1
|
Cherkashina O, Tsitrina A, Abolin D, Morgun E, Kosykh A, Sabirov M, Vorotelyak E, Kalabusheva E. The Recovery of Epidermal Proliferation Pattern in Human Skin Xenograft. Cells 2025; 14:448. [PMID: 40136697 PMCID: PMC11941497 DOI: 10.3390/cells14060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Abnormalities in epidermal keratinocyte proliferation are a characteristic feature of a range of dermatological conditions. These include hyperproliferative states in psoriasis and dermatitis as well as hypoproliferative states in chronic wounds. This emphasises the importance of investigating the proliferation kinetics under conditions of healthy skin and identifying the key regulators of epidermal homeostasis, maintenance, and recovery following wound healing. Animal models contribute to our understanding of human epidermal self-renewal. Human skin xenografting overcomes the ethical limitations of studying human skin during regeneration. The application of this approach has allowed for the identification of a single population of stem cells and both slowly and rapidly cycling progenitors within the epidermal basal layer and the mapping of their location in relation to rete ridges and hair follicles. Furthermore, we have traced the dynamics of the proliferation pattern reorganization that occurs during epidermal regeneration, underlining the role of YAP activity in epidermal relief formation.
Collapse
Affiliation(s)
- Olga Cherkashina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Alexandra Tsitrina
- Ilse Katz Institute of Nanoscale Science, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Danila Abolin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Elena Morgun
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anastasiya Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Marat Sabirov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| |
Collapse
|
2
|
Song W, Zhang C, Li Z, Li K, Kong Y, Du J, Kong Y, Guo X, Ju X, Zhu M, Tian Y, Huang S, Niu Z. pH-responsive hydrogel with dual-crosslinked network of polyvinyl alcohol/boric acid for controlled release of salvianolic acid B: novel pro-regenerative mechanisms in scar inhibition and wound healing. Regen Biomater 2025; 12:rbaf002. [PMID: 39897539 PMCID: PMC11785367 DOI: 10.1093/rb/rbaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
This study investigates a novel pH-responsive hydrogel composed of polyvinyl alcohol (PVA) and boric acid (BA) designed for the controlled release of salvianolic acid B (SAB), addressing the critical challenge of scar formation and skin regeneration. The dual-crosslinked network architecture of the hydrogel exhibits remarkable pH sensitivity, enabling it to achieve a peak SAB release within 48 hours in the acidic microenvironment characteristic of early-stage wound healing. In vitro assessments demonstrated that the PVA-BA-SAB hydrogel significantly inhibits fibroblast activation and mitigates abnormal collagen deposition, effectively preventing excessive scar formation. Transcriptome sequencing reveals the potential role of PVA-BA-SAB hydrogel in balancing TGF-β and Wnt signaling pathways. Furthermore, in vivo studies revealed enhanced tissue regeneration, characterized by improved collagen organization and increased vascularization, as well as the promotion of mature hair follicle development. The hydrogel's biocompatibility, mechanical robustness and adhesive properties were also thoroughly evaluated, confirming its suitability for clinical applications. These findings suggest that the PVA-BA-SAB hydrogel fully exerts the excellent characteristics of biomaterials and maximizes the pharmacological effect of SAB. Our innovative drug delivery system not only facilitates enhanced wound healing but also offers a strategic approach to minimize scarring. This research provides valuable insights into innovative therapeutic strategies for effective wound management and tissue repair.
Collapse
Affiliation(s)
- Wei Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, China
| | - Chao Zhang
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhao Li
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, China
| | - Kejia Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Kong
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, China
| | - Jinpeng Du
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, China
| | - Yue Kong
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, China
| | - Xu Guo
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, China
| | - Xiaoyan Ju
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sha Huang
- Medical Innovation Research Department, Research Center for Wound Repair and Tissue Regeneration, Chinese PLA General Hospital, Beijing 100048, China
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Fratila DN, Virvescu DI, Luchian I, Hancianu M, Baciu ER, Butnaru O, Budala DG. Advances and Functional Integration of Hydrogel Composites as Drug Delivery Systems in Contemporary Dentistry. Gels 2024; 10:661. [PMID: 39451314 PMCID: PMC11507597 DOI: 10.3390/gels10100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
This study explores the recent advances of and functional insights into hydrogel composites, materials that have gained significant attention for their versatile applications across various fields, including contemporary dentistry. Hydrogels, known for their high water content and biocompatibility, are inherently soft but often limited by mechanical fragility. Key areas of focus include the customization of hydrogel composites for biomedical applications, such as drug delivery systems, wound dressings, and tissue engineering scaffolds, where improved mechanical properties and bioactivity are critical. In dentistry, hydrogels are utilized for drug delivery systems targeting oral diseases, dental adhesives, and periodontal therapies due to their ability to adhere to the mucosa, provide localized treatment, and support tissue regeneration. Their unique properties, such as mucoadhesion, controlled drug release, and stimuli responsiveness, make them ideal candidates for treating oral conditions. This review highlights both experimental breakthroughs and theoretical insights into the structure-property relationships within hydrogel composites, aiming to guide future developments in the design and application of these multifunctional materials in dentistry. Ultimately, hydrogel composites represent a promising frontier for advancing materials science with far-reaching implications in healthcare, environmental technology, and beyond.
Collapse
Affiliation(s)
- Dragos Nicolae Fratila
- Department of Oral Diagnosis, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Ioan Virvescu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Elena Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dana Gabriela Budala
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
4
|
Omidian H, Chowdhury SD, Wilson RL. Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels 2024; 10:238. [PMID: 38667657 PMCID: PMC11049258 DOI: 10.3390/gels10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript covers the latest advancements and persisting challenges in the domain of tissue engineering, with a focus on the development and engineering of hydrogel scaffolds. It highlights the critical role of these scaffolds in emulating the native tissue environment, thereby providing a supportive matrix for cell growth, tissue integration, and reducing adverse reactions. Despite significant progress, this manuscript emphasizes the ongoing struggle to achieve an optimal balance between biocompatibility, biodegradability, and mechanical stability, crucial for clinical success. It also explores the integration of cutting-edge technologies like 3D bioprinting and biofabrication in constructing complex tissue structures, alongside innovative materials and techniques aimed at enhancing tissue growth and functionality. Through a detailed examination of these efforts, the manuscript sheds light on the potential of hydrogels in advancing regenerative medicine and the necessity for multidisciplinary collaboration to navigate the challenges ahead.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.C.); (R.L.W.)
| | | | | |
Collapse
|
5
|
He S, Li H, Chi B, Zhang X, Wang Y, Wu J, Huang Q. Construction of a dual-component hydrogel matrix for 3D biomimetic skin based on photo-crosslinked chondroitin sulfate/collagen. Int J Biol Macromol 2024; 254:127940. [PMID: 37951430 DOI: 10.1016/j.ijbiomac.2023.127940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
The main challenge in the field of 3D biomimetic skin is to search for a suitable hydrogel matrix with good biocompatibility, appropriate mechanical property and inner porosity that can support the adhesion and proliferation of skin cells. In this study, photocurable chondroitin sulfate methacrylate (CSMA) and collagen methacrylate (CoLMA) synthesized from chondroitin sulfate (CS) and type I collagen I (CoL) in the dermal matrix were used to construct a photo-crosslinked dual-component CSMA-CoLMA hydrogel matrix. Due to the toughening effect of the dual-component, the CSMA-CoLMA hydrogel improved the intrinsic brittleness of the single-component CSMA hydrogel, presented good mechanical tunability. The average storage and elasticity modulus could reach 3.3 KPa and 30.3 KPa, respectively, which were close to those of natural skin. The CSMA-CoLMA hydrogel with a ratio of 8/6 showed suitable porous structure and good biocompatibility, supporting the adhesion and proliferation of skin cells. Furthermore, the expression of characteristic marker proteins was detected in the epidermal and dermal bi-layered models constructed with the hydrogel containing keratinocytes and fibroblasts. These results suggest that the dual-component CSMA-CoLMA hydrogel has promising potential as a matrix to construct 3D biomimetic skin.
Collapse
Affiliation(s)
- Shengsheng He
- Center of Skin Health and Cosmetic Development & Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Huijuan Li
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Baiyi Chi
- Center of Skin Health and Cosmetic Development & Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xingjiang Zhang
- Center of Skin Health and Cosmetic Development & Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yuzhe Wang
- Center of Skin Health and Cosmetic Development & Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jianxin Wu
- Center of Skin Health and Cosmetic Development & Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Qing Huang
- Center of Skin Health and Cosmetic Development & Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|