1
|
Wang LH, Jiang Y, Sun CH, Chen PT, Ding YN. Advancements in the application of ablative therapy and its combination with immunotherapy in anti-cancer therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189285. [PMID: 39938664 DOI: 10.1016/j.bbcan.2025.189285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer is a significant health issue impacting humans. Currently, systemic therapies such as chemotherapy have significantly increased the life expectancy of cancer patients. However, some patients are unable to endure systemic treatment due to its significant adverse effects, leading to an increased focus on local therapies including radiation and ablation therapy. Ablation therapy is a precise, low-toxicity, and minimally invasive localized therapy that is increasingly acknowledged by clinicians and cancer patients. Many cancer patients have benefited from it, with some achieving full recovery. Currently, numerous studies have shown that ablation therapy is effective due to its ability to kill cancer cells efficiently and activate the body's anti-cancer immunity. It can also convert "cold cancers" into "hot cancers" and enhance the effectiveness of immunotherapy when used in combination. In this article, we categorize ablation therapy into thermal ablation, cryoablation, photodynamic therapy (PDT), irreversible electroporation (IRE), etc. Thermal ablation is further divided into Radiofrequency ablation (RFA), microwave ablation (WMA), high-frequency focused ultrasound (HIFU), photothermal therapy (PTT), magnetic heat therapy (MHT), etc. We systematically review the most recent advancements in these ablation therapies that are either currently used in clinic or are anticipated to be used in clinic. Then, we also review the latest development of various ablative therapies combined with immunotherapy, and its future development. CLINICAL RELEVANCE STATEMENT: Ablation therapy, an invasive localized treatment, offers an alternative to systemic therapies for cancer patients who cannot tolerate their adverse effects. Its ability to kill cancer cells efficiently and activate anti-cancer immunity. This article reviews recent advancements in ablation therapies, including thermal, cryoablation, PDT, and IRE, and their potential clinical applications, both standalone and in combination with immunotherapy.
Collapse
Affiliation(s)
- Lu-Hong Wang
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Center of Interventional Radiology & Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; State Key Laboratory of Digital Medical Engineering, National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Yi Jiang
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Chen-Hang Sun
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Peng-Tao Chen
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yi-Nan Ding
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| |
Collapse
|
2
|
Su Y, Bai Q, Zhang W, Xu B, Hu T. The Role of Long Non-Coding RNAs in Modulating the Immune Microenvironment of Triple-Negative Breast Cancer: Mechanistic Insights and Therapeutic Potential. Biomolecules 2025; 15:454. [PMID: 40149989 PMCID: PMC11939868 DOI: 10.3390/biom15030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive subtype of breast cancer that faces therapeutic challenges due to a shortage of effective targeted therapies. The complex biology of TNBC renders its clinical management fraught with difficulties, especially regarding the immune microenvironment of the tumor. In recent years, long non-coding RNAs (lncRNAs) have been recognized as important gene regulators with key roles in tumor development and microenvironmental regulation. Previous studies have shown that lncRNAs play important roles in the immune microenvironment of TNBC, including the regulation of tumor immune escape and the function of tumor-infiltrating immune cells. However, despite the increasing research on lncRNAs, there are still many unanswered questions, such as their specific mechanism of action and how to effectively utilize them as therapeutic targets. Therefore, the aim of this study was to review the mechanisms of lncRNAs in the TNBC immune microenvironment, explore their regulatory roles in tumor immune escape and immune cell infiltration, and explore their prospects as potential therapeutic targets. By integrating the latest research results, this study aims to provide new ideas and directions for future TNBC treatment.
Collapse
Affiliation(s)
- Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
| | - Qingquan Bai
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
| | - Beibei Xu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
- Shenzhen Research Institute, Xiamen University, Shenzhen 518057, China
| |
Collapse
|
3
|
Zhang Q, Ma RF, Chen SW, Cao K, Wang Y, Xu ZR. Biomineralized and metallized small extracellular vesicles encapsulated in hydrogels for mitochondrial-targeted synergistic tumor therapy. Acta Biomater 2025; 194:428-441. [PMID: 39870149 DOI: 10.1016/j.actbio.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy. M1-phenotype macrophages-derived sEVs, which carry cytokines that inhibit tumor progression, were separately encapsulated with calcium phosphates (CaPs) and Au@Pt nanoparticles (Au@Pt NPs), endowing them with pH and photothermal dual-responsiveness. Subsequently, they were assembled into sEV-Au@Pt NPs/CaPs nanohybrids, and functionalized with mitochondria-targeting peptides. Within tumor cells, mitochondrial targeting enhances Ca2+ accumulation, resulting in mitochondrial homeostasis imbalance. The release of Pt2+ causes nuclear damage and exacerbates mitochondrial dysfunction. Furthermore, under laser irradiation, the sEV-Au@Pt NPs absorb light, generating hyperthermia that promotes the release of Ca2+ and Pt2+ from the hydrogel and cytokines from the sEVs, thereby achieving a quadruple-efficient synergistic therapy. The hydrogel effectively prolongs the retention time of nanohybrids, aiding in the prevention of tumor recurrence. These nanohybrids exhibit favorable mitochondrial targeting ability, with a Pearson's co-localization coefficient of 0.877. In experimental trials, tumor growth was significantly inhibited after only five treatments, with the tumor volume reduced to 0.16-fold that of the control group. This strategy presents a potential tailored platform for engineered sEVs in mitochondrial-targeted therapy and holds great promise for advancing organelle-targeted therapeutic strategies. STATEMENT OF SIGNIFICANCE: Engineering small extracellular vesicles (sEVs) can significantly enhance the synergistic effects of organelle-targeted therapy, thereby improving therapeutic efficacy and reducing side effects. However, their full development is still pending. In this study, we present a promising strategy that involves engineering sEVs with pH and photothermal dual-responsiveness through biomineralization and metallization, enabling quadruple synergistic tumor therapy. Our study demonstrates the remarkable synergistic effects of mitochondrial homeostasis imbalance caused by Ca2+ bursts and nuclear damage due to Pt2+ release. After five treatments, the tumor volume in the experimental group was reduced to 0.16-fold that of the control group. This strategy holds great promise for the design of engineered sEVs as organelle-targeted therapeutic systems.
Collapse
Affiliation(s)
- Qi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Ruo-Fei Ma
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Si-Wen Chen
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Ke Cao
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
4
|
Wan X, Yang L, Wu L, Lei J, Li J. Role of Triple-Negative Breast Cancer-Derived Extracellular Vesicles in Metastasis: Implications for Therapeutics and Biomarker Development. J Cell Mol Med 2025; 29:e70448. [PMID: 40032646 PMCID: PMC11875785 DOI: 10.1111/jcmm.70448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer with a poor prognosis and high mortality. The chemotherapeutic regimen remains the predominant treatment modality for TNBC in current clinical practice. However, chemotherapy resistance significantly complicates the development of an effective treatment regimen. Furthermore, the immunosuppressive microenvironment of TNBC contributes to enhanced tumour aggressiveness. Consequently, understanding its mechanisms of progression and finding effective therapeutic interventions is crucial. Recent evidence has identified extracellular vesicles (EVs) as key mediators of cell-to-cell communication in TNBC progression and immune regulation. In view of the remarkable ability of EVs to transfer active molecules, such as proteins and nucleic acids, from parental to recipient cells, they are regarded as a promising biomarker and novel drug delivery system. In this review, we provide an overview of how EVs derived from TNBC cells and tumour microenvironment cells play a role in regulating tumour progression. We also discuss the potential of EVs for immune regulation and their application as novel therapeutic strategies and tumour markers in TNBC. The knowledge gained from studying EV-mediated communication in TNBC could lead to the development of targeted therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Xue Wan
- Department of Laboratory MedicineLeshan Hospital of Traditional Chinese MedicineLeshanChina
| | - Liqi Yang
- Department of Laboratory MedicineLeshan Maternal and Child Health HospitalLeshanChina
| | - Linjun Wu
- Department of Laboratory MedicineLeshan Hospital of Traditional Chinese MedicineLeshanChina
| | - Jiandong Lei
- Department of Laboratory MedicineLeshan Hospital of Traditional Chinese MedicineLeshanChina
| | - Jintao Li
- Department of Laboratory MedicineLeshan Maternal and Child Health HospitalLeshanChina
| |
Collapse
|
5
|
Ding HY, Zhou H, Jiang Y, Chen SS, Wu XX, Li Y, Luo J, Zhang PF, Ding YN. Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides. Drug Des Devel Ther 2025; 19:1001-1023. [PMID: 39967902 PMCID: PMC11834698 DOI: 10.2147/dddt.s507402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Cancer remains a leading cause of mortality worldwide, accounting for approximately 10 million deaths annually. Standard treatments, including surgery, radiotherapy, and chemotherapy, often result in damage to healthy cells and severe toxic side effects. In recent years, antisense technology therapeutics, which interfere with RNA translation through complementary base pairing, have emerged as promising approaches for cancer treatment. Despite the availability of various antisense oligonucleotide (ASO) drugs on the market, challenges such as poor active targeting and susceptibility to clearance by circulating enzymes remain. Compared with other delivery systems, lipid nanovesicle (LNV) delivery systems offer a potential solution that uniquely enhances ASO targeting and stability. Studies have shown that LNVs can increase the accumulation of ASOs in tumor sites several-fold, significantly reducing systemic toxic reactions and demonstrating increased therapeutic efficiency in preclinical models. Additionally, LNVs can protect ASOs from enzymatic degradation within the body, extending their half-life and thus enhancing their therapeutic effects. This paper provides a comprehensive review of recent examples and applications of LNV delivery of ASOs in cancer treatment, highlighting their unique functions and outcomes. Furthermore, this paper discusses the key challenges and potential impacts of this innovative approach to cancer therapy.
Collapse
Affiliation(s)
- Hui-yan Ding
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, People’s Republic of China
| | - Han Zhou
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Yi Jiang
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
| | - Si-si Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People’s Republic of China
| | - Xiao-xia Wu
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
| | - Yang Li
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
| | - Jun Luo
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
| | - Peng-fei Zhang
- Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, People’s Republic of China
| | - Yi-nan Ding
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
| |
Collapse
|
6
|
Bao Y, Chen Y, Deng X, Wang Y, Zhang Y, Xu L, Huang W, Cheng S, Zhang H, Xie M. Boron Clusters Escort Doxorubicin Squashing Into Exosomes and Overcome Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412501. [PMID: 39721006 PMCID: PMC11831453 DOI: 10.1002/advs.202412501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Exosome-based drug delivery holds significant promise for cancer chemotherapy. However, current methods for loading drugs into exosomes are inefficient and cost-prohibitive for practical application. In this study, boron clusters are mixed with doxorubicin (DOX) and exosomes, enabling the efficient encapsulation of DOX into exosomes through a superchaotropic effect. Exosomes loaded with DOX and boron clusters (EDB) exhibit superior permeability and the ability to deliver higher concentrations of DOX into DOX-resistant breast cancer cells. Mechanistic analysis reveals that boron clusters form a supramolecular complex with DOX, which facilitates sustained drug release and effectively inhibits P-glycoprotein-mediated DOX efflux. As a result, EDB significantly enhance apoptosis in DOX-resistant breast cancer cells and suppress tumor growth in cases where DOX alone is ineffective, thereby extending the survival of nude mice. In summary, boron clusters effectively facilitate the incorporation of DOX into exosomes and inhibit DOX efflux, offering a novel strategy to overcome DOX resistance.
Collapse
Affiliation(s)
- Yi‐Ru Bao
- College of Chemistry and Molecular SciencesWuhan University299 Bayi RoadWuhan430072P. R. China
| | - Yi‐Jing Chen
- College of Chemistry and Molecular SciencesWuhan University299 Bayi RoadWuhan430072P. R. China
| | - Xue‐Fan Deng
- College of Chemistry and Molecular SciencesEngineering Research Center of Organosilicon Compounds & MaterialsMinistry of Education and National Demonstration Center for Experimental ChemistryWuhan University299 Bayi RoadWuhan430072P. R. China
| | - Yi‐Ke Wang
- College of Chemistry and Molecular SciencesWuhan University299 Bayi RoadWuhan430072P. R. China
| | - Yu‐Xin Zhang
- College of Chemistry and Molecular SciencesWuhan University299 Bayi RoadWuhan430072P. R. China
| | - Li‐Li Xu
- College of Chemistry and Molecular SciencesWuhan University299 Bayi RoadWuhan430072P. R. China
| | - Wei‐Hua Huang
- College of Chemistry and Molecular SciencesWuhan University299 Bayi RoadWuhan430072P. R. China
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan HospitalWuhan University169East Lake RoadWuhan430072P. R. China
| | - Shi‐Bo Cheng
- School of Laboratory MedicineHubei University of Chinese Medicine16 Huangjia Lake West RoadWuhan430065P. R. China
| | - Hai‐Bo Zhang
- College of Chemistry and Molecular SciencesEngineering Research Center of Organosilicon Compounds & MaterialsMinistry of Education and National Demonstration Center for Experimental ChemistryWuhan University299 Bayi RoadWuhan430072P. R. China
| | - Min Xie
- College of Chemistry and Molecular SciencesWuhan University299 Bayi RoadWuhan430072P. R. China
| |
Collapse
|
7
|
Krupka-Olek M, Bożek A, Czuba ZP, Kłósek M, Cieślar G, Kawczyk-Krupka A. Cytotoxic and Immunomodulatory Effects of Hypericin as a Photosensitizer in Photodynamic Therapy Used on Skin Cell Cultures. Pharmaceutics 2024; 16:696. [PMID: 38931819 PMCID: PMC11207107 DOI: 10.3390/pharmaceutics16060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Determination of the hypericin-photodynamic (HY-PDT) effect on the secretion of cytokines secreted by the skin cells, may be the basis for using the immunomodulatory effect of photodynamic action in the treatment of inflammatory skin diseases. The study aimed to evaluate the cytotoxic and immunomodulatory effects of hypericin (HY) in photodynamic therapy (PDT) performed in vitro on cultures of selected skin cell lines. The study used two human cell lines, primary dermal fibroblast (HDFa) and primary epidermal keratinocytes (HEKa). The MTT test was used to define the metabolic activity of treated cells. Cell supernatants subjected to sublethal PDT were assessed to determine the interleukins: IL-2, IL-8, IL-10, IL-11, IL-19, IL-22, and metalloproteinase 1 (MMP-1). The results confirm the destructive effect of HY-PDT and the immunomodulatory effects of sublethal doses on the selected skin cells, depending on the concentration of HY and the light doses. No statistically significant differences were noted in IL-2 and IL-10 concentration after HY-PDT for HEKa and HDFa lines. After using HY-PDT, the concentration of IL-8, MMP-1, IL-22, and IL-11 significantly decreased in the HEKa line. Moreover, the concentration of IL-19 and MMP-1 significantly decreased in the HDFa line. The concentration of IL-11 in the HDFa line after using only the HY, without the light, increased but decreased after HY-PDT. Our experiment confirmed that HY-PDT has not only a cytotoxic effect but, used in sublethal doses, also presents immunomodulatory properties. These may be an advantage of HY-PDT when used in the treatment of persistent skin inflammation, connected with the release of pro-inflammatory cytokines resistant to conventional treatment methods.
Collapse
Affiliation(s)
- Magdalena Krupka-Olek
- Doctoral School of the Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Andrzej Bożek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Z.P.C.); (M.K.)
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Z.P.C.); (M.K.)
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
8
|
Hu D, Yang R, Wang G, Li H, Fan X, Liang G. Emerging Strategies to Overcome Current CAR-T Therapy Dilemmas - Exosomes Derived from CAR-T Cells. Int J Nanomedicine 2024; 19:2773-2791. [PMID: 38525009 PMCID: PMC10959326 DOI: 10.2147/ijn.s445101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Adoptive T cells immunotherapy, specifically chimeric antigen receptor T cells (CAR-T), has shown promising therapeutic efficacy in the treatment of hematologic malignancies. As extensive research on CAR-T therapies has been conducted, various challenges have emerged that significantly hampered their clinical application, including tumor recurrence, CAR-T cell exhaustion, and cytokine release syndrome (CRS). To overcome the hurdles of CAR-T therapy in clinical treatment, cell-free emerging therapies based on exosomes derived from CAR-T cells have been developed as an effective and promising alternative approach. In this review, we present CAR-T cell-based therapies for the treatment of tumors, including the features and benefits of CAR-T therapies, the limitations that exist in this field, and the measures taken to overcome them. Furthermore, we discuss the notable benefits of utilizing exosomes released from CAR-T cells in tumor treatment and anticipate potential issues in clinical trials. Lastly, drawing from previous research on exosomes from CAR-T cells and the characteristics of exosomes, we propose strategies to overcome these restrictions. Additionally, the review discusses the plight in large-scale preparation of exosome and provides potential solutions for future clinical applications.
Collapse
Affiliation(s)
- Dong Hu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Ruyue Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Guidan Wang
- School of Medical Technology and Engineering, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Hao Li
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Xulong Fan
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| |
Collapse
|
9
|
Du S, Zhou X, Zheng B. Beyond Traditional Medicine: EVs-Loaded Hydrogels as a Game Changer in Disease Therapeutics. Gels 2024; 10:162. [PMID: 38534580 DOI: 10.3390/gels10030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/28/2024] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, have shown great therapeutic potential in the treatment of diseases, as they can target cells or tissues. However, the therapeutic effect of EVs is limited due to the susceptibility of EVs to immune system clearance during transport in vivo. Hydrogels have become an ideal delivery platform for EVs due to their good biocompatibility and porous structure. This article reviews the preparation and application of EVs-loaded hydrogels as a cell-free therapy strategy in the treatment of diseases. The article also discusses the challenges and future outlook of EVs-loaded hydrogels.
Collapse
Affiliation(s)
- Shutong Du
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
10
|
Gorodilova AV, Kitaeva KV, Filin IY, Mayasin YP, Kharisova CB, Issa SS, Solovyeva VV, Rizvanov AA. The Potential of Dendritic Cell Subsets in the Development of Personalized Immunotherapy for Cancer Treatment. Curr Issues Mol Biol 2023; 45:8053-8070. [PMID: 37886952 PMCID: PMC10605421 DOI: 10.3390/cimb45100509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Since the discovery of dendritic cells (DCs) in 1973 by Ralph Steinman, a tremendous amount of knowledge regarding these innate immunity cells has been accumulating. Their role in regulating both innate and adaptive immune processes is gradually being uncovered. DCs are proficient antigen-presenting cells capable of activating naive T-lymphocytes to initiate and generate effective anti-tumor responses. Although DC-based immunotherapy has not yielded significant results, the substantial number of ongoing clinical trials underscores the relevance of DC vaccines, particularly as adjunctive therapy or in combination with other treatment options. This review presents an overview of current knowledge regarding human DCs, their classification, and the functions of distinct DC populations. The stepwise process of developing therapeutic DC vaccines to treat oncological diseases is discussed, along with speculation on the potential of combined therapy approaches and the role of DC vaccines in modern immunotherapy.
Collapse
Affiliation(s)
- Anna Valerevna Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Kristina Viktorovna Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Ivan Yurevich Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Yuri Pavlovich Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Chulpan Bulatovna Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Valeriya Vladimirovna Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Albert Anatolyevich Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| |
Collapse
|