dechuang Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Xian Tong
- Key Laboratory of Low Dimensional Materials & Application Technology, Xiangtan University, Ministry of Education, Hunan 411105, China
| | - Jianguo Lin
- Key Laboratory of Low Dimensional Materials & Application Technology, Xiangtan University, Ministry of Education, Hunan 411105, China.
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
16
|
Tong X, Han Y, Zhou R, Zeng J, Wang C, Yuan Y, Zhu L, Huang S, Ma J, Li Y, Wen C, Lin J. Mechanical properties, corrosion and degradation behaviors, and in vitro cytocompatibility of a biodegradable Zn-5La alloy for bone-implant applications. Acta Biomater 2023; 169:641-660. [PMID: 37541605 DOI: 10.1016/j.actbio.2023.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/04/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Zinc (Zn) and its alloys are used in bone-fixation devices as biodegradable bone-implant materials due to their good biosafety, biological function, biodegradability, and formability. Unfortunately, the clinical application of pure Zn is hindered by its insufficient mechanical properties and slow degradation rate. In this study, a Zn-5 wt.% lanthanum (Zn-5La) alloy with enhanced mechanical properties, suitable degradation rate, and cytocompatibility was developed through La alloying and hot extrusion. The hot-extruded (HE) Zn-5La alloy showed ultimate tensile strength of 286.3 MPa, tensile yield strength of 139.7 MPa, elongation of 35.7%, compressive yield strength of 262.7 MPa, and microhardness of 109.7 HV. The corrosion resistance of the HE Zn-5La in Hanks' and Dulbecco's modified Eagle medium (DMEM) solutions gradually increased with prolonged immersion time. Further, the HE Zn-5La exhibited an electrochemical corrosion rate of 36.7 μm/y in Hanks' solution and 11.4 μm/y in DMEM solution, and a degradation rate of 49.5 μm/y in Hanks' solution and 30.3 μm/y in DMEM solution, after 30 d of immersion. The corrosion resistance of both HE Zn and Zn-5La in DMEM solution was higher than in Hanks' solution. The 25% concentration extract of the HE Zn-5La showed a cell viability of 106.5%, indicating no cytotoxicity toward MG-63 cells. We recommend the HE Zn-5La alloy as a promising candidate material for biodegradable bone-implant applications. STATEMENT OF SIGNIFICANCE: This work reports the mechanical properties, corrosion and degradation behaviors, in vitro cytocompatibility and antibacterial ability of biodegradable Zn-5La alloy for bone-implant applications. Our findings demonstrate that the hot-extruded (HE) Zn-5La alloy showed an ultimate tensile strength of 286.3 MPa, a yield strength of 139.7 MPa, an elongation of 35.7%, compressive yield strength of 262.7 MPa, and microhardness of 109.7 HV. HE Zn-5La exhibited appropriate degradation rates in Hanks' and DMEM solutions. Furthermore, the HE Zn-5La alloy showed good cytocompatibility toward MG-63 and MC3T3-E1 cells and greater antibacterial ability against S. aureus.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China; School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Yue Han
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Runqi Zhou
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jun Zeng
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Cheng Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yifan Yuan
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Li Zhu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianfeng Ma
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
17
|
Martynenko N, Anisimova N, Shinkareva M, Rybalchenko O, Rybalchenko G, Zheleznyi M, Lukyanova E, Temralieva D, Gorbenko A, Raab A, Pashintseva N, Babayeva G, Kiselevskiy M, Dobatkin S. Bioactivity Features of a Zn-1%Mg-0.1%Dy Alloy Strengthened by Equal-Channel Angular Pressing. Biomimetics (Basel) 2023; 8:408. [PMID: 37754159 PMCID: PMC10526681 DOI: 10.3390/biomimetics8050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
The structure, phase composition, corrosion and mechanical properties, as well as aspects of biocompatibility in vitro and in vivo, of a Zn-1%Mg-0.1%Dy alloy after equal-channel angular pressing (ECAP) were studied. The structure refinement after ECAP leads to the formation of elongated α-Zn grains with a width of ~10 µm and of Mg- and Dy-containing phases. In addition, X-ray diffraction analysis demonstrated that ECAP resulted in the formation of the basal texture in the alloy. These changes in the microstructure and texture lead to an increase in ultimate tensile strength up to 262 ± 7 MPa and ductility up to 5.7 ± 0.2%. ECAP slows down the degradation process, apparently due to the formation of a more homogeneous microstructure. It was found that the alloy degradation rate in vivo after subcutaneous implantation in mice is significantly lower than in vitro ones. ECAP does not impair biocompatibility in vitro and in vivo of the Zn-1%Mg-0.1%Dy alloy. No signs of suppuration, allergic reactions, the formation of visible seals or skin ulcerations were observed after implantation of the alloy. This may indicate the absence of an acute reaction of the animal body to the Zn-1%Mg-0.1%Dy alloy in both states.
Collapse
Affiliation(s)
- Natalia Martynenko
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| | - Natalia Anisimova
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO) of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (G.B.); (M.K.)
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Maria Shinkareva
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Olga Rybalchenko
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| | - Georgy Rybalchenko
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Mark Zheleznyi
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
- Department of Physical Materials Science, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
- Institute of Innovative Engineering Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena Lukyanova
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| | - Diana Temralieva
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| | - Artem Gorbenko
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| | - Arseny Raab
- Institute of Physics of Advanced Materials, Ufa University of Science and Technology, 450076 Ufa, Russia;
| | - Natalia Pashintseva
- Limited liability Company “Veterinary Oncological Scientific Center”, 115211 Moscow, Russia;
| | - Gulalek Babayeva
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO) of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (G.B.); (M.K.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Mikhail Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO) of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (G.B.); (M.K.)
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Sergey Dobatkin
- A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (M.S.); (O.R.); (M.Z.); (E.L.); (D.T.); (A.G.); (S.D.)
| |
Collapse
|
18
|
Liu Q, Li A, Liu S, Fu Q, Xu Y, Dai J, Li P, Xu S. Cytotoxicity of Biodegradable Zinc and Its Alloys: A Systematic Review. J Funct Biomater 2023; 14:206. [PMID: 37103296 PMCID: PMC10144193 DOI: 10.3390/jfb14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Zinc-based biodegradable metals (BMs) have been developed for biomedical implant materials. However, the cytotoxicity of Zn and its alloys has caused controversy. This work aims to investigate whether Zn and its alloys possess cytotoxic effects and the corresponding influence factors. According to the guidelines of the PRISMA statement, an electronic combined hand search was conducted to retrieve articles published in PubMed, Web of Science, and Scopus (2013.1-2023.2) following the PICOS strategy. Eighty-six eligible articles were included. The quality of the included toxicity studies was assessed utilizing the ToxRTool. Among the included articles, extract tests were performed in 83 studies, and direct contact tests were conducted in 18 studies. According to the results of this review, the cytotoxicity of Zn-based BMs is mainly determined by three factors, namely, Zn-based materials, tested cells, and test system. Notably, Zn and its alloys did not exhibit cytotoxic effects under certain test conditions, but significant heterogeneity existed in the implementation of the cytotoxicity evaluation. Furthermore, there is currently a relatively lower quality of current cytotoxicity evaluation in Zn-based BMs owing to the adoption of nonuniform standards. Establishing a standardized in vitro toxicity assessment system for Zn-based BMs is required for future investigations.
Collapse
Affiliation(s)
- Qian Liu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - An Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shizhen Liu
- The School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK
| | - Qingyun Fu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|