1
|
Zhang Y, Jin H, Jia W, Liu Y, Wang Y, Xue S, Liu Y, Hao H. Ermiao San attenuating rheumatoid arthritis via PI3K/AKT/mTOR signaling activate HIF-1α induced glycolysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119615. [PMID: 40081512 DOI: 10.1016/j.jep.2025.119615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classic formula, Ermiao San (EMS) characterized by its less medicinal flavor and strong potency had been proven to be effective and safe in the treatment of rheumatoid arthritis (RA) during clinical experience and our previous research. AIM OF THE STUDY The therapeutic characteristics of multi-component and multi-target of traditional Chinese medicine prompted us to further investigated the effective compounds of EMS, and evaluated its potential mechanisms in treating RA. MATERIALS AND METHODS Ultra-high-performance liquid chromatography high-resolution mass spectrometry (UPLC-HRMS) was used to analyze the primary absorption components of EMS in rat serum, with secondary mass spectrometry used to assist in identifying the structures of the compounds. Open field experiments, H&E staining, safranin-O-turquoise staining, ELISA, and other methods were applied to verify the alleviating effects of EMS on exercise capacity, inflammation, and cartilage damage in CIA rats. The RA-FLS model was established using TNF-α, and observed the effects of EMS on cell migration and invasion were observed through wound healing and transwell assays. In addition, immunohistochemistry and western blotting were employed to investigate the PI3K/AKT/mTOR/HIF-1α pathway both in vivo and in vitro. RESULTS Seventeen compounds were identified in rat serum, which were considered as active ingredients involved in the improvement of RA by EMS. Furthermore, EMS demonstrated the outstanding anti-RA ability, as evidenced by the improvement in foot swelling and arthritis scores, alleviation of pathological changes in joint tissue, inhibition of inflammatory factors, and restoration of exercise ability. In vivo data showed that EMS reduced joint injury through the PI3K/AKT/mTOR/HIF-1α signaling pathway. In vitro studies indicated that TNF-α induced the expression of Glut1 and HK2 proteins, accelerated the glycolysis rate, and promoted migration and invasion of RA-FLS cells, leading to adverse outcomes. However, EMS regulated the expression of glycolysis-related molecules, HK2 and Glut1 through the PI3K/AKT/mTOR/HIF-1α pathway, thereby inhibiting inflammation, migration, and invasion of RA-FLS cells. CONCLUSION The beneficial effects of EMS in CIA rats can be attributed to the inhibition of glycolysis in synovial fibroblasts via the PI3K/AKT/mTOR/HIF-1α pathway. This finding further enriches our understanding of the mechanisms by which EMS contributes to the treatment of RA.
Collapse
Affiliation(s)
- Yumeng Zhang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, 030619, China
| | - Haizhu Jin
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Wenyue Jia
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yuqi Liu
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yuru Wang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Shuyan Xue
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yang Liu
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, 030619, China.
| | - Huiqin Hao
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, 030619, China.
| |
Collapse
|
2
|
Krsek A, Ostojic L, Zivalj D, Baticic L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons-A Comprehensive Review. Int J Mol Sci 2024; 25:9695. [PMID: 39273641 PMCID: PMC11396210 DOI: 10.3390/ijms25179695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Leona Ostojic
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dorotea Zivalj
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Liu Y, Cheng G, Cao J, Zhang J, Luo C, Huang L. The "double-edged sword effect" of nicotine. Fitoterapia 2024; 177:106102. [PMID: 38945494 DOI: 10.1016/j.fitote.2024.106102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
As the main effect substances of tobacco products, the physiological effects of nicotine have attracted the attention of researchers, especially in recent years, the discussion on the benefits and harms of nicotine (or tobacco products) has become increasingly fierce. In this review, the structure, distribution and physiological effects of nicotinic acetylcholine receptor (nAchR) are summarized. The absorption, distribution, metabolism and excretion of nicotine in the body were introduced. Further, the positive effects of low-dose and short-term nicotine exposure on mitochondrial function regulation, stem cell proliferation and differentiation, nervous system protection and analgesia were elucidated. At the same time, it is also discussed that high-dose and long-term nicotine exposure can activate the oxidative stress effect, mediate abnormal epigenetic modification, and enhance the immune inflammatory response, and then produce negative effects on the body. To sum up, this review suggests that there is a "double-edged sword" effect of nicotine, which on the one hand helps people to understand the physiological effects of nicotine more comprehensively and carefully, and on the other hand provides some theoretical basis for the rational use of nicotine and the innovative development of related products.
Collapse
Affiliation(s)
- Yi Liu
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China
| | - Guang Cheng
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China
| | - JiXue Cao
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China
| | - Jing Zhang
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China
| | - ChengHao Luo
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China.
| | - Long Huang
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China.
| |
Collapse
|
4
|
Luo F, Huang C. New Insight into Neuropathic Pain: The Relationship between α7nAChR, Ferroptosis, and Neuroinflammation. Int J Mol Sci 2024; 25:6716. [PMID: 38928421 PMCID: PMC11203537 DOI: 10.3390/ijms25126716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Neuropathic pain, which refers to pain caused by a lesion or disease of the somatosensory system, represents a wide variety of peripheral or central disorders. Treating neuropathic pain is quite demanding, primarily because of its intricate underlying etiological mechanisms. The central nervous system relies on microglia to maintain balance, as they are associated with serving primary immune responses in the brain next to cell communication. Ferroptosis, driven by phospholipid peroxidation and regulated by iron, is a vital mechanism of cell death regulation. Neuroinflammation can be triggered by ferroptosis in microglia, which contributes to the release of inflammatory cytokines. Conversely, neuroinflammation can induce iron accumulation in microglia, resulting in microglial ferroptosis. Accumulating evidence suggests that neuroinflammation, characterized by glial cell activation and the release of inflammatory substances, significantly exacerbates the development of neuropathic pain. By inhibiting microglial ferroptosis, it may be possible to prevent neuroinflammation and subsequently alleviate neuropathic pain. The activation of the homopentameric α7 subtype of the neuronal nicotinic acetylcholine receptor (α7nAChR) has the potential to suppress microglial activation, transitioning M1 microglia to an M2 phenotype, facilitating the release of anti-inflammatory factors, and ultimately reducing neuropathic pain. Recent years have witnessed a growing recognition of the regulatory role of α7nAChR in ferroptosis, which could be a potential target for treating neuropathic pain. This review summarizes the mechanisms related to α7nAChR and the progress of ferroptosis in neuropathic pain according to recent research. Such an exploration will help to elucidate the relationship between α7nAChR, ferroptosis, and neuroinflammation and provide new insights into neuropathic pain management.
Collapse
Affiliation(s)
- Fangting Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China;
| | - Cheng Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China;
- Department of Physiology, School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
5
|
Zouali M. Pharmacological and Electroceutical Targeting of the Cholinergic Anti-Inflammatory Pathway in Autoimmune Diseases. Pharmaceuticals (Basel) 2023; 16:1089. [PMID: 37631004 PMCID: PMC10459025 DOI: 10.3390/ph16081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Continuous dialogue between the immune system and the brain plays a key homeostatic role in various immune responses to environmental cues. Several functions are under the control of the vagus nerve-based inflammatory reflex, a physiological mechanism through which nerve signals regulate immune functions. In the cholinergic anti-inflammatory pathway, the vagus nerve, its pivotal neurotransmitter acetylcholine, together with the corresponding receptors play a key role in modulating the immune response of mammals. Through communications of peripheral nerves with immune cells, it modulates proliferation and differentiation activities of various immune cell subsets. As a result, this pathway represents a potential target for treating autoimmune diseases characterized by overt inflammation and a decrease in vagal tone. Consistently, converging observations made in both animal models and clinical trials revealed that targeting the cholinergic anti-inflammatory pathway using pharmacologic approaches can provide beneficial effects. In parallel, bioelectronic medicine has recently emerged as an alternative approach to managing systemic inflammation. In several studies, nerve electrostimulation was reported to be clinically relevant in reducing chronic inflammation in autoimmune diseases, including rheumatoid arthritis and diabetes. In the future, these new approaches could represent a major therapeutic strategy for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
6
|
Trifluoro-icaritin ameliorates spared nerve injury-induced neuropathic pain by inhibiting microglial activation through α7nAChR-mediated blockade of BDNF/TrkB/KCC2 signaling in the spinal cord of rats. Biomed Pharmacother 2023; 157:114001. [PMID: 36375307 DOI: 10.1016/j.biopha.2022.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is still a serious and unsolved health problem. Activation of α7 nicotinic acetylcholine receptor (α7nAChR) is known to modulate neuropathic pain by inhibiting microglial activation and BDNF/TrkB/KCC2 signaling. We previously identified that trifluoro-icaritin (ICTF) has an attenuated effect on spared nerve injury (SNI)-induced neuropathic pain, but its potential mechanisms remain unknown. Here, the pain-related behaviors were determined by paw withdrawal threshold (PWT), CatWalk gait analysis, rotarod test, open field test and elevated plus maze test. The expression of pain-related signal molecules was evaluated by Western blot and immunofluorescence staining. The results showed that ICTF (5.0 mg/kg, i.p.) successfully relieved SNI-induced mechanical allodynia and anxiety-like behavior, we subsequently found there existed either positive or negative correlation between mechanical allodynia and gait parameters or rotating speed following ICTF treatment. Moreover, ICTF not only enhanced the expression of spinal α7nAChR, KCC2, CD206 and IL-10, but also decreased the levels of spinal BDNF, TrkB, CD11b, Iba-1, CD40 and IL-1β in SNI rats. Conversely, α7nAChR antagonist α-Bgtx (I.T.) effectively reversed the inhibitory effects of ICTF on SNI rats, resulting in a remarkable improvement of mechanical allodynia, activation of microglia. and suppression of α7nAChR-mediated BDNF/TrkB/KCC2 signaling. Additionally, exogenous BDNF (I.T.) dramatically abrogated both blockade of BDNF/TrkB/KCC2 cascade and alleviation of mechanical allodynia by ICTF treatment. Altogether, the study highlighted that ICTF could relieve SNI-induced neuropathic pain by suppressing microglial activation via α7nAChR-mediated inhibition of BDNF/TrkB/KCC2 signaling in the spinal cord, suggesting that ICTF may be served as a possible painkiller against neuropathic pain.
Collapse
|
7
|
Zhou B, Zhang Y, Dang X, Li B, Wang H, Gong S, Li S, Meng F, Xing J, Li T, He L, Zou P, Wan Y. Up-regulation of the human-specific CHRFAM7A gene protects against renal fibrosis in mice with obstructive nephropathy. J Cell Mol Med 2023; 27:52-65. [PMID: 36479618 PMCID: PMC9806291 DOI: 10.1111/jcmm.17630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a major factor in the progression of chronic kidney diseases. Obstructive nephropathy is a common cause of renal fibrosis, which is also accompanied by inflammation. To explore the effect of human-specific CHRFAM7A expression, an inflammation-related gene, on renal fibrosis during obstructive nephropathy, we studied CHRFAM7A transgenic mice and wild type mice that underwent unilateral ureteral obstruction (UUO) injury. Transgenic overexpression of CHRFAM7A gene inhibited UUO-induced renal fibrosis, which was demonstrated by decreased fibrotic gene expression and collagen deposition. Furthermore, kidneys from transgenic mice had reduced TGF-β1 and Smad2/3 expression following UUO compared with those from wild type mice with UUO. In addition, the overexpression of CHRFAM7A decreased release of inflammatory cytokines in the kidneys of UUO-injured mice. In vitro, the overexpression of CHRFAM7A inhibited TGF-β1-induced increase in expression of fibrosis-related genes in human renal tubular epithelial cells (HK-2 cells). Additionally, up-regulated expression of CHRFAM7A in HK-2 cells decreased TGF-β1-induced epithelial-mesenchymal transition (EMT) and inhibited activation f TGF-β1/Smad2/3 signalling pathways. Collectively, our findings demonstrate that overexpression of the human-specific CHRFAM7A gene can reduce UUO-induced renal fibrosis by inhibiting TGF-β1/Smad2/3 signalling pathway to reduce inflammatory reactions and EMT of renal tubular epithelial cells.
Collapse
Affiliation(s)
- Bingru Zhou
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Yudian Zhang
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Xitong Dang
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology of Ministry of EducationSouthwest Medical UniversityLuzhouChina
| | - Bowen Li
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Hui Wang
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Shu Gong
- Science and Technology DivisionSouthwest Medical UniversityLuzhouChina
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public HealthCentral South UniversityChangshaChina
| | - Fanyin Meng
- Indiana Center for Liver Research, Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Tian Li
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Longfei He
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Ping Zou
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Ying Wan
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
8
|
Tian F, Chen H, Zhang J, He W. Reprogramming Metabolism of Macrophages as a Target for Kidney Dysfunction Treatment in Autoimmune Diseases. Int J Mol Sci 2022; 23:8024. [PMID: 35887371 PMCID: PMC9316004 DOI: 10.3390/ijms23148024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic kidney disease (CKD), as one of the main complications of many autoimmune diseases, is difficult to cure, which places a huge burden on patients' health and the economy and poses a great threat to human health. At present, the mainstream view is that autoimmune diseases are a series of diseases and complications caused by immune cell dysfunction leading to the attack of an organism's tissues by its immune cells. The kidney is the organ most seriously affected by autoimmune diseases as it has a very close relationship with immune cells. With the development of an in-depth understanding of cell metabolism in recent years, an increasing number of scientists have discovered the metabolic changes in immune cells in the process of disease development, and we have a clearer understanding of the characteristics of the metabolic changes in immune cells. This suggests that the regulation of immune cell metabolism provides a new direction for the treatment and prevention of kidney damage caused by autoimmune diseases. Macrophages are important immune cells and are a double-edged sword in the repair process of kidney injury. Although they can repair damaged kidney tissue, over-repair will also lead to the loss of renal structural reconstruction function. In this review, from the perspective of metabolism, the metabolic characteristics of macrophages in the process of renal injury induced by autoimmune diseases are described, and the metabolites that can regulate the function of macrophages are summarized. We believe that treating macrophage metabolism as a target can provide new ideas for the treatment of the renal injury caused by autoimmune diseases.
Collapse
Affiliation(s)
- Feng Tian
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 100730, China
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 100730, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| |
Collapse
|
9
|
Pan S, Wu YJ, Zhang SS, Cheng XP, Olatunji OJ, Yin Q, Zuo J. The Effect of α7nAChR Signaling on T Cells and Macrophages and Their Clinical Implication in the Treatment of Rheumatic Diseases. Neurochem Res 2022; 47:531-544. [PMID: 34783974 DOI: 10.1007/s11064-021-03480-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune disease and until now, the etiology and pathogenesis of RA is not fully understood, although dysregulation of immune cells is one of the leading cause of RA-related pathological changes. Based on current understanding, the priority of anti-rheumatic treatments is to restore immune homeostasis. There are several anti-rheumatic drugs with immunomodulatory effects available nowadays, but most of them have obvious safety or efficacy shortcomings. Therefore, the development of novel anti-rheumatic drugs is still in urgently needed. Cholinergic anti-inflammatory pathway (CAP) has been identified as an important aspect of the so-called neuro-immune regulation feedback, and the interaction between acetylcholine and alpha 7 nicotinic acetylcholine receptor (α7nAChR) serves as the foundation for this signaling. Consistent to its immunomodulatory functions, α7nAChR is extensively expressed by immune cells. Accordingly, CAP activation greatly affects the differentiation and function of α7nAChR-expressing immune cells. As a result, targeting α7nAChR will bring profound therapeutic impacts on the treatment of inflammatory diseases like RA. RA is widely recognized as a CD4+ T cells-driven disease. As a major component of innate immunity, macrophages also significantly contribute to RA-related immune abnormalities. Theoretically, manipulation of CAP in immune cells is a feasible way to treat RA. In this review, we summarized the roles of different T cells and macrophages subsets in the occurrence and progression of RA, and highlighted the immune consequences of CAP activation in these cells under RA circumstances. The in-depth discussion is supposed to inspire the development of novel cell-specific CAP-targeting anti-rheumatic regimens.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Xiu-Ping Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Opeyemi Joshua Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
10
|
Xiao Y, Tan C, Nie X, Li B, You M, Lan Y, Tang L. Rise in Postprandial GLP-1 Levels After Roux-en-Y Gastric Bypass: Involvement of the Vagus Nerve-Spleen Anti-inflammatory Axis in Type 2 Diabetic Rats. Obes Surg 2022; 32:1077-1085. [PMID: 35044600 DOI: 10.1007/s11695-021-05877-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE The mechanism underlying postprandial glucagon-like peptide-1 (GLP-1) changes after metabolic surgery remains mostly unclarified. This investigation aimed to address whether the vagus nerve-spleen anti-inflammatory axis is involved in the rise in postprandial GLP-1 levels in type 2 diabetes mellitus (T2DM) rats following metabolic surgery. MATERIALS AND METHODS T2DM rat model was established with a high-fat diet and a low dose of streptozotocin and subjected to Roux-en-Y gastric bypass (RYGB) and splenic denervation. A mixed-meal tolerance test for postprandial GLP-1 response was performed. TNF-α in the plasma, spleen, and ileum was measured by ELISA, and alpha 7 nicotinic acetylcholine receptor (α7nAChR) expression in the spleen was analyzed by Western blot. RESULTS Postprandial GLP-1 improvement by RYGB was accompanied by the reduction of TNF-α levels in spleen and ileum and up-regulation of splenic α7nAChR in T2DM rats. Splenic denervation abrogates a rise in postprandial GLP-1 levels in response to the mixed-meal challenge, along with higher TNF-α levels in spleen and ileum and down-regulation of splenicα7nAChR, compared with denervated sham rats. CONCLUSION Our results reveal that the vagus nerve-spleen anti-inflammatory axis mediates the rise of postprandial GLP-1 response after RYGB through lowering TNF-α contents in the intestinal tissue in T2DM rats.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Chang Tan
- Department of Gynecology, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Xiaoya Nie
- Department of General Medicine, Zhuzhou Central Hospital, No. 116 Changjiang Road, Zhuzhou, 412000, China
| | - Baifeng Li
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Miao You
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Yunyun Lan
- Department of Intensive Care Unit, Zhuzhou Central Hospital, No.116 Changjiang Road, Zhuzhou, 412000, China.
| | - Liang Tang
- Department of General Medicine, Zhuzhou Central Hospital, No. 116 Changjiang Road, Zhuzhou, 412000, China.
| |
Collapse
|
11
|
Kiryachkov YY, Bosenko SA, Muslimov BG, Petrova MV. Dysfunction of the Autonomic Nervous System and its Role in the Pathogenesis of Septic Critical Illness (Review). Sovrem Tekhnologii Med 2021; 12:106-116. [PMID: 34795998 PMCID: PMC8596275 DOI: 10.17691/stm2020.12.4.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
Dysfunction of the autonomic nervous system (ANS) of the brain in sepsis can cause severe systemic inflammation and even death. Numerous data confirmed the role of ANS dysfunction in the occurrence, course, and outcome of systemic sepsis. The parasympathetic part of the ANS modifies the inflammation through cholinergic receptors of internal organs, macrophages, and lymphocytes (the cholinergic anti-inflammatory pathway). The sympathetic part of ANS controls the activity of macrophages and lymphocytes by influencing β2-adrenergic receptors, causing the activation of intracellular genes encoding the synthesis of cytokines (anti-inflammatory beta2-adrenergic receptor interleukin-10 pathway, β2AR–IL-10). The interaction of ANS with infectious agents and the immune system ensures the maintenance of homeostasis or the appearance of a critical generalized infection. During inflammation, the ANS participates in the inflammatory response by releasing sympathetic or parasympathetic neurotransmitters and neuropeptides. It is extremely important to determine the functional state of the ANS in critical conditions, since both cholinergic and sympathomimetic agents can act as either anti- or pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Y Y Kiryachkov
- Head of the Department of Surgical and Resuscitation Technologies; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - S A Bosenko
- Anesthesiologist; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - B G Muslimov
- Deputy Chief Physician for Anesthesiology and Intensive Care; Konchalovsky Central City Hospital, 2, Bldg 1, Kashtanovaya Alley, Zelenograd, Moscow, 124489, Russia
| | - M V Petrova
- Professor, Deputy Director Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| |
Collapse
|
12
|
Lv J, Ji X, Li Z, Hao H. The role of the cholinergic anti-inflammatory pathway in autoimmune rheumatic diseases. Scand J Immunol 2021; 94:e13092. [PMID: 34780075 DOI: 10.1111/sji.13092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is a classic neuroimmune pathway, consisting of the vagus nerve, acetylcholine (ACh)-the pivotal neurotransmitter of the vagus nerve-and its receptors. This pathway can activate and regulate the activities of immune cells, inhibit cell proliferation and differentiation, as well as suppress cytokine release, thereby playing an anti-inflammatory role, and widely involved in the occurrence and development of various diseases; recent studies have demonstrated that the CAP may be a new target for the treatment of autoimmune rheumatic diseases. In this review, we will summarize the latest progress with the view of figuring out the role of the cholinergic pathway and how it interacts with inflammatory reactions in several autoimmune rheumatic diseases, and many advances are results from a wide range of experiments performed in vitro and in vivo.
Collapse
Affiliation(s)
- Jiaqi Lv
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.,Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, China
| | - Xiaoxiao Ji
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhen Li
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
13
|
Hajiasgharzadeh K, Khabbazi A, Mokhtarzadeh A, Baghbanzadeh A, Asadzadeh Z, Adlravan E, Baradaran B. Cholinergic anti-inflammatory pathway and connective tissue diseases. Inflammopharmacology 2021; 29:975-986. [PMID: 34125373 DOI: 10.1007/s10787-021-00812-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Connective tissue diseases (CTDs) consist of an extensive range of heterogeneous medical conditions, which are caused by immune-mediated chronic inflammation and influences the various connective tissues of the body. They include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis, Sjögren's syndrome, Behcet's disease, and many other autoimmune CTDs. To date, several anti-inflammatory approaches have been developed to reduce the severity of inflammation or its subsequent organ manifestations. As a logical mechanism to harnesses the undesired inflammation, some studies investigated the role of the intrinsic cholinergic anti-inflammatory pathway (CAP) in the modulation of chronic inflammation. Many different experimental and clinical models have been developed to evaluate the therapeutic significance of the CAP in CTDs. On the other hand, an issue that is less emphasized in this regard is the presence of autonomic neuropathy in CTDs, which influences the efficiency of CAP in such clinical settings. This condition occurs during CTDs and is a well-known complication of patients suffering from them. The advantages and limitations of CAP in the control of inflammatory responses and its possible therapeutic benefits in the treatment of CTDs are the main subjects of the current study. Therefore, this narrative review article is provided based on the recent findings of the complicated role of CAP in CTDs which were retrieved by searching Science Direct, PubMed, Google Scholar, and Web of Science. It seems that delineating the complex influences of CAP would be of great interest in designing novel surgical or pharmacological therapeutic strategies for CTDs therapy.
Collapse
Affiliation(s)
- Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Elham Adlravan
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran. .,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Neonatal nicotine exposure changes insulin status in fat depots: sex-related differences. J Dev Orig Health Dis 2021; 13:252-262. [PMID: 33818369 DOI: 10.1017/s2040174421000131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nicotine is the main psychoactive substance present in cigarette smoke that is transferred to the baby by breast milk. In rats, maternal nicotine exposure during breastfeeding induces obesogenesis and hormone dysfunctions in adult male offspring. As glucocorticoid (GC), insulin, and vitamin D change both adipogenesis and lipogenesis processes, we assessed parameters related to metabolism and action of these hormones in visceral and subcutaneous adipose tissues (VAT and SAT) of adult male and female rats in a model of neonatal nicotine exposure. At postnatal (PN) day 2, dams were kept with six pups (three per sex) and divided into nicotine and control groups for implantation of osmotic minipumps that released 6 mg/kg nicotine or saline, respectively. At PN180, fat mass, hormone levels, and protein contents of biomarkers of the GC activation and receptor (11beta-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor alpha), insulin signaling pathway [insulin receptor beta (IRβ), phosphorylated insulin receptor substrate 1, insulin receptor substrate 1 (IRS1), phosphorylated serine/threonine kinase (pAKT), serine/threonine kinase, glucose transporter type 4 (GLUT4)], and vitamin D activation and receptor (1α-hydroxylase and vitamin D receptor) were evaluated. While nicotine-exposed males showed increased fat mass, hypercorticosteronemia, hyperinsulinemia, and higher 25-hydroxyvitamin D, these alterations were not observed in nicotine-exposed females. Nicotine-exposed males only showed lower IRS1 in VAT, while the females had hyperglycemia, higher pAKT in VAT, while lower IRβ, IRS1, and GLUT4 in SAT. Parameters related to metabolism and action of GC and vitamin D were unaltered in both sexes. We evidence that exposure exclusively to nicotine during breastfeeding affects the hormone status and fat depots of the adult progeny in a sex-dependent manner.
Collapse
|
15
|
Wu YJ, Wang L, Ji CF, Gu SF, Yin Q, Zuo J. The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells. Inflammation 2021; 44:821-834. [PMID: 33405021 DOI: 10.1007/s10753-020-01396-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is widely distributed in the nervous and non-cholinergic immune systems. It is necessary for the cholinergic transmitter to participate in the regulation of inflammatory response and is the key element of cholinergic anti-inflammatory pathway (CAP). Because of the profound impact of CAP on the immune system, α7nAChR is considered as a potential therapeutic target for the treatment of inflammatory diseases. Available evidences confirmed that manipulation of CAP by activating α7nAChR with either endogenous acetylcholine (ACh) or cholinergic agonists can substantially alleviate inflammatory responses both in vivo and in vitro. However, the mechanism through which CAP curbs the excessive pro-inflammatory responses and maintains immune homeostasis is not fully understood. Obtained clues suggest that the crosstalk between CAP and classical inflammatory pathways is the key to elucidate the anti-inflammatory mechanism, and the impacts of CAP activation in α7nAChR-expressing immune cells are the foundation of the immunoregulatory property. In this article, we review and update the knowledge concerning the progresses of α7nAChR-based CAP, including α7nAChR properties, signal transductions, interactions with classic immune pathways, and immunoregulatory functions in different immune cells. Certain critical issues to be addressed are also highlighted. By providing a panoramic view of α7nAChR, the summarized evidences will pave the way for the development of novel anti-inflammatory reagents and strategy and inspire further researches.
Collapse
Affiliation(s)
- Yi-Jin Wu
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
| | - Li Wang
- Department of Pharmacy, Wuhu Medicine and Health School, Wuhu, 241000, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Qin Yin
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
- Research Center of Integrated Traditional and Western Medicine, Wannan Medical College, 241000, Wuhu, China.
| |
Collapse
|
16
|
Li Z, Liu J, Hao HQ, Gao YT, Wang Z. Chinese Herbal Formula Ermiao Powder () Regulates Cholinergic Anti-inflammatory Pathway in Rats with Rheumatoid Arthritis. Chin J Integr Med 2020; 26:905-912. [PMID: 33259023 DOI: 10.1007/s11655-020-3471-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the effect of Chinese herbal formula Ermiao Powder (, EMP) on the expression of cholinergic anti-inflammatory pathway in rats with rheumatoid arthritis (RA). METHODS Seventy-two rats were randomly divided into 6 groups according to body weight, including normal control group, collageninduced arthritis (CIA) group, three doses EMP groups, and methotrexate (MTX) group (n=12 per group). All of the rats except for those in the normal control group were given multipoint subcutaneous injection of bovine type II collagen to establish a CIA model. Three EMP groups received a high- (4.5 g/kg), medium- (3.0 g/kg), and low- (1.5 g/kg) doses of EMP by intragavage, respectively. MTX group was injected intraperitoneally MTX at 0.9 mg/kg once a week as the positive control. The administration was 3 consecutive weeks. Joint swelling, arthritis index, and body weight changes in different experimental groups of rats were tested. The joint damage was evaluated by masson staining. Quantitative real-time polymerase chain reaction, Western blot, and immunohistochemistry (IHC) were performed to evaluate the expression of CHRNA7, encoding α7 nicotinic acetylcholine receptor in the cholinergic anti-inflammatory pathway, in different tissues and their localization in the spleen and joints. RESULTS CHRNA7 expression levels were significantly higher in the joints and spleens of CIA group than those in normal control group (both P<0.05). Moreover, the CHRNA7 mRNA and protein levels in the spleen and joints of MTX and three doses of EMP groups were significantly lower than CIA group (all P<0.05). Compared with the MTX group, treatment with low-dose EMP resulted in significant reduction of CHRNA7 mRNA and protein expression levels (P<0.05 or P<0.01). IHC showed positive signals of CHRNA7 in the white pulp and red pulp of the spleens of rats; CHRNA7 was expressed on fibroblast-like synoviocytes, macrophages, and endothelial cells in the joints of rats, and the expression in the joints of low-dose EMP group was significantly lower than that in the CIA group (P<0.01). CONCLUSIONS Cholinergic anti-inflammatory pathway was involved in the generation of the inflammatory reaction in CIA rats, and EMP exerted therapeutic effect on RA through cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Zhen Li
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, (030619), Shanxi Province, China
- Basic Laboratory of Integrated Traditional Chinese and Western Me, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jin Liu
- Basic Laboratory of Integrated Traditional Chinese and Western Me, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Hui-Qin Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, (030619), Shanxi Province, China.
- Basic Laboratory of Integrated Traditional Chinese and Western Me, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| | - Yu-Ting Gao
- Basic Laboratory of Integrated Traditional Chinese and Western Me, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Ze Wang
- Basic Laboratory of Integrated Traditional Chinese and Western Me, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| |
Collapse
|
17
|
The RCAN1.4-calcineurin/NFAT signaling pathway is essential for hypoxic adaption of intervertebral discs. Exp Mol Med 2020; 52:865-875. [PMID: 32467610 PMCID: PMC7272636 DOI: 10.1038/s12276-020-0441-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Calcipressin-1, also known as regulator of calcineurin 1 (RCAN1), can specifically bind calcineurin at or near the calcineurin A catalytic domain and downregulate calcineurin activity. However, whether RCAN1 affects the hypoxic intervertebral disc (IVD) phenotype through the calcineurin/NFAT signaling pathway remains unclear. First, we confirmed the characteristics of the degenerative nucleus pulposus (NP) by H&E, safranin O/fast green and Alcian blue staining, and detected increased RCAN1 levels in the degenerative NP by immunohistochemistry. Then, we demonstrated that the protein level of RCAN1.4 was higher than that of RCAN1.1 and progressively elevated from the control group to the Pfirrmann grade V group. In vitro, both hypoxia (1% O2) and overexpression of HIF-1α reduced the protein level of RCAN1.4 in rat NP cells in a dose- and time-dependent manner. We further found that miRNA-124, through a nondegradative pathway (without the proteasome or lysosome), suppressed the expression of RCAN1.4. As expected, calcineurin in NP cells was activated and primarily promoted nuclear translocation of NFATc1 under hypoxia or RCAN1.4 siRNA transfection. Furthermore, SOX9, type II collagen and MMP13 were elevated under hypoxia, RCAN1.4 siRNA transfection or NFATc1 overexpression. Using chromatin immunoprecipitation (ChIP) and a luciferase reporter assay (with mutation), we clarified that NFATc1 increasingly bound the SOX9 promotor region (bp −367~−357). Interaction of HIF-1α and NFATc1 promoted MMP13 transcription. Finally, we found that FK506 reversed hypoxia-induced activation of the calcineurin/NFAT signaling pathway in NP cells and an ex vivo model. Together, these findings show that the RCAN1.4-calcineurin/NFAT signaling pathway has a vital role in the hypoxic phenotype of NP cells. RCAN1.4 might be a therapeutic target for degenerative disc diseases. Treatments targeting a protein that is overexpressed in damaged spinal cartilage could ease degenerative conditions associated with lower back pain. The intervertebral discs are complex cartilage tissues that absorb forces while allowing the motion of our spines. An immune-promoting enzyme called calcineurin is important in maintaining the supple, gel-like structure of the central part of each disc, the nucleus pulposus (NP). Fendong Zhao and Jian Chen at Zhejiang University School of Medicine Hangzhou, China and co-workers showed that RCAN1.4, a protein known to suppress calcineurin, is overexpressed in damaged human NPs. The team further revealed how a signaling pathway starting with RCAN1.4 suppresses key genes involved in forming the collagen fibers that hold the NP together. They therefore suggest that therapies targeting this protein could benefit patients suffering from disc degeneration diseases.
Collapse
|