1
|
Kliuchnikov E, Dagklis AG, Litvinov RI, Marx KA, Weisel JW, Bassani JL, Purohit PK, Barsegov V. Strength, Deformability, Damage and Fracture Toughness of Fibrous Material Networks: Application to Fibrin Clots. Acta Biomater 2025:S1742-7061(25)00383-6. [PMID: 40414265 DOI: 10.1016/j.actbio.2025.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/15/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
A multiscale approach to mechanical testing in silico, which combines discrete particle-based simulations and large-deformation continuum mechanics, is developed to explore the mechanobiology, damage and fracture of fibrous materials. Combined with tensile testing in vitro of fibrin networks, the mechanical scaffold of blood clots, mechanisms of fibrin rupture are investigated that underlie embolization of intravascular blood clots (thrombi), a major cause of ischemic stroke and pulmonary embolism. At moderate strains (<50%), no network damage is observed. At larger strains, damage evolves and the network ruptures when only ∼5% of fibers and branch points break, opening a ∼150 µm rupture zone in silico. A continuum model that predicts macroscopic behavior for arbitrary states of deformation, including damage evolution, is constructed from the mesoscopic simulations with direct correlation of the damage parameter and the number of broken bonds in contrast to phenomenological damage laws. The continuum model can access length- and time-scales that are inaccessible in discrete simulations, which allows prediction of fracture toughness, the material property that determines rupture resistance in the presence of defects. This critical property for a fibrin network at physiological solid volume fraction and accounting for the dramatic decrease in volume (∼90%) under uniform tensile stressing is predicted to be 2.5-7.7 J/m2, in good agreement with experiment. These insights into mechanisms of blood clot fracture can lead to the development of new approaches to predict and prevent embolization of intravascular thrombi. The multiscale approach developed is applicable to a wide range of fibrous network-based biomaterials. STATEMENT OF SIGNIFICANCE: Dummy.
Collapse
Affiliation(s)
| | - Angelos Gkarsen Dagklis
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, PA, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - John L Bassani
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, PA, USA
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, PA, USA.
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA, USA,.
| |
Collapse
|
2
|
Mollenkopf P, Kochanowski JA, Ren Y, Vining KH, Janmey PA, Purohit PK. Poroelasticity and permeability of fibrous polymer networks under compression. SOFT MATTER 2025; 21:2400-2412. [PMID: 39976571 PMCID: PMC11841696 DOI: 10.1039/d4sm01223b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
Soft biopolymer networks play pivotal roles in governing cellular mechanics, tissue structure, and physiological processes such as blood coagulation. Understanding their permeability and mechanical responses under compression is crucial for elucidating mass transport phenomena and their impact on extra- and intra-cellular behavior as well as processes affecting functionality of blood clots, cartilage and other fibrous tissues. The nonlinear responses of these networks to mechanical stresses prevent application of established linear poro-elasticity models. Despite extensive studies of fibrous network viscoelastic properties under shear deformations, their dynamic responses to compressive deformations remain poorly understood, particularly in physiological contexts of growth and collective migration of solid bodies. Conventional experimental techniques face challenges in accurately evaluating the permeability of these networks, hindering comprehensive understanding of their poromechanical behavior. In this study, we employ a novel poroelastic hybrid approach combining rheometer-based compression rheology with camera-facilitated sample shape detection to directly measure fluid flux and network permeability under controlled compressive strains. Accompanying experimental investigations, a continuum model implemented in finite elements, and an analytical model are developed to interpret the findings. The experimental data align well with the analytical model, revealing the emergence and disappearance of distinct densification regimes within the gel under mechanical stress. This study advances our understanding of the intricate interplay between mechanical forces, fluid flow, and structural properties in soft biopolymer networks, with a specific focus on fibrin- and collagen-based gels which represent the most abundant protein networks in the extracellular environment.
Collapse
Affiliation(s)
- Paul Mollenkopf
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Jakub A Kochanowski
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yifei Ren
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle H Vining
- Department of Preventive and Restorative Sciences, Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Gu B, Hou J, Filla N, Li H, Wang X. Rupture mechanics of blood clot fibrin fibers: A coarse-grained model study. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2025; 196:105998. [PMID: 39734807 PMCID: PMC11674026 DOI: 10.1016/j.jmps.2024.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Thrombosis, when occurring undesirably, disrupts normal blood flow and poses significant medical challenges. As the skeleton of blood clots, fibrin fibers play a vital role in the formation and fragmentation of blood clots. Thus, studying the deformation and fracture characteristics of fibrin fiber networks is the key factor to solve a series of health problems caused by thrombosis. This study employs a coarse-grained model of fibrin fibers to investigate the rupture dynamics of fibrin fiber networks. We propose a new method for generating biomimetic fibrin fiber networks to simulate their spatial geometry in blood clots. We examine the mechanical characteristics and rupture behaviors of fibrin fiber networks under various conditions, including fiber junction density, fiber tortuosity, fiber strength, and the strain limit of single fiber rupture in both tension and simple shear cases. Our findings indicate that the stress-strain relationship of the fibrin fiber network follows a similar pattern to that of individual fibers, characterized by a shortened entropy stretching phase and an extended transition phase. Fiber junction density, fiber strength, and single fiber rupture limit predominantly influence the stress of the network, while fiber tortuosity governs the strain behavior. The availability of more fibers in shear cases to bear the load results in delayed rupture compared to tension cases. With consideration of different factors of fibrin fibers in networks, this work provides a more realistic description of the mechanical deformation process in fibrin fiber networks, offering new insights into their rupture and failure mechanisms. These findings could inspire novel approaches and methodologies for understanding the fracture of fibrin networks during a surgical thrombectomy.
Collapse
Affiliation(s)
- Beikang Gu
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Jixin Hou
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Nicholas Filla
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
4
|
Risman RA, Sen M, Tutwiler V, Hudson NE. Deconstructing fibrin(ogen) structure. J Thromb Haemost 2025; 23:368-380. [PMID: 39536819 PMCID: PMC11786978 DOI: 10.1016/j.jtha.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Fibrinogen and its insoluble degradation product fibrin are pivotal plasma proteins that play important roles in blood coagulation, wound healing, and immune responses. This review highlights research from the last 24 months connecting our progressing view of fibrin(ogen)'s structure, and in particular its conformational flexibility and posttranslational modifications, to its (patho)physiologic roles, molecular interactions, mechanical properties, use as a biomaterial, and potential as a therapeutic target. Recent work suggests that fibrinogen structure is highly dynamic, sampling multiple conformations, which may explain its myriad physiologic functions and the presence of cryptic binding sites. Investigations into fibrin clot structure elucidated the impact of posttranslational modifications, therapeutic interventions, and pathologic conditions on fibrin network morphology, offering insights into thrombus formation and embolization. Studies exploring the mechanical properties of fibrin reveal its response to blood flow and platelet-driven contraction, offering implications for clot stability and embolization risk. Moreover, advancements in tissue engineering leverage fibrin's biocompatibility and customizable properties for diverse applications, from wound healing to tissue regeneration and biomaterial interactions. These findings underscore the structural origins of fibrin(ogen)'s multifaceted roles and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Rebecca A Risman
- Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA. https://twitter.com/rebecca_risman
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA. https://twitter.com/vatutwiler
| | - Nathan E Hudson
- Department of Physics, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
5
|
Ramanujam RK, Maksudov F, Risman RA, Litvinov RI, Weisel JW, Bassani JL, Barsegov V, Purohit PK, Tutwiler V. Rupture mechanics of blood clots: Influence of fibrin network structure on the rupture resistance. Acta Biomater 2024; 190:329-343. [PMID: 39395704 PMCID: PMC12068891 DOI: 10.1016/j.actbio.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Embolization is a leading cause of mortality, yet we know little about clot rupture mechanics. Fibrin provides the main structural and mechanical stability to blood clots. Previous studies have shown that altering the concentration of coagulation activators (thrombin or tissue factor (TF)) has a significant impact on fibrin structure and viscoelastic properties, but their effects on rupture properties are mostly unknown. Toughness, which corresponds to the ability to resist rupture, is independent of viscoelastic properties. We used varying TF concentrations to alter the structure and toughness of human plasma clots. We performed single-edge notch rupture tests to examine fibrin toughness under a constant strain rate and we assessed viscoelastic mechanics using rheology. We utilized fluorescent confocal and scanning electron microscopy (SEM) to quantify the fibrin network structure under varying TF concentrations. Our results revealed that increased TF concentration resulted in increased number of fibrin fibers with a reduction in network pore size, thinner and shorter fibrin fibers. Increasing TF concentration yielded a maximum toughness at mid-TF concentration, such that fibrin diameter and number of fibers underlie a complex role in influencing the rupture resistance of blood clots, resulting in a nonmonotonic relationship between TF and toughness. A simple mechanical model, built on our findings from our Fluctuating Spring (FS) computational model, adopted to estimate the fracture toughness (critical energy release rate) as a function of TF predicts trends that are in good agreement with experiments. The differences in mechanical responses point to the importance of studying the structure-function relationships of fibrin networks, which may be predictive of the tendency for embolization. STATEMENT OF SIGNIFICANCE: Fibrin, a naturally occurring biomaterial, is the main mechanical and structural scaffold of blood clots that provides the necessary strength and stability to the clot, ensuring effective stemming of bleeding. The rupture of blood clots can result in the blockage of downstream vessels thereby blocking blood flow and oxygen supply. The fibrin network structure has been shown to influence the viscoelastic mechanical properties of clots, but has not been explored for fracture mechanics. Here, we modulate the fibrin network structure by varying the concentration of Tissue Factor (TF). Interestingly, the association between TF concentration and maximum toughness of the clots is non-monotonic. The variations in mechanical responses highlight the importance of studying the structure-function relationships of fibrin networks, as these may predict the tendency for embolization.
Collapse
Affiliation(s)
| | - Farkhad Maksudov
- Department of Chemistry, University of Massachusetts Lowell, MA, USA
| | - Rebecca A Risman
- Department of Biomedical Engineering, Rutgers University, NJ, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania, PJ, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, PJ, USA
| | - John L Bassani
- Department of Cell and Developmental Biology, University of Pennsylvania, PJ, USA
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts Lowell, MA, USA
| | - Prashant K Purohit
- Department of Cell and Developmental Biology, University of Pennsylvania, PJ, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, NJ, USA.
| |
Collapse
|
6
|
Risman RA, Shroff M, Goswami J, Tutwiler V. Dependence of clot structure and fibrinolysis on apixaban and clotting activator. Res Pract Thromb Haemost 2024; 8:102614. [PMID: 39687928 PMCID: PMC11648767 DOI: 10.1016/j.rpth.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 12/18/2024] Open
Abstract
Background Anticoagulants prevent the formation of potentially fatal blood clots. Apixaban is a direct oral anticoagulant that inhibits factor (F)Xa, thereby impeding the conversion of prothrombin into thrombin and the formation of blood clots. Blood clots are held together by fibrin networks that must be broken down (fibrinolysis) to restore blood flow. Fibrinolysis is initiated when tissue plasminogen activator (tPA) converts plasminogen to plasmin, which binds to and degrades a fibrin fiber. The effects of apixaban on clot structure and lysis have been incompletely studied. Objectives We aimed to study apixaban effects on clot structure, kinetics, and fibrinolysis using thrombin (low or high concentration) or tissue factor (TF) to activate clot formation. Methods We used a combination of confocal and scanning electron microscopy and turbidity to analyze the structure, formation kinetics, and susceptibility to lysis when plasma was activated with low concentrations of thrombin, high concentrations of thrombin, or TF in the presence or absence of apixaban. Results We found that the clotting activator and apixaban differentially modulated clot structure and lytic potential. Low thrombin clots with apixaban lysed quickly due to a loose network and FXa cleavage product's cofactor with tPA; high thrombin clots lysed faster due to FXa cleavage product's cofactor with tPA; TF generated loose clots with restricted lysis due to their activation of thrombin activatable fibrinolytic inhibitor. Conclusion Our study elucidates the role of apixaban in fibrinolytic pathways with different clotting activators and can be used for the development of therapeutic strategies using apixaban as a cofactor in fibrinolytic pathways.
Collapse
Affiliation(s)
- Rebecca A. Risman
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Mitali Shroff
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Julie Goswami
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Rutgers Acute Care Surgery Research Laboratory (RASR), Department of Surgery, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
7
|
Gültekin O, Lohr MJ, Bechtel GN, Rausch MK. "What makes blood clots break off?" A Back-of-the-Envelope Computation Toward Explaining Clot Embolization. Cardiovasc Eng Technol 2024; 15:584-593. [PMID: 38771453 DOI: 10.1007/s13239-024-00733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE One in four deaths worldwide is due to thromboembolic disease; that is, one in four people die from blood clots first forming and then breaking off or embolizing. Once broken off, clots travel downstream, where they occlude vital blood vessels such as those of the brain, heart, or lungs, leading to strokes, heart attacks, or pulmonary embolisms, respectively. Despite clots' obvious importance, much remains to be understood about clotting and clot embolization. In our work, we take a first step toward untangling the mystery behind clot embolization and try to answer the simple question: "What makes blood clots break off?" METHODS To this end, we conducted experimentally-informed, back-of-the-envelope computations combining fracture mechanics and phase-field modeling. We also focused on deep venous clots as our model problem. RESULTS Here, we show that of the three general forces that act on venous blood clots-shear stress, blood pressure, and wall stretch-induced interfacial forces-the latter may be a critical embolization force in occlusive and non-occlusive clots, while blood pressure appears to play a determinant role only for occlusive clots. Contrary to intuition and prior reports, shear stress, even when severely elevated, appears unlikely to cause embolization. CONCLUSION This first approach to understanding the source of blood clot bulk fracture may be a critical starting point for understanding blood clot embolization. We hope to inspire future work that will build on ours and overcome the limitations of these back-of-the-envelope computations.
Collapse
Affiliation(s)
- Osman Gültekin
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Matthew J Lohr
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Grace N Bechtel
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Manuel K Rausch
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Ramanujam RK, Garyfallogiannis K, Litvinov RI, Bassani JL, Weisel JW, Purohit PK, Tutwiler V. Mechanics and microstructure of blood plasma clots in shear driven rupture. SOFT MATTER 2024; 20:4184-4196. [PMID: 38686609 PMCID: PMC11135145 DOI: 10.1039/d4sm00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Intravascular blood clots are subject to hydrodynamic shear and other forces that cause clot deformation and rupture (embolization). A portion of the ruptured clot can block blood flow in downstream vessels. The mechanical stability of blood clots is determined primarily by the 3D polymeric fibrin network that forms a gel. Previous studies have primarily focused on the rupture of blood plasma clots under tensile loading (Mode I), our current study investigates the rupture of fibrin induced by shear loading (Mode II), dominating under physiological conditions induced by blood flow. Using experimental and theoretical approaches, we show that fracture toughness, i.e. the critical energy release rate, is relatively independent of the type of loading and is therefore a fundamental property of the gel. Ultrastructural studies and finite element simulations demonstrate that cracks propagate perpendicular to the direction of maximum stretch at the crack tip. These observations indicate that locally, the mechanism of rupture is predominantly tensile. Knowledge gained from this study will aid in the development of methods for prediction/prevention of thrombotic embolization.
Collapse
Affiliation(s)
- Ranjini K Ramanujam
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| | | | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - John L Bassani
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
9
|
Liu S, Bahmani A, Ghezelbash F, Li J. Fibrin clot fracture under cyclic fatigue and variable rate loading. Acta Biomater 2024; 177:265-277. [PMID: 38336270 DOI: 10.1016/j.actbio.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Fibrin clot is a vital class of fibrous materials, governing the mechanical response of blood clots. Fracture behavior of fibrin clots under complex physiological load is relevant for hemostasis and thrombosis. But how they fracture under cyclic and variable rate loading has not been reported. Here we conduct cyclic fatigue and monotonic variable rate loading tests on fibrin clots to characterize their fracture properties in terms of fatigue threshold and rate-dependent fracture toughness. We demonstrate that the fracture behavior of fibrin clots is sensitive to the amplitude of cyclic load and the loading rate. The cyclic fatigue tests show the fatigue threshold of fibrin clots at 1.66 J/m2, compared to the overall fracture toughness 15.8 J/m2. Furthermore, we rationalize the fatigue threshold using a semi-empirical model parameterized by 3D morphometric quantification to account for the hierarchical molecular structure of fibrin fibers. The variable loading tests reveal rate dependence of the overall fracture toughness of fibrin clots. Our analysis with a viscoelastic fracture model suggests the viscoelastic origin of the rate-dependent fracture toughness. The toughening mechanism of fibrin clots is further compared with biological tissues and hydrogels. This study advances the understanding and modeling of fatigue and fracture of blood clots and would motivate further investigation on the mechanics of fibrous materials. STATEMENT OF SIGNIFICANCE: Fibrin clot is a soft fibrous gel, exhibiting nonlinear mechanical responses under complex physiological loads. It is the main load-bearing constituent of blood clots where red blood cells, platelets and other cells are trapped. How the fibrin clot fractures under complex mechanical loads is critical for hemostasis and thrombosis. We study the fracture behavior of fibrin clots under cyclic fatigue and monotonic variable rate loads. We characterize the fatigue-threshold and viscous energy dissipation of fibrin clots. We compare the toughness enhancement of fibrin clots with hydrogels. The findings offer new insights into the fatigue and fracture of blood clots and fibrous materials, which could improve design guidelines for bioengineered materials.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Aram Bahmani
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| |
Collapse
|
10
|
Risman RA, Belcher HA, Ramanujam RK, Weisel JW, Hudson NE, Tutwiler V. Comprehensive Analysis of the Role of Fibrinogen and Thrombin in Clot Formation and Structure for Plasma and Purified Fibrinogen. Biomolecules 2024; 14:230. [PMID: 38397467 PMCID: PMC10886591 DOI: 10.3390/biom14020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Altered properties of fibrin clots have been associated with bleeding and thrombotic disorders, including hemophilia or trauma and heart attack or stroke. Clotting factors, such as thrombin and tissue factor, or blood plasma proteins, such as fibrinogen, play critical roles in fibrin network polymerization. The concentrations and combinations of these proteins affect the structure and stability of clots, which can lead to downstream complications. The present work includes clots made from plasma and purified fibrinogen and shows how varying fibrinogen and activation factor concentrations affect the fibrin properties under both conditions. We used a combination of scanning electron microscopy, confocal microscopy, and turbidimetry to analyze clot/fiber structure and polymerization. We quantified the structural and polymerization features and found similar trends with increasing/decreasing fibrinogen and thrombin concentrations for both purified fibrinogen and plasma clots. Using our compiled results, we were able to generate multiple linear regressions that predict structural and polymerization features using various fibrinogen and clotting agent concentrations. This study provides an analysis of structural and polymerization features of clots made with purified fibrinogen or plasma at various fibrinogen and clotting agent concentrations. Our results could be utilized to aid in interpreting results, designing future experiments, or developing relevant mathematical models.
Collapse
Affiliation(s)
- Rebecca A. Risman
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (R.A.R.); (R.K.R.)
| | - Heather A. Belcher
- Department of Physics, East Carolina University, Greenville, NC 27858, USA; (H.A.B.); (N.E.H.)
| | - Ranjini K. Ramanujam
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (R.A.R.); (R.K.R.)
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nathan E. Hudson
- Department of Physics, East Carolina University, Greenville, NC 27858, USA; (H.A.B.); (N.E.H.)
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (R.A.R.); (R.K.R.)
| |
Collapse
|
11
|
Gosselin AR, Bargoud CG, Sawalkar A, Mathew S, Toussaint A, Greenen M, Coyle SM, Macor M, Krishnan A, Goswami J, Hanna JS, Tutwiler V. Injury Severity is a Key Contributor to Coagulation Dysregulation and Fibrinogen Consumption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575945. [PMID: 38293104 PMCID: PMC10827148 DOI: 10.1101/2024.01.16.575945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Traumatic injury is a leading cause of death for those under the age of 45, with 40% occurring due to hemorrhage. Severe tissue injury and hypoperfusion lead to marked changes in coagulation, thereby preventing formation of a stable blood clot and increasing hemorrhage associated mortality. Objectives We aimed to quantify changes in clot formation and mechanics occurring after traumatic injury and the relationship to coagulation kinetics, and fibrinolysis. Methods Plasma was isolated from injured patients upon arrival to the emergency department. Coagulation kinetics and mechanics of healthy donors and patient plasma were compared with rheological, turbidimetric and thrombin generation assays. ELISA's were performed to determine tissue plasminogen activator (tPA) and D-dimer concentration, as fibrinolytic markers. Results Sixty-three patients were included in the study. The median injury severity score (ISS) was 17, median age was 37.5 years old, and mortality rate was 30%. Rheological, turbidimetric and thrombin generation assays indicated that trauma patients on average, and especially deceased patients, exhibited reduced clot stiffness, increased fibrinolysis and reduced thrombin generation compared to healthy donors. Fibrinogen concentration, clot stiffness, D-dimer and tPA all demonstrated significant direct correlation to increasing ISS. Machine learning algorithms identified and highlighted the importance of clinical factors on determining patient outcomes. Conclusions Viscoelastic and biochemical assays indicate significant contributors and predictors of mortality for improved patient treatment and therapeutic target detection. ESSENTIALS Traumatic injury may lead to alterations in a patient's ability to form stable blood clotsA study was performed to assess how trauma severity affects coagulation kineticsKey alterations were observed in trauma patients, who exhibit weaker and slower forming clotsPaired with machine learning methods, the results indicate key aspects contributing to mortality.
Collapse
|
12
|
Garyfallogiannis K, Purohit PK, Bassani JL. Cracks in tensile-contracting and tensile-dilating poroelastic materials. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 2024; 286-287:112563. [PMID: 38130319 PMCID: PMC10732463 DOI: 10.1016/j.ijsolstr.2023.112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Fibrous gels such as cartilage, blood clots, and carbon-nanotube-based sponges with absorbed oils suffer a reduction in volume by the expulsion of liquid under uniaxial tension, and this directly affects crack-tip fields and energy release rates. A continuum model is formulated for isotropic fibrous gels that exhibit a range of behaviors from volume increasing to volume decreasing in uniaxial tension by changing the ratio of two material parameters. The motion of liquid in the pores of such gels is modeled using poroelasticity. The direction of liquid fluxes around cracks is shown to depend on whether the gel locally increases or decreases in volume. The energy release rate for cracks is computed using a surface-independent integral and it is shown to have two contributions - one from the stresses in the solid network, and another from the flow of liquid. The contribution to the integral from liquid permeation tends to be negative when the gel exhibits volume decrease, which effectively is a crack shielding mechanism.
Collapse
Affiliation(s)
| | - Prashant K. Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John L. Bassani
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Ramanujam RK, Maksudov F, Litvinov RI, Nagaswami C, Weisel JW, Tutwiler V, Barsegov V. Biomechanics, Energetics, and Structural Basis of Rupture of Fibrin Networks. Adv Healthc Mater 2023; 12:e2300096. [PMID: 37611209 PMCID: PMC11468835 DOI: 10.1002/adhm.202300096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/06/2023] [Indexed: 08/25/2023]
Abstract
Fibrin provides the main structural integrity and mechanical strength to blood clots. Failure of fibrin clots can result in life-threating complications, such as stroke or pulmonary embolism. The dependence of rupture resistance of fibrin networks (uncracked and cracked) on fibrin(ogen) concentrations in the (patho)physiological 1-5 g L-1 range is explored by performing the ultrastructural studies and theoretical analysis of the experimental stress-strain profiles available from mechanical tensile loading assays. Fibrin fibers in the uncracked network stretched evenly, whereas, in the cracked network, fibers around the crack tip showed greater deformation. Unlike fibrin fibers in cracked networks formed at the lower 1-2.7 g L-1 fibrinogen concentrations, fibers formed at the higher 2.7-5 g L-1 concentrations align and stretch simultaneously. Cracked fibrin networks formed in higher fibrinogen solutions are tougher yet less extensible. Statistical modeling revealed that the characteristic strain for fiber alignment, crack size, and fracture toughness of fibrin networks control their rupture resistance. The results obtained provide a structural and biomechanical basis to quantitatively understand the material properties of blood plasma clots and to illuminate the mechanisms of their rupture.
Collapse
Affiliation(s)
- Ranjini K. Ramanujam
- Department of Biomedical Engineering, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Farkhad Maksudov
- Department of ChemistryUniversity of MassachusettsLowellMA01854USA
| | - Rustem I. Litvinov
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - John W. Weisel
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Valeri Barsegov
- Department of ChemistryUniversity of MassachusettsLowellMA01854USA
| |
Collapse
|
14
|
Michael C, Pancaldi F, Britton S, Kim OV, Peshkova AD, Vo K, Xu Z, Litvinov RI, Weisel JW, Alber M. Combined computational modeling and experimental study of the biomechanical mechanisms of platelet-driven contraction of fibrin clots. Commun Biol 2023; 6:869. [PMID: 37620422 PMCID: PMC10449797 DOI: 10.1038/s42003-023-05240-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
While blood clot formation has been relatively well studied, little is known about the mechanisms underlying the subsequent structural and mechanical clot remodeling called contraction or retraction. Impairment of the clot contraction process is associated with both life-threatening bleeding and thrombotic conditions, such as ischemic stroke, venous thromboembolism, and others. Recently, blood clot contraction was observed to be hindered in patients with COVID-19. A three-dimensional multiscale computational model is developed and used to quantify biomechanical mechanisms of the kinetics of clot contraction driven by platelet-fibrin pulling interactions. These results provide important biological insights into contraction of platelet filopodia, the mechanically active thin protrusions of the plasma membrane, described previously as performing mostly a sensory function. The biomechanical mechanisms and modeling approach described can potentially apply to studying other systems in which cells are embedded in a filamentous network and exert forces on the extracellular matrix modulated by the substrate stiffness.
Collapse
Affiliation(s)
- Christian Michael
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Samuel Britton
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Oleg V Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
- Department of Biomedical Engineering and Mechanics, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alina D Peshkova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Khoi Vo
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA.
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA.
- Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
15
|
Jimenez JM, Tuttle T, Guo Y, Miles D, Buganza-Tepole A, Calve S. Multiscale mechanical characterization and computational modeling of fibrin gels. Acta Biomater 2023; 162:292-303. [PMID: 36965611 PMCID: PMC10313219 DOI: 10.1016/j.actbio.2023.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Fibrin is a naturally occurring protein network that forms a temporary structure to enable remodeling during wound healing. It is also a common tissue engineering scaffold because the structural properties can be controlled. However, to fully characterize the wound healing process and improve the design of regenerative scaffolds, understanding fibrin mechanics at multiple scales is necessary. Here, we present a strategy to quantify both the macroscale (1-10 mm) stress-strain response and the deformation of the mesoscale (10-1000 µm) network structure during unidirectional tensile tests. The experimental data were then used to inform a computational model to accurately capture the mechanical response of fibrin gels. Simultaneous mechanical testing and confocal microscopy imaging of fluorophore-conjugated fibrin gels revealed up to an 88% decrease in volume coupled with increase in volume fraction in deformed gels, and non-affine fiber alignment in the direction of deformation. Combination of the computational model with finite element analysis enabled us to predict the strain fields that were observed experimentally within heterogenous fibrin gels with spatial variations in material properties. These strategies can be expanded to characterize and predict the macroscale mechanics and mesoscale network organization of other heterogeneous biological tissues and matrices. STATEMENT OF SIGNIFICANCE: Fibrin is a naturally-occurring scaffold that supports cellular growth and assembly of de novo tissue and has tunable material properties. Characterization of meso- and macro-scale mechanics of fibrin gel networks can advance understanding of the wound healing process and impact future tissue engineering approaches. Using structural and mechanical characteristics of fibrin gels, a theoretical and computational model that can predict multiscale fibrin network mechanics was developed. These data and model can be used to design gels with tunable properties.
Collapse
Affiliation(s)
- Julian M Jimenez
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Tyler Tuttle
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Dalton Miles
- Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - Adrian Buganza-Tepole
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States.
| |
Collapse
|