1
|
Sun M, Shi Y, Lei B, Zhang W, Feng J, Ge S, Yuan W, Zhao K. A pH-triggered self-releasing humic acid hydrogel loaded with porcine interferon α/γ achieves anti-pseudorabies virus effects by oral administration. Vet Res 2024; 55:153. [PMID: 39568063 PMCID: PMC11580204 DOI: 10.1186/s13567-024-01411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024] Open
Abstract
Interferon α (IFNα) and interferon γ (IFNγ) play pivotal roles in mediating crucial biological functions, including antiviral activity and immune regulation. However, the efficacy of monomeric IFN is limited, and its administration relies solely on injection. To address this issue, we successfully expressed and purified a recombinant porcine IFNα and IFNγ fusion protein (rPoIFNα/γ). Furthermore, we developed a pH-triggered humic acid hydrogel delivery system that effectively protects rPoIFNα/γ from gastric acid degradation, enhancing its oral bioavailability. Neither the humic acid hydrogel nor rPoIFNα/γ exhibited cytotoxic effects on porcine kidney-15 (PK-15) cells in vitro. The replication of vesicular stomatitis virus and pseudorabies virus (PRV) was effectively inhibited by rPoIFNα/γ, resulting in an antiviral activity of approximately 104 U/mL. Scanning electron microscopy revealed that the humic acid hydrogel had a loose and porous honeycomb structure. The IFNα/γ@PAMgel hydrogel effectively adsorbed rPoIFNα/γ, as confirmed by Fourier transform infrared spectroscopy analysis, demonstrating a favourable IFN-loading capacity. In vitro experiments revealed that IFNα/γ@PAMgel swelled and released IFNα/γ rapidly at pH 7.4 but not at pH 1.2. The oral administration of IFNα/γ@PAMgel in mice enhanced the proliferation and differentiation of CD4+ and CD8+ cells. Additionally, mice infected with PRV and treated with IFNα/γ@PAMgel presented increased transcription levels of interferon-stimulated genes in the serum, reduced mortality rates, lower viral loads in various tissues, and decreased levels of organ damage. In conclusion, this study demonstrates that orally administered IFNα/γ@PAMgel has antiviral and immunomodulatory effects, highlighting its potential as a therapeutic agent against PRV infection.
Collapse
Affiliation(s)
- Maoyuan Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yongli Shi
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jingjing Feng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Shenghu Ge
- Hebei Mingzhu Biotechnology Co., Ltd., Xingtai, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
2
|
Tousian B, Khosravi AR, Ghasemi MH, Kadkhodaie M. Biomimetic functionalized metal organic frameworks as multifunctional agents: Paving the way for cancer vaccine advances. Mater Today Bio 2024; 27:101134. [PMID: 39027676 PMCID: PMC11255118 DOI: 10.1016/j.mtbio.2024.101134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Biomimetic functionalized metal-organic frameworks (Fn-MOFs) represent a cutting-edge approach in the realm of cancer vaccines. These multifunctional agents, inspired by biological systems, offer unprecedented opportunities for the development of next-generation cancer vaccines. The vast surface area, tunable pore size, and diverse chemistry of MOFs provide a versatile scaffold for the encapsulation and protection of antigenic components, crucial for vaccine stability and delivery. This work delves into the innovative design and application of Fn-MOFs, highlighting their role as carriers for immune enhancement and their potential to revolutionize vaccine delivery. By mimicking natural processes, Fn-MOFs, with their ability to be functionalized with a myriad of chemical and biological entities, exhibit superior biocompatibility and stimuli-responsive behavior and facilitate targeted delivery to tumor sites. This review encapsulates the latest advancements in Fn-MOF technology, from their synthesis and surface modification to their integration into stimuli-responsive and combination therapies. It underscores the significance of biomimetic approaches in overcoming current challenges in cancer vaccine development, such as antigen stability and immune evasion. By leveraging the biomimetic nature of Fn-MOFs, this work paves the way for innovative strategies in cancer vaccines, aiming to induce potent and long-lasting immune responses against malignancies.
Collapse
Affiliation(s)
- Bushra Tousian
- Department of Microbiology and Immunology, Veterinary Medicine Faculty, University of Tehran, PO Box 1419963111, Tehran, Iran
| | - Ali Reza Khosravi
- Department of Microbiology and Immunology, Veterinary Medicine Faculty, University of Tehran, PO Box 1419963111, Tehran, Iran
| | - Mohammad Hadi Ghasemi
- Applied Chemistry Research Group, ACECR-Tehran Organization, PO Box 13145-186, Tehran, Iran
| | - Majid Kadkhodaie
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Xu T, Hong A, Zhang X, Xu Y, Wang T, Zheng Q, Wei T, He Q, Ren Z, Qin T. Preparation and adjuvanticity against PCV 2 of Viola philippica polysaccharide loaded in Chitosan-Gold nanoparticle. Vaccine 2024; 42:2608-2620. [PMID: 38472066 DOI: 10.1016/j.vaccine.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
The present Porcine circovirus type 2 virus (PCV2) vaccine adjuvants suffer from numerous limitations, such as adverse effects, deficient cell-mediated immune responses, and inadequate antibody production. In this study, we explored the potential of a novel nanoparticle (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Viola philippica polysaccharide (VPP) as efficient adjuvants for PCV2 vaccine. The characterization demonstrated that CS-Au-VPP NPs had a mean particle size of 507.42 nm and a zeta potential value of -21.93 mV. CS-Au-VPP NPs also exhibited good dispersion and a stable structure, which did not alter the polysaccharide properties. Additionally, the CS-Au-VPP NPs showed easy absorption and utilization by the organism. To investigate their immune-enhancing potential, mice were immunized with a mixture of CS-Au-VPP NPs and PCV2 vaccine. The evaluation of relevant immunological indicators, including specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations, confirmed their immune-boosting effects. The in vivo experiments revealed that the medium-dose CS-Au-VPP NPs significantly elevated the levels of specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations in PCV2-immunized mice. These findings suggest that CS-Au-VPP NPs can serve as a promising vaccine adjuvant due to their stable structure and immunoenhancement capabilities.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ancan Hong
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xueli Zhang
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yizhou Xu
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tiantian Wei
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiuyue He
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
4
|
Su R, Li X, Xiao J, Xu J, Tian J, Liu T, Hu Y. UiO-66 nanoparticles combat influenza A virus in mice by activating the RIG-I-like receptor signaling pathway. J Nanobiotechnology 2024; 22:99. [PMID: 38461229 PMCID: PMC10925002 DOI: 10.1186/s12951-024-02358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
The Influenza A virus (IAV) is a zoonotic pathogen that infects humans and various animal species. Infection with IAV can cause fever, anorexia, and dyspnea and is often accompanied by pneumonia characterized by an excessive release of cytokines (i.e., cytokine storm). Nanodrug delivery systems and nanoparticles are a novel approach to address IAV infections. Herein, UiO-66 nanoparticles (NPs) are synthesized using a high-temperature melting reaction. The in vitro and in vivo optimal concentrations of UiO-66 NPs for antiviral activity are 200 μg mL-1 and 60 mg kg-1, respectively. Transcriptome analysis revealed that UiO-66 NPs can activate the RIG-I-like receptor signaling pathway, thereby enhancing the downstream type I interferon antiviral effect. These NPs suppress inflammation-related pathways, including the FOXO, HIF, and AMPK signaling pathways. The inhibitory effect of UiO-66 NPs on the adsorption and entry of IAV into A549 cells is significant. This study presents novel findings that demonstrate the effective inhibition of IAV adsorption and entry into cells via UiO-66 NPs and highlights their ability to activate the cellular RIG-I-like receptor signaling pathway, thereby exerting an anti-IAV effect in vitro or in mice. These results provide valuable insights into the mechanism of action of UiO-66 NPs against IAV and substantial data for advancing innovative antiviral nanomedicine.
Collapse
Affiliation(s)
- Ruijing Su
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xinsen Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Jiawei Xu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yanxin Hu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
5
|
Yu H, Sun J, She K, Lv M, Zhang Y, Xiao Y, Liu Y, Han C, Xu X, Yang S, Wang G, Zang G. Sprayed PAA-CaO 2 nanoparticles combined with calcium ions and reactive oxygen species for antibacterial and wound healing. Regen Biomater 2023; 10:rbad071. [PMID: 37719928 PMCID: PMC10503269 DOI: 10.1093/rb/rbad071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023] Open
Abstract
The most common socioeconomic healthcare issues in clinical are burns, surgical incisions and other skin injuries. Skin lesion healing can be achieved with nanomedicines and other drug application techniques. This study developed a nano-spray based on cross-linked amorphous calcium peroxide (CaO2) nanoparticles of polyacrylic acid (PAA) for treating skin wounds (PAA-CaO2 nanoparticles). CaO2 serves as a 'drug' precursor, steadily and continuously releasing calcium ions (Ca2+) and hydrogen peroxide (H2O2) under mildly acidic conditions, while PAA-CaO2 nanoparticles exhibited good spray behavior in aqueous form. Tests demonstrated that PAA-CaO2 nanoparticles exhibited low cytotoxicity and allowed L929 cells proliferation and migration in vitro. The effectiveness of PAA-CaO2 nanoparticles in promoting wound healing and inhibiting bacterial growth in vivo was assessed in SD rats using full-thickness skin defect and Staphylococcus aureus (S.aureus)-infected wound models based thereon. The results revealed that PAA-CaO2 nanoparticles demonstrated significant advantages in both aspects. Notably, the infected rats' skin defects healed in 12 days. The benefits are linked to the functional role of Ca2+ coalesces with H2O2 as known antibacterial and healing-promoted agents. Therefore, we developed nanoscale PAA-CaO2 sprays to prevent bacterial development and heal skin lesions.
Collapse
Affiliation(s)
- Hong Yu
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Jiale Sun
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Kepeng She
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Mingqi Lv
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yiqiao Zhang
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yawen Xiao
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yangkun Liu
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Changhao Han
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Xu
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuqing Yang
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangchao Zang
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|