1
|
Wilkins EW, Pantovic M, Noorda KJ, Premyanov MI, Boss R, Davidson R, Hagans TA, Riley ZA, Poston B. Motor Learning in a Complex Motor Task Is Unaffected by Three Consecutive Days of Transcranial Alternating Current Stimulation. Bioengineering (Basel) 2024; 11:744. [PMID: 39199702 PMCID: PMC11351210 DOI: 10.3390/bioengineering11080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Transcranial alternating current stimulation (tACS) delivered to the primary motor cortex (M1) can increase cortical excitability, entrain neuronal firing patterns, and increase motor skill acquisition in simple motor tasks. The primary aim of this study was to assess the impact of tACS applied to M1 over three consecutive days of practice on the motor learning of a challenging overhand throwing task in young adults. The secondary aim was to examine the influence of tACS on M1 excitability. This study implemented a double-blind, randomized, SHAM-controlled, between-subjects experimental design. A total of 24 healthy young adults were divided into tACS and SHAM groups and performed three identical experimental sessions that comprised blocks of overhand throwing trials of the right dominant arm concurrent with application of tACS to the left M1. Performance in the overhand throwing task was quantified as the endpoint error. Motor evoked potentials (MEPs) were assessed in the right first dorsal interosseus (FDI) muscle with transcranial magnetic stimulation (TMS) to quantify changes in M1 excitability. Endpoint error was significantly decreased in the post-tests compared with the pre-tests when averaged over the three days of practice (p = 0.046), but this decrease was not statistically significant between the tACS and SHAM groups (p = 0.474). MEP amplitudes increased from the pre-tests to the post-tests (p = 0.003), but these increases were also not different between groups (p = 0.409). Overall, the main findings indicated that tACS applied to M1 over multiple days does not enhance motor learning in a complex task to a greater degree than practice alone (SHAM).
Collapse
Affiliation(s)
- Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA
| | - Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Kevin J. Noorda
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Mario I. Premyanov
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Rhett Boss
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Ryder Davidson
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Taylor A. Hagans
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
2
|
Pantovic M, Lidstone DE, de Albuquerque LL, Wilkins EW, Munoz IA, Aynlender DG, Morris D, Dufek JS, Poston B. Cerebellar Transcranial Direct Current Stimulation Applied over Multiple Days Does Not Enhance Motor Learning of a Complex Overhand Throwing Task in Young Adults. Bioengineering (Basel) 2023; 10:1265. [PMID: 38002389 PMCID: PMC10669324 DOI: 10.3390/bioengineering10111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebellar transcranial direct current stimulation (tDCS) enhances motor skill and learning in relatively simple motor tasks, but it is unclear if c-tDCS can improve motor performance in complex motor tasks. The purpose of this study was to determine the influence of c-tDCS applied over multiple days on motor learning in a complex overhand throwing task. In a double-blind, randomized, between-subjects, SHAM-controlled, experimental design, 30 young adults were assigned to either a c-tDCS or a SHAM group. Participants completed three identical experiments on consecutive days that involved overhand throwing in a pre-test block, five practice blocks with concurrent c-tDCS, and a post-test block. Overhand throwing endpoint accuracy was quantified as the endpoint error. The first dorsal interosseous muscle motor evoked potential (MEP) amplitude elicited by transcranial magnetic stimulation was used to quantify primary motor cortex (M1) excitability modulations via c-tDCS. Endpoint error significantly decreased over the 3 days of practice, but the magnitude of decrease was not significantly different between the c-tDCS and SHAM group. Similarly, MEP amplitude slightly increased from the pre-tests to the post-tests, but these increases did not differ between groups. These results indicate that multi-day c-tDCS does not improve motor learning in an overhand throwing task or increase M1 excitability.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Daniel E. Lidstone
- Center for Neurodevelopment and Imaging Research, Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| | - Irwin A. Munoz
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Daniel G. Aynlender
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Desiree Morris
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Janet S. Dufek
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| |
Collapse
|
3
|
Pantovic M, de Albuquerque LL, Mastrantonio S, Pomerantz AS, Wilkins EW, Riley ZA, Guadagnoli MA, Poston B. Transcranial Direct Current Stimulation of Primary Motor Cortex over Multiple Days Improves Motor Learning of a Complex Overhand Throwing Task. Brain Sci 2023; 13:1441. [PMID: 37891809 PMCID: PMC10604977 DOI: 10.3390/brainsci13101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) applied to the primary motor cortex (M1) improves motor learning in relatively simple motor tasks performed with the hand and arm. However, it is unknown if tDCS can improve motor learning in complex motor tasks involving whole-body coordination with significant endpoint accuracy requirements. The primary purpose was to determine the influence of tDCS on motor learning over multiple days in a complex over-hand throwing task. This study utilized a double-blind, randomized, SHAM-controlled, between-subjects experimental design. Forty-six young adults were allocated to either a tDCS group or a SHAM group and completed three experimental sessions on three consecutive days at the same time of day. Each experimental session was identical and consisted of overhand throwing trials to a target in a pre-test block, five practice blocks performed simultaneously with 20 min of tDCS, and a post-test block. Overhand throwing performance was quantified as the endpoint error. Transcranial magnetic stimulation was used to obtain motor-evoked potentials (MEPs) from the first dorsal interosseus muscle to quantify changes in M1 excitability due to tDCS. Endpoint error significantly decreased over the three days of practice in the tDCS group but not in the SHAM group. MEP amplitude significantly increased in the tDCS group, but the MEP increases were not associated with increases in motor learning. These findings indicate that tDCS applied over multiple days can improve motor learning in a complex motor tasks in healthy young adults.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina-Wilmington, Wilmington, NC 28403, USA;
| | - Sierra Mastrantonio
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Austin S. Pomerantz
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Mark A. Guadagnoli
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
4
|
Murtola T, Richards C. The impact of age-related increase in passive muscle stiffness on simulated upper limb reaching. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221453. [PMID: 36778951 PMCID: PMC9905985 DOI: 10.1098/rsos.221453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Ageing changes the musculoskeletal and neural systems, potentially affecting a person's ability to perform daily living activities. One of these changes is increased passive stiffness of muscles, but its contribution to performance is difficult to separate experimentally from other ageing effects such as loss of muscle strength or cognitive function. A computational upper limb model was used to study the effects of increasing passive muscle stiffness on reaching performance across the model's workspace (all points reachable with a given model geometry). The simulations indicated that increased muscle stiffness alone caused deterioration of reaching accuracy, starting from the edges of the workspace. Re-tuning the model's control parameters to match the ageing muscle properties does not fully reverse ageing effects but can improve accuracy in selected regions of the workspace. The results suggest that age-related muscle stiffening, isolated from other ageing effects, impairs reaching performance. The model also exhibited oscillatory instability in a few simulations when the controller was tuned to the presence of passive muscle stiffness. This instability is not observed in humans, implying the presence of natural stabilizing strategies, thus pointing to the adaptive capacity of neural control systems as a potential area of future investigation in age-related muscle stiffening.
Collapse
Affiliation(s)
- Tiina Murtola
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Christopher Richards
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
5
|
The Influence of Transcranial Direct Current Stimulation on Shooting Performance in Elite Deaflympic Athletes: A Case Series. J Funct Morphol Kinesiol 2022; 7:jfmk7020042. [PMID: 35736013 PMCID: PMC9224564 DOI: 10.3390/jfmk7020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to improve motor learning in numerous studies. However, only a few of these studies have been conducted on elite-level performers or in complex motor tasks that have been practiced extensively. The purpose was to determine the influence of tDCS applied to the dorsolateral prefrontal cortex (DLPFC) on motor learning over multiple days on 10-m air rifle shooting performance in elite Deaflympic athletes. Two male and two female elite Deaflympic athletes (World, European, and National medalists) participated in this case series. The study utilized a randomized, double-blind, SHAM-controlled, cross-over design. Anodal tDCS or SHAM stimulation was applied to the left DLPFC for 25 min with a current strength of 2 mA concurrent with three days of standard shooting practice sessions. Shooting performance was quantified as the points and the endpoint error. Separate 2 Condition (DLPFC-tDCS, SHAM) × 3 Day (1,2,3) within-subjects ANOVAs revealed no significant main effects or interactions for either points or endpoint error. These results indicate that DLPFC-tDCS applied over multiple days does not improve shooting performance in elite athletes. Different stimulation parameters or very long-term (weeks/months) application of tDCS may be needed to improve motor learning in elite athletes.
Collapse
|
6
|
Wittenberg GF, Tian J, Kortzorg N, Wyers L, Van Halewyck F, Boisgontier MP, Levin O, Swinnen SP, Jonkers I. Normal aging affects unconstrained three-dimensional reaching against gravity with reduced vertical precision and increased co-contraction: a pilot study. Exp Brain Res 2022; 240:1029-1044. [PMID: 35171307 PMCID: PMC9985825 DOI: 10.1007/s00221-021-06280-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Reaching for an object in space forms the basis for many activities of daily living and is important in rehabilitation after stroke and in other neurological and orthopedic conditions. It has been the object of motor control and neuroscience research for over a century, but studies often constrain movement to eliminate the effect of gravity or reduce the degrees of freedom. In some studies, aging has been shown to reduce target accuracy, with a mechanism suggested to be impaired corrective movements. We sought to explore how such changes in accuracy relate to changes in finger, shoulder and elbow movements during performance of reaching movements with the normal effects of gravity, unconstrained hand movement, and stable target locations. Three-dimensional kinematic data and electromyography were collected in 14 young (25 ± 6 years) and 10 older adults (68 ± 3 years) during second-long reaches to 3 targets aligned vertically in front of the participants. Older adults took longer to initiate a movement than the young adults and were more variable and inaccurate in their initial and final movements. Target height had greater effect on trajectory curvature variability in older than young adults, with angle variability relative to target position being greater in older adults around the time of peak speed. There were significant age-related differences in use of the multiple degrees of freedom of the upper extremity, with less variability in shoulder abduction in the older group. Muscle activation patterns were similar, except for a higher biceps-triceps co-contraction and tonic levels of some proximal muscle activation. These results show an age-related deficit in the motor planning and online correction of reaching movements against a predictable force (i.e., gravity) when it is not compensated by mechanical support.
Collapse
Affiliation(s)
- George F Wittenberg
- Maryland Exercise & Robotics Center of Excellence, Geriatrics Research Educational and Clinical Center, Department of Veterans Affairs, Baltimore, MD, USA.
- Laboratory for Research on Arm Function and Therapy, Departments of Neurology, Physical Therapy and Rehabilitation Science, and Medicine, Division of Gerontology and Geriatric Medicine, Older Americans Independence Center, University of Maryland, Baltimore, MD, USA.
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.
- Department of Neurology, School of Medicine, University of Pittsburgh, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA, 15213-3232, USA.
| | - Jing Tian
- Maryland Exercise & Robotics Center of Excellence, Geriatrics Research Educational and Clinical Center, Department of Veterans Affairs, Baltimore, MD, USA
- Laboratory for Research on Arm Function and Therapy, Departments of Neurology, Physical Therapy and Rehabilitation Science, and Medicine, Division of Gerontology and Geriatric Medicine, Older Americans Independence Center, University of Maryland, Baltimore, MD, USA
| | - Nick Kortzorg
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Lore Wyers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Florian Van Halewyck
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Matthieu P Boisgontier
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Bruyere Research Institute, Ottawa, Canada
| | - Oron Levin
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
- Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Kornatz KW, Poston B, Stelmach GE. Age and Not the Preferred Limb Influences the Kinematic Structure of Pointing Movements. J Funct Morphol Kinesiol 2021; 6:jfmk6040100. [PMID: 34940509 PMCID: PMC8703669 DOI: 10.3390/jfmk6040100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/02/2022] Open
Abstract
In goal-directed movements, effective open-loop control reduces the need for feedback-based corrective submovements. The purpose of this study was to determine the influence of hand preference and aging on submovements during single- and two-joint pointing movements. A total of 12 young and 12 older right-handed participants performed pointing movements that involved either elbow extension or a combination of elbow extension and horizontal shoulder flexion with their right and left arms to a target. Kinematics were used to separate the movements into their primary and secondary submovements. The older adults exhibited slower movements, used secondary submovements more often, and produced relatively shorter primary submovements. However, there were no interlimb differences for either age group or for the single- and two-joint movements. These findings indicate that open-loop control is similar between arms but compromised in older compared to younger adults.
Collapse
Affiliation(s)
- Kurt W. Kornatz
- Department of Exercise Physiology, Winston-Salem State University, Winston-Salem, NC 27110, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA
- Correspondence: ; Tel.: +1-702-895-5329
| | - George E. Stelmach
- Department of Kinesiology, Arizona State University, Tempe, AZ 85281, USA;
| |
Collapse
|
8
|
Perturbation of cortical activity elicits regional and age-dependent effects on unconstrained reaching behavior: a pilot study. Exp Brain Res 2021; 239:3585-3600. [PMID: 34591126 DOI: 10.1007/s00221-021-06228-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Contributions from premotor and supplementary motor areas to reaching behavior in aging humans are not well understood. The objective of these experiments was to examine effects of perturbations to specific cortical areas on the control of unconstrained reaches against gravity by younger and older adults. Double-pulse transcranial magnetic stimulation (TMS) was applied to scalp locations targeting primary motor cortex (M1), dorsal premotor area (PMA), supplementary motor area (SMA), or dorsolateral prefrontal cortex (DLPFC). Stimulation was intended to perturb ongoing activity in the targeted cortical region before or after a visual cue to initiate moderately paced reaches to one of three vertical target locations. Regional effects were observed in movement amplitude both early and late in the reach. Perturbation of PMA increased reach distance before the time of peak velocity to a greater extent than all other regions. Reaches showed greater deviation from a straight-line path around the time of peak velocity and greater overall curvature with perturbation of PMA and M1 relative to SMA and DLPFC. The perturbation increased positional variability of the reach path at the time of peak velocity and the time elapsing after peak velocity. Although perturbations had stronger effects on reaches by younger subjects, this group exhibited less reach path variability at the time of peak velocity and required less time to adjust the movement trajectory thereafter. These findings support the role of PMA in visually guided reaching and suggest an age-related change in sensorimotor processing, possibly due to a loss of cortical inhibitory control.
Collapse
|
9
|
Long-Term Application of Cerebellar Transcranial Direct Current Stimulation Does Not Improve Motor Learning in Parkinson's Disease. THE CEREBELLUM 2021; 21:333-349. [PMID: 34232470 PMCID: PMC8260571 DOI: 10.1007/s12311-021-01297-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/19/2022]
Abstract
Cerebellar transcranial direct current stimulation (c-tDCS) enhances motor skill acquisition and motor learning in young and old adults. Since the cerebellum is involved in the pathophysiology of Parkinson’s disease (PD), c-tDCS may represent an intervention with potential to improve motor learning in PD. The primary purpose was to determine the influence of long-term application of c-tDCS on motor learning in PD. The secondary purpose was to examine the influence of long-term application of c-tDCS on transfer of motor learning in PD. The study was a randomized, double-blind, SHAM-controlled, between-subjects design. Twenty-one participants with PD were allocated to either a tDCS group or a SHAM stimulation group. Participants completed 9 practice sessions over a 2-week period that involved extensive practice of an isometric pinch grip task (PGT) and a rapid arm movement task (AMT). These practice tasks were performed over a 25-min period concurrent with either anodal c-tDCS or SHAM stimulation. A set of transfer tasks that included clinical rating scales, manual dexterity tests, and lower extremity assessments were quantified in Test sessions at Baseline, 1, 14, and 28 days after the end of practice (EOP). There were no significant differences between the c-tDCS and SHAM groups as indicated by performance changes in the practice and transfer tasks from Baseline to the 3 EOP Tests. The findings indicate that long-term application of c-tDCS does not improve motor learning or transfer of motor learning to a greater extent than practice alone in PD.
Collapse
|
10
|
Han J, Adams R, Waddington G, Han C. Proprioceptive accuracy after uni-joint and multi-joint patterns of arm-raising movements directed to overhead targets. Somatosens Mot Res 2021; 38:127-132. [PMID: 33494662 DOI: 10.1080/08990220.2021.1876017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM To determine the effect of arm-raising pattern on upper limb proprioceptive accuracy for movements made to overhead targets. MATERIALS AND METHODS Sixteen healthy young adults were tested in standing with arms at the sides, made dominant arm-raising movements to an unseen overhead stop, randomly placed at one of five different overhead targets. Movements were made either as a uni-joint shoulder flexion movement in an arc, or as an unconstrained arm raising that was a series of multi-joint movements involving the shoulder, elbow, and wrist. RESULTS Overall proprioceptive accuracy for discrimination between the five unseen overhead targets was not different after arm-raising with either a uni-joint or mult-joint pattern (F1, 15 = 0.50, p = 0.49, partial η2 = 0.03). Better performers with one pattern also tended to perform well with the other (r = 0.70, p = 0.003). Trend analysis across the 4 pairwise scores for discriminations between the target positions (171.8°-173.6°, 173.6°-175.4°, 175.4°-177.2°, and 177.2°-179.0°) showed worsening discrimination towards the more distant targets (F1, 15 = 8.44, p = 0.01, partial η2 = 0.36). However, this linear trend of falling discrimination accuracy was not different between the two movement patterns (p = 0.27). CONCLUSION Proprioceptive accuracy did not differ between simple uni-joint and more complex multi-joint arm-raising movement patterns, and the further the extent of the overhead target movement, the worse proprioceptive discrimination sensitivity for both movement patterns. Upper limb proprioceptive accuracy was therefore movement extent dependent, but movement pattern independent.
Collapse
Affiliation(s)
- Jia Han
- Department of Physiotherapy and Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia.,Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Australia
| | - Roger Adams
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
| | - Gordon Waddington
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
| | - Chunying Han
- Faculty of Media and Arts, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
11
|
Deng L, Luo J, Lyu Y, Song R. Effects of Future Information and Trajectory Complexity on Kinematic Signal and Muscle Activation during Visual-Motor Tracking. ENTROPY 2021; 23:e23010111. [PMID: 33467619 PMCID: PMC7830702 DOI: 10.3390/e23010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Visual-motor tracking movement is a common and essential behavior in daily life. However, the contribution of future information to visual-motor tracking performance is not well understood in current research. In this study, the visual-motor tracking performance with and without future-trajectories was compared. Meanwhile, three task demands were designed to investigate their impact. Eighteen healthy young participants were recruited and instructed to track a target on a screen by stretching/flexing their elbow joint. The kinematic signals (elbow joint angle) and surface electromyographic (EMG) signals of biceps and triceps were recorded. The normalized integrated jerk (NIJ) and fuzzy approximate entropy (fApEn) of the joint trajectories, as well as the multiscale fuzzy approximate entropy (MSfApEn) values of the EMG signals, were calculated. Accordingly, the NIJ values with the future-trajectory were significantly lower than those without future-trajectory (p-value < 0.01). The smoother movement with future-trajectories might be related to the increasing reliance of feedforward control. When the task demands increased, the fApEn values of joint trajectories increased significantly, as well as the MSfApEn of EMG signals (p-value < 0.05). These findings enrich our understanding about visual-motor control with future information.
Collapse
Affiliation(s)
- Linchuan Deng
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-Sen University, Guangzhou 510006, China; (L.D.); (J.L.); (Y.L.)
| | - Jie Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-Sen University, Guangzhou 510006, China; (L.D.); (J.L.); (Y.L.)
| | - Yueling Lyu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-Sen University, Guangzhou 510006, China; (L.D.); (J.L.); (Y.L.)
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-Sen University, Guangzhou 510006, China; (L.D.); (J.L.); (Y.L.)
- Shenzhen Research Institute, Sun Yat-Sen University, Shenzhen 518057, China
- Correspondence:
| |
Collapse
|
12
|
An Acute Application of Cerebellar Transcranial Direct Current Stimulation Does Not Improve Motor Performance in Parkinson's Disease. Brain Sci 2020; 10:brainsci10100735. [PMID: 33066348 PMCID: PMC7602166 DOI: 10.3390/brainsci10100735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Transcranial direct current stimulation of the cerebellum (c-tDCS) improves motor performance in young and old adults. Based on the cerebellar involvement in Parkinson’s disease (PD), c-tDCS could have potential to improve motor function in PD. The purpose was to determine the effects of c-tDCS on motor performance in PD while participants were on medications. The study was a randomized, double-blind, SHAM-controlled, between-subjects design. Twenty-two participants with PD were allocated to either a c-tDCS group or a SHAM group. All participants completed one experimental session and performed two motor tasks with their most affected hand in a Baseline condition (no stimulation) and an Experimental condition. The motor tasks were a visuomotor isometric precision grip task (PGT) and a rapid arm movement task (AMT). The primary dependent variables were force error and endpoint error in the PGT and AMT, respectively. There were no significant differences in force error or endpoint error in the Experimental condition between the c-tDCS and SHAM groups. These results indicate that an acute application of c-tDCS does not enhance motor performance in hand and arm tasks in PD. Longer-term c-tDCS application over multiple days may be needed to enhance motor function in PD.
Collapse
|
13
|
Jones CA, Ciucci MR, Abdelhalim SM, McCulloch TM. Swallowing Pressure Variability as a Function of Pharyngeal Region, Bolus Volume, Age, and Sex. Laryngoscope 2020; 131:E52-E58. [PMID: 32304341 DOI: 10.1002/lary.28667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/14/2020] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Within-individual movement variability occurs in most motor domains. However, it is unknown how pharyngeal swallowing pressure varies in healthy individuals. We hypothesized that: 1) variability would differ among pharyngeal regions; 2) variability would decrease with increased bolus volume; 3) variability would increase with age; and 4) there would be no sex differences. STUDY DESIGN Case series. METHODS We used pharyngeal high-resolution manometry to measure swallowing pressure in the following regions: velopharynx, tongue base, hypopharynx, and upper esophageal sphincter. Data were collected from 97 healthy adults (41 male) aged 21 to 89 years during thin liquid swallows: 2 mL, 10 mL, and participant-selected comfortable volume. Pressure variability was measured using coefficient of variation. Repeated measures analysis of variance was used to assess impacts of region, bolus volume, age, and sex on pressure variability. RESULTS There was a significant region × volume interaction (P < .001) and significant main effect of age (P = .005). Pressures in the hypopharynx region were more variable than all other regions (P ≤ .028), and pressures in the tongue base region were less variable than all other regions (P ≤ .002) except at 2 mL volumes (P = .065). Swallowing pressure variability was significantly different in the velopharynx and upper esophageal sphincter regions, with comfortable volume and 2 mL swallows having greater variability than 10 mL swallows (P ≤ .026). Pressure variability significantly increased with increasing age (P = .002). There were no effects of sex on pressure variability (P ≥ .15). CONCLUSION Pharyngeal swallowing pressure variability differs according pharyngeal region, volume, and age but not sex. Abnormal swallowing pressure variability may reflect deviations in motor control in persons with swallowing impairment, and results from this study can be used as normative data for future investigations evaluating swallowing pressure generation. LEVEL OF EVIDENCE 4 Laryngoscope, 131:E52-E58, 2021.
Collapse
Affiliation(s)
- Corinne A Jones
- Department of Neurology, The University of Texas at Austin, Austin, Texas, U.S.A.,Department of Surgery, Division of Otolaryngology - Head & Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A.,Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology - Head & Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A.,Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Suzan M Abdelhalim
- Department of Surgery, Division of Otolaryngology - Head & Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Timothy M McCulloch
- Department of Surgery, Division of Otolaryngology - Head & Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| |
Collapse
|
14
|
Jackson AK, de Albuquerque LL, Pantovic M, Fischer KM, Guadagnoli MA, Riley ZA, Poston B. Cerebellar Transcranial Direct Current Stimulation Enhances Motor Learning in a Complex Overhand Throwing Task. THE CEREBELLUM 2020; 18:813-816. [PMID: 31104285 DOI: 10.1007/s12311-019-01040-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cerebellar transcranial direct current stimulation (c-tDCS) enhances motor adaptation, skill acquisition, and learning in relatively simple motor tasks. The purpose was to examine the influence of c-tDCS on motor learning in a complex overhand throwing task. Forty-two young adults were randomized to a c-tDCS group or a SHAM group and completed a practice session and a retention session. The practice session involved an overhand throwing task to a small target (6 m away) in a pre-test block, 6 practice blocks, a post-test block, and a retention-test block (24 h later). c-tDCS or SHAM was applied during overhand throwing in the practice blocks. The decline in endpoint error was greater for the tDCS group compared to SHAM at the end of practice (P = 0.019) and at retention (P = 0.003). The findings indicate that a single application of c-tDCS enhances motor learning in a complex overhand throwing task.
Collapse
Affiliation(s)
- Austuny K Jackson
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154-3034, USA
| | - Lidio Lima de Albuquerque
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154-3034, USA
| | - Milan Pantovic
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154-3034, USA
| | - Katherine M Fischer
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154-3034, USA
| | - Mark A Guadagnoli
- School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Zachary A Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154-3034, USA.
| |
Collapse
|
15
|
Albuquerque LLD, Fischer KM, Pauls AL, Pantovic M, Guadagnoli MA, Riley ZA, Poston B. An acute application of transcranial random noise stimulation does not enhance motor skill acquisition or retention in a golf putting task. Hum Mov Sci 2019; 66:241-248. [PMID: 31078943 DOI: 10.1016/j.humov.2019.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 11/18/2022]
Abstract
Transcranial random noise stimulation (tRNS) is a brain stimulation technique that has been shown to increase motor performance in simple motor tasks. The purpose was to determine the influence of tRNS on motor skill acquisition and retention in a complex golf putting task. Thirty-four young adults were randomly assigned to a tRNS group or a SHAM stimulation group. Each subject completed a practice session followed by a retention session. In the practice session, subjects performed golf putting trials in a baseline test block, four practice blocks, and a post test block. Twenty-four hours later subjects completed the retention test block. The golf putting task involved performing putts to a small target located 3 m away. tRNS or SHAM was applied during the practice blocks concurrently with the golf putting task. tRNS was applied over the first dorsal interosseus muscle representation area of the motor cortex for 20 min at a current strength of 2 mA. Endpoint error and endpoint variance were reduced across the both the practice blocks and the test blocks, but these reductions were not different between groups. These findings suggest that an acute application of tRNS failed to enhance skill acquisition or retention in a golf putting task.
Collapse
Affiliation(s)
- Lidio Lima de Albuquerque
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Katherine M Fischer
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Aaron L Pauls
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Milan Pantovic
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Mark A Guadagnoli
- School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Zachary A Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
16
|
de Grosbois J, Tremblay L. Distinct and flexible rates of online control. PSYCHOLOGICAL RESEARCH 2017; 82:1054-1072. [PMID: 28733770 DOI: 10.1007/s00426-017-0888-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/03/2017] [Indexed: 01/12/2023]
Abstract
Elliott et al. (Hum Mov Sci 10:393-418, 1991) proposed a pseudocontinuous model of online control whereby overlapping corrections lead to the appearance of smooth kinematic profiles in the presence of online feedback. More recently, it was also proposed that online control is not a singular process [see Elliott et al. (Psychol Bull 136(6):1023-1044, 2010)]. However, support for contemporary models of online control were based on methodologies that were not designed to be sensitive to different online control sub-processes. The current study sought to evaluate the possibility of multiple distinct (i.e., visual and non-visual) mechanisms contributing to the control of reaching movements completed in either a full-vision, a no-vision, or a no-vision memory-guided condition. Frequency domain analysis was applied to the acceleration traces of reaching movements. In an attempt to elicit a modulation in the online control mechanisms, these movements were completed at two levels of spatio-temporal constraint, namely with 10 and 30 cm target distances. One finding was that performance in the full-vision relative to both no-vision conditions could be distinguished via two distinct frequency peaks. Increases in the peak magnitude at the lower frequencies were associated with visuomotor mechanisms and increases in the peak magnitude at the higher frequencies were associated with non-visual mechanisms. In addition, performance to the 30-cm target led to a lower peak at a lower frequency relative to the 10 cm target, indicating that the iterative rates of visuomotor control mechanisms are flexible and sensitive to the spatio-temporal constraints of the associated movement.
Collapse
Affiliation(s)
- John de Grosbois
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada.,Centre for Motor Control, University of Toronto, Toronto, ON, Canada.,Perceptual-Motor Behaviour Laboratory, University of Toronto, Toronto, ON, Canada
| | - Luc Tremblay
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada. .,Centre for Motor Control, University of Toronto, Toronto, ON, Canada. .,Perceptual-Motor Behaviour Laboratory, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Li S, Zhuang C, Hao M, He X, Marquez JC, Niu CM, Lan N. Coordinated alpha and gamma control of muscles and spindles in movement and posture. Front Comput Neurosci 2015; 9:122. [PMID: 26500531 PMCID: PMC4598585 DOI: 10.3389/fncom.2015.00122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022] Open
Abstract
Mounting evidence suggests that both α and γ motoneurons are active during movement and posture, but how does the central motor system coordinate the α-γ controls in these tasks remains sketchy due to lack of in vivo data. Here a computational model of α-γ control of muscles and spindles was used to investigate α-γ integration and coordination for movement and posture. The model comprised physiologically realistic spinal circuitry, muscles, proprioceptors, and skeletal biomechanics. In the model, we divided the cortical descending commands into static and dynamic sets, where static commands (αs and γs) were for posture maintenance and dynamic commands (αd and γd) were responsible for movement. We matched our model to human reaching movement data by straightforward adjustments of descending commands derived from either minimal-jerk trajectories or human EMGs. The matched movement showed smooth reach-to-hold trajectories qualitatively close to human behaviors, and the reproduced EMGs showed the classic tri-phasic patterns. In particular, the function of γd was to gate the αd command at the propriospinal neurons (PN) such that antagonistic muscles can accelerate or decelerate the limb with proper timing. Independent control of joint position and stiffness could be achieved by adjusting static commands. Deefferentation in the model indicated that accurate static commands of αs and γs are essential to achieve stable terminal posture precisely, and that the γd command is as important as the αd command in controlling antagonistic muscles for desired movements. Deafferentation in the model showed that losing proprioceptive afferents mainly affected the terminal position of movement, similar to the abnormal behaviors observed in human and animals. Our results illustrated that tuning the simple forms of α-γ commands can reproduce a range of human reach-to-hold movements, and it is necessary to coordinate the set of α-γ descending commands for accurate and stable control of movement and posture.
Collapse
Affiliation(s)
- Si Li
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai, China
| | - Cheng Zhuang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai, China
| | - Manzhao Hao
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai, China
| | - Xin He
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai, China
| | - Juan C Marquez
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai, China ; School of Technology and Health, Royal Institute of Technology Stockholm, Sweden
| | - Chuanxin M Niu
- Department of Rehabilitation, Ruijin Hospital of School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Ning Lan
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai, China ; Division of Biokinesiology and Physical Therapy, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
18
|
Kimura D, Kadota K, Kinoshita H. The impact of aging on the spatial accuracy of quick corrective arm movements in response to sudden target displacement during reaching. Front Aging Neurosci 2015; 7:182. [PMID: 26441641 PMCID: PMC4585039 DOI: 10.3389/fnagi.2015.00182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/07/2015] [Indexed: 12/21/2022] Open
Abstract
Age-related declines in visuomotor processing speed can have a large impact on motor performance in elderly individuals. Contrary to previous findings, however, recent studies revealed that elderly individuals are able to quickly react to displacement of a visual target during reaching. Here, we investigated the influence of aging on quick, corrective responses to perturbations during reaching in the terms of their functional contribution to accuracy. Elderly and young adults performed reaching movements to a visual target that could be displaced during reaching, and they were requested to move their hand to reach the final target location as quickly as possible. Results showed that, for the younger group, the variance in the directional error of the corrective response correlated with the variance in the reaching trajectory at the halfway point of the reach, but the correlation decreased at the end of the reaching. On the other hand, such correlations were not significant in elderly participants, although the variance of the directional error did not show a significant difference between age groups. Thus, the quick, corrective response seems to play an important role in decreasing variability, especially before the end of reaching, and aging can impair this process.
Collapse
Affiliation(s)
- Daisuke Kimura
- Biomechanics and Motor Control Laboratory, Graduate School of Medicine, Osaka University Toyonaka, Japan
| | - Koji Kadota
- Biomechanics and Motor Control Laboratory, Graduate School of Medicine, Osaka University Toyonaka, Japan
| | - Hiroshi Kinoshita
- Biomechanics and Motor Control Laboratory, Graduate School of Medicine, Osaka University Toyonaka, Japan
| |
Collapse
|