1
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Kuthubutheen J, Brown D, Mikov M, Al-Salami H. Artificial Cell Encapsulation for Biomaterials and Tissue Bio-Nanoengineering: History, Achievements, Limitations, and Future Work for Potential Clinical Applications and Transplantation. J Funct Biomater 2021; 12:68. [PMID: 34940547 PMCID: PMC8704355 DOI: 10.3390/jfb12040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell loss and failure with subsequent deficiency of insulin production is the hallmark of type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D). Despite the availability of parental insulin, serious complications of both types are profound and endemic. One approach to therapy and a potential cure is the immunoisolation of β cells via artificial cell microencapsulation (ACM), with ongoing promising results in human and animal studies that do not depend on immunosuppressive regimens. However, significant challenges remain in the formulation and delivery platforms and potential immunogenicity issues. Additionally, the level of impact on key metabolic and disease biomarkers and long-term benefits from human and animal studies stemming from the encapsulation and delivery of these cells is a subject of continuing debate. The purpose of this review is to summarise key advances in this field of islet transplantation using ACM and to explore future strategies, limitations, and hurdles as well as upcoming developments utilising bioengineering and current clinical trials.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | | | - Daniel Brown
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia;
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Nonlinear Analysis for a Type-1 Diabetes Model with Focus on T-Cells and Pancreatic β-Cells Behavior. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS 2020. [DOI: 10.3390/mca25020023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Type-1 diabetes mellitus (T1DM) is an autoimmune disease that has an impact on mortality due to the destruction of insulin-producing pancreatic β -cells in the islets of Langerhans. Over the past few years, the interest in analyzing this type of disease, either in a biological or mathematical sense, has relied on the search for a treatment that guarantees full control of glucose levels. Mathematical models inspired by natural phenomena, are proposed under the prey–predator scheme. T1DM fits in this scheme due to the complicated relationship between pancreatic β -cell population growth and leukocyte population growth via the immune response. In this scenario, β -cells represent the prey, and leukocytes the predator. This paper studies the global dynamics of T1DM reported by Magombedze et al. in 2010. This model describes the interaction of resting macrophages, activated macrophages, antigen cells, autolytic T-cells, and β -cells. Therefore, the localization of compact invariant sets is applied to provide a bounded positive invariant domain in which one can ensure that once the dynamics of the T1DM enter into this domain, they will remain bounded with a maximum and minimum value. Furthermore, we analyzed this model in a closed-loop scenario based on nonlinear control theory, and proposed bases for possible control inputs, complementing the model with them. These entries are based on the existing relationship between cell–cell interaction and the role that they play in the unchaining of a diabetic condition. The closed-loop analysis aims to give a deeper understanding of the impact of autolytic T-cells and the nature of the β -cell population interaction with the innate immune system response. This analysis strengthens the proposal, providing a system free of this illness—that is, a condition wherein the pancreatic β -cell population holds and there are no antigen cells labeled by the activated macrophages.
Collapse
|
3
|
Facklam AL, Volpatti LR, Anderson DG. Biomaterials for Personalized Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902005. [PMID: 31495970 DOI: 10.1002/adma.201902005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Indexed: 05/13/2023]
Abstract
Cell therapy has already had an important impact on healthcare and provided new treatments for previously intractable diseases. Notable examples include mesenchymal stem cells for tissue regeneration, islet transplantation for diabetes treatment, and T cell delivery for cancer immunotherapy. Biomaterials have the potential to extend the therapeutic impact of cell therapies by serving as carriers that provide 3D organization and support cell viability and function. With the growing emphasis on personalized medicine, cell therapies hold great potential for their ability to sense and respond to the biology of an individual patient. These therapies can be further personalized through the use of patient-specific cells or with precision biomaterials to guide cellular activity in response to the needs of each patient. Here, the role of biomaterials for applications in tissue regeneration, therapeutic protein delivery, and cancer immunotherapy is reviewed, with a focus on progress in engineering material properties and functionalities for personalized cell therapies.
Collapse
Affiliation(s)
- Amanda L Facklam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lisa R Volpatti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Yang D, Wu W, Wang S. Biocompatibility and degradability of alginate-poly- L-arginine microcapsules prepared by high-voltage electrostatic process. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1417291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dayun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
| | - Wenguo Wu
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Shibin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Jiaojiao Y, Sun C, Wei Y, Wang C, Dave B, Cao F, Liandong H. Applying emerging technologies to improve diabetes treatment. Biomed Pharmacother 2018; 108:1225-1236. [PMID: 30372824 DOI: 10.1016/j.biopha.2018.09.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022] Open
Abstract
Insulin, as the most important drug for the treatment of diabetes, can effectively control the blood glucose concentration in humans. Due to its instability, short half-life, easy denaturation and side effects, the administration way of insulin are limited to subcutaneous injection accompany with poor glucose control and low patient compliance. In recent years, emerging insulin delivery systems have been developed in diabetes research. In this review, a variety of stimuli-responsive insulin delivery systems with their response mechanism and regulation principle are described. Further, the introduction of stem cell transplantation and mobile application based delivery technologies are prudent for the diabetes treatment. This article also discusses the advantages and limitations of current strategies, along with the opportunities and challenges for future insulin therapy.
Collapse
Affiliation(s)
- Yu Jiaojiao
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Caifeng Sun
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Yuli Wei
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Chaoying Wang
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | | | - Fei Cao
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Hu Liandong
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| |
Collapse
|
6
|
Itel F, Skovhus Thomsen J, Städler B. Matrix Vesicles-Containing Microreactors as Support for Bonelike Osteoblasts to Enhance Biomineralization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30180-30190. [PMID: 30113809 DOI: 10.1021/acsami.8b10886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Therapeutic cell mimicry aims to provide a source of cell-like assemblies, which exhibit the core structural or functional properties of their natural counterparts with broad envisioned applications in biomedicine. Bone tissue engineering (BTE) aims at promoting and inciting the natural healing process of, for instance, critically sized bone defects. Microreactors designed to co-assemble with biological bone-forming osteoblasts like SaOS-2 cells to start biomineralization are reported for the first time. The alginate-based microparticles are equipped with active alkaline phosphatase-loaded artificial liposomes or SaOS-2-derived matrix vesicles (MVs). Spheroids assembled from SaOS-2 cells and microreactors not only exhibit higher cell viability, but also show enhanced biomineralization when MVs are present. The active biomineralization stimulation of the microreactors is illustrated by colorimetric calcium quantification and micro-computed tomography. These findings show the promising potential of applying cell mimicry in BTE.
Collapse
Affiliation(s)
- Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Jesper Skovhus Thomsen
- Department of Biomedicine , Aarhus University , Wilhelm Meyers Allé 3 , 8000 Aarhus , Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| |
Collapse
|
7
|
Lan KC, Wang CC, Yen YP, Yang RS, Liu SH, Chan DC. Islet-like clusters derived from skeletal muscle-derived stem/progenitor cells for autologous transplantation to control type 1 diabetes in mice. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S328-S335. [PMID: 30032651 DOI: 10.1080/21691401.2018.1492421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A population of muscle-derived stem/progenitor cells (MDSPCs) contained in skeletal muscle is responsible for muscle regeneration. MDSPCs from mouse muscle have been shown to be capable of differentiating into pancreatic islet-like cells. However, the potency of MDSPCs to differentiate into functional islet-like cluster remains to be confirmed. The therapeutic potential of autologous MDSPCs transplantation on type 1 diabetes still remains unclear. Here, we investigated a four-stage method to induce the differentiation of MDSPCs into insulin-producing clusters in vitro, and tested the autologous transplantation to control type 1 diabetes in mice. MDSPCs isolated from the skeletal muscles of mice possessed the ability to form islet-like clusters through several stages of differentiation. The expressions of pancreatic progenitor-related genes, insulin, and islet-related genes were significantly upregulated in islet-like clusters determined by the quantitative reverse transcription polymerase chain reaction. The autologous islet-like clusters transplantation effectively improved hyperglycaemia and glucose intolerance and increased the survival rate in streptozotocin-induced diabetic mice without the use of immunosuppressants. Taken together, these results provide evidence that MDSPCs from murine muscle tissues are capable of differentiating into insulin-producing clusters, which possess insulin-producing ability in vitro and in vivo, and have the potential for autologous transplantation to control type 1 diabetes.
Collapse
Affiliation(s)
- Kuo-Cheng Lan
- a Department of Emergency Medicine , Tri-Service General Hospital, National Defense Medical Center , Taipei , Taiwan
| | - Ching-Chia Wang
- b Department of Pediatrics , College of Medicine, National Taiwan University , Taipei , Taiwan
| | - Yuan-Peng Yen
- c College of Medicine , Institute of Toxicology, National Taiwan University , Taipei , Taiwan
| | - Rong-Sen Yang
- d Department of Orthopaedics, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Shing-Hwa Liu
- b Department of Pediatrics , College of Medicine, National Taiwan University , Taipei , Taiwan.,c College of Medicine , Institute of Toxicology, National Taiwan University , Taipei , Taiwan.,e Department of Medical Research , China Medical University Hospital, China Medical University , Taichung , Taiwan
| | - Ding-Cheng Chan
- f Department of Geriatrics and Gerontology , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
8
|
Mohamed MT, Embaby EA, Labib A, El-Husseiny M, Khamis H, El-Demery A, Shoukry MM. Effects of exercise in combination with autologous bone marrow stem cell transplantation for patients with type 1 diabetes. Physiother Theory Pract 2018; 35:1233-1242. [PMID: 29775119 DOI: 10.1080/09593985.2018.1474511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stem cell therapy is a promising approach for the treatment of type 1 diabetes mellitus (T1D). Previous studies recommended regular exercise for the control of T1D. Experimental studies showed that a combination of stem cells and exercise yielded a better outcome. Yet, the effect of exercise programs following stem cell transplantation in patients with T1D has not been investigated. Thus, the current study aimed to examine the effect of a combined exercise program on measures of glycemic control in patients with T1D who received autologous bone marrow stem cell transplantation (ABMSCT). Thirty patients with controlled T1D were assigned into two equal groups. Both groups underwent ABMSCT and received insulin therapy and a diabetic diet regime. Only the exercise group followed the combined exercise program. Outcome measures of glycemic control (i.e. fasting blood glucose level [FBG], post-prandial blood glucose level [PPG], HbA1c, daily insulin dosage, and C-peptide levels) were tested before and after a 3-month rehabilitation period. There were significant (p < 0.05) decreases in all outcome measures except C-peptides after ABMSCT compared with before in both groups. Moreover, there was a significant decrease in the mean value of HbA1c in the exercise group compared with the control group after rehabilitation. Overall, this study strengthens the idea that adding exercise to ABMSCT is important to help control diabetes in patients with T1D.
Collapse
Affiliation(s)
- Marwa Taher Mohamed
- Department of Basic Science, Faculty of Physical Therapy, Cairo University, Giza, Egypt.,Department of Physical Therapy, Wadi El-Neel Hospital, Cairo, Egypt
| | - Eman Ahmed Embaby
- Department of Basic Science, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Awatif Labib
- Department of Basic Science, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | | | - Hazem Khamis
- Department of Cardiology, 6th October University, Giza, Egypt
| | - Ahmed El-Demery
- Department of Medical Biocemistry, 6th October University, Elmehawar Almarkazy, Giza, Egypt
| | - Mohamed Mounir Shoukry
- Faculty of Pharmacy, MTI University, Cairo, Egypt.,Department of Pharmacology, Wadi El-Neel Hospital, Cairo, Egypt
| |
Collapse
|
9
|
Mooranian A, Tackechi R, Jamieson E, Morahan G, Al-Salami H. Innovative Microcapsules for Pancreatic β-Cells Harvested from Mature Double-Transgenic Mice: Cell Imaging, Viability, Induced Glucose-Stimulated Insulin Measurements and Proinflammatory Cytokines Analysis. Pharm Res 2017; 34:1217-1223. [PMID: 28289997 DOI: 10.1007/s11095-017-2138-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/01/2017] [Indexed: 01/24/2023]
Abstract
PURPOSE Recently we demonstrated that microencapsulation of a murine pancreatic β-cell line using an alginate-ursodeoxycholic acid (UDCA) matrix produced microcapsules with good stability and cell viability. In this study, we investigated if translation of this formulation to microencapsulation of primary β-cells harvested from mature double-transgenic healthy mice would also generate stable microcapsules with good cell viability. METHODS Islets of Langerhans were isolated from Ngn3-GFP/RIP-DsRED mice by intraductal collagenase P digestion and density gradient centrifugation, dissociated into single cells and the β-cell population purified by Fluorescence Activated Cell Sorting. β-cells were microencapsulated using either alginate-poly-l-ornithine (F1; control) or alginate-poly-l-ornithine-UDCA (F2; test) formulations. Microcapsules were microscopically examined and microencapsulated cells were analyzed for viability, insulin and cytokine release, 2 days post-microencapsulation. RESULTS Microcapsules showed good uniformity and morphological characteristics and even cell distribution within microcapsules with or without UDCA. Two days post microencapsulation cell viability, mitochondrial ATP and insulin production were shown to be optimized in the presence of UDCA whilst production of the proinflammatory cytokine IL-1β was reduced. Contradictory to our previous studies, UDCA did not reduce production of any other pro-inflammatory biomarkers. CONCLUSIONS These results suggest that UDCA incorporation improves microcapsules' physical and morphological characteristics and improves the viability and function of encapsulated mature primary pancreatic β-cells.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia
| | - Ryu Tackechi
- School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Emma Jamieson
- Harry Perkins Institute of Medical Research, Centre for Diabetes Research, Perth, WA, Australia
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, Centre for Diabetes Research, Perth, WA, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia.
| |
Collapse
|
10
|
Lima AC, Alvarez‐Lorenzo C, Mano JF. Design Advances in Particulate Systems for Biomedical Applications. Adv Healthc Mater 2016; 5:1687-723. [PMID: 27332041 DOI: 10.1002/adhm.201600219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/09/2016] [Indexed: 12/13/2022]
Abstract
The search for more efficient therapeutic strategies and diagnosis tools is a continuous challenge. Advances in understanding the biological mechanisms behind diseases and tissues regeneration have widened the field of applications of particulate systems. Particles are no more just protective systems for the encapsulated drugs, but they play an active role in the success of the therapy. Moreover, particles have been explored for innovative purposes as templates for cells growth and as diagnostic tools. Until few years ago the most relevant parameters in particles formulation were the chemistry and the size. Currently, it is known that other physical characteristics can remarkably affect the performance of particulate systems. Particles with non-conventional shapes exhibit advantages due to the increasing circulation time in blood stream, less clearance by the immune system and more efficient cell internalization and trafficking. Creation of compartments has been found useful to control drug release, to tune the transport of substances across biological barriers, to supply the target with more than one bioactive agent or even to act as theranostic systems. It is expected that such complex shaped and compartmentalized systems improve the therapeutic outcomes and also the patient's compliance, acting as advanced devices that serve for simultaneous diagnosis and treatment of the disease, combining agents of very different features, at the same time. In this review, we overview and analyse the most recent advances in particle shape and compartmentalization and applications of newly designed particulate systems in the biomedical field.
Collapse
Affiliation(s)
- Ana Catarina Lima
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Carmen Alvarez‐Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - João F. Mano
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
11
|
Naqvi SM, Vedicherla S, Gansau J, McIntyre T, Doherty M, Buckley CT. Living Cell Factories - Electrosprayed Microcapsules and Microcarriers for Minimally Invasive Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5662-5671. [PMID: 26695531 DOI: 10.1002/adma.201503598] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Minimally invasive delivery of "living cell factories" consisting of cells and therapeutic agents has gained wide attention for next generation biomaterial device systems for multiple applications including musculoskeletal tissue regeneration, diabetes and cancer. Cellular-based microcapsules and microcarrier systems offer several attractive features for this particular purpose. One such technology capable of generating these types of systems is electrohydrodynamic (EHD) spraying. Depending on various parameters, including applied voltage, biomaterial properties (viscosity, conductivity) and needle geometry, complex structures and arrangements can be fabricated for therapeutic strategies. The advances in the use of EHD technology are outlined, specifically in the manipulation of bioactive and dynamic material systems to control size, composition and configuration in the development of minimally invasive micro-scaled biopolymeric systems. The exciting therapeutic applications of this technology, future perspectives and associated challenges are also presented.
Collapse
Affiliation(s)
- Syeda M Naqvi
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Srujana Vedicherla
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- School of Medicine, Trinity College Dublin, Ireland
| | - Jennifer Gansau
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Tom McIntyre
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- School of Medicine, Trinity College Dublin, Ireland
| | - Michelle Doherty
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Conor T Buckley
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
12
|
Qi C, Yan X, Huang C, Melerzanov A, Du Y. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 2015; 6:638-53. [PMID: 26088192 PMCID: PMC4537472 DOI: 10.1007/s13238-015-0179-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/11/2015] [Indexed: 01/24/2023] Open
Abstract
Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, improvement in treatment efficiency has been demonstrated in numerous animal models of degenerative diseases compared with routine free cell-based therapy. Emerging clinical applications of biomaterial assisted cell therapies further highlight their great promise in regenerative therapy and even cure for complex diseases, which have been failed to realize by conventional therapeutic approaches.
Collapse
Affiliation(s)
- Chunxiao Qi
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Xiaojun Yan
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Chenyu Huang
- />Department of Plastic and Reconstructive Surgery, Beijing Tsinghua Changgung Hospital; Medical Center, Tsinghua University, Beijing, 102218 China
| | - Alexander Melerzanov
- />Cellular and Molecular Technologies Laboratory, MIPT, Dolgoprudny, 141701 Russia
| | - Yanan Du
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
- />Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003 China
| |
Collapse
|
13
|
Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R. Cell-based therapy approaches: the hope for incurable diseases. Regen Med 2015; 9:649-72. [PMID: 25372080 DOI: 10.2217/rme.14.35] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell therapies aim to repair the mechanisms underlying disease initiation and progression, achieved through trophic effect or by cell replacement. Multiple cell types can be utilized in such therapies, including stem, progenitor or primary cells. This review covers the current state of cell therapies designed for the prominent disorders, including cardiovascular, neurological (Parkinson's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury), autoimmune (Type 1 diabetes, multiple sclerosis, Crohn's disease), ophthalmologic, renal, liver and skeletal (osteoarthritis) diseases. Various cell therapies have reached advanced clinical trial phases with potential marketing approvals in the near future, many of which are based on mesenchymal stem cells. Advances in pluripotent stem cell research hold great promise for regenerative medicine. The information presented in this review is based on the analysis of the cell therapy collection detailed in LifeMap Discovery(®) (LifeMap Sciences Inc., USA) the database of embryonic development, stem cell research and regenerative medicine.
Collapse
|
14
|
Abdelalim EM, Bonnefond A, Bennaceur-Griscelli A, Froguel P. Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Rev Rep 2014; 10:327-37. [PMID: 24577791 DOI: 10.1007/s12015-014-9503-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is the most prevailing disease with progressive incidence worldwide. To date, the pathogenesis of diabetes is far to be understood, and there is no permanent treatment available for diabetes. One of the promising approaches to understand and cure diabetes is to use pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced PCSs (iPSCs). ESCs and iPSCs have a great potential to differentiate into all cell types, and they have a high ability to differentiate into insulin-secreting β cells. Obtaining PSCs genetically identical to the patient presenting with diabetes has been a longstanding dream for the in vitro modeling of disease and ultimately cell therapy. For several years, somatic cell nuclear transfer (SCNT) was the method of choice to generate patient-specific ESC lines. However, this technology faces ethical and practical concerns. Interestingly, the recently established iPSC technology overcomes the major problems of other stem cell types including the lack of ethical concern and no risk of immune rejection. Several iPSC lines have been recently generated from patients with different types of diabetes, and most of these cell lines are able to differentiate into insulin-secreting β cells. In this review, we summarize recent advances in the differentiation of pancreatic β cells from PSCs, and describe the challenges for their clinical use in diabetes cell therapy. Furthermore, we discuss the potential use of patient-specific PSCs as an in vitro model, providing new insights into the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Qatar Biomedical Research Institute, Qatar Foundation, Education City, 5825, Doha, Qatar,
| | | | | | | |
Collapse
|
15
|
Sandvig I, Karstensen K, Rokstad AM, Aachmann FL, Formo K, Sandvig A, Skjåk-Braek G, Strand BL. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. J Biomed Mater Res A 2014; 103:896-906. [DOI: 10.1002/jbm.a.35230] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Ioanna Sandvig
- MI Lab and Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
| | - Kristin Karstensen
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Anne Mari Rokstad
- Department of Cancer Research and Molecular Medicine; Norwegian University of Science and Technology; Trondheim Norway
- Central Norwegian Regional Health Authority; St. Olav's Hospital, Trondheim University Hospital; Trondheim Norway
| | - Finn Lillelund Aachmann
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Kjetil Formo
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Axel Sandvig
- MI Lab and Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- Department of Neurosurgery; Umeå University Hospital; Umeå Sweden
| | - Gudmund Skjåk-Braek
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Berit Løkensgard Strand
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
- Department of Cancer Research and Molecular Medicine; Norwegian University of Science and Technology; Trondheim Norway
- Central Norwegian Regional Health Authority; St. Olav's Hospital, Trondheim University Hospital; Trondheim Norway
| |
Collapse
|
16
|
Pandian GN, Taniguchi J, Sugiyama H. Cellular reprogramming for pancreatic β-cell regeneration: clinical potential of small molecule control. Clin Transl Med 2014; 3:6. [PMID: 24679123 PMCID: PMC3984496 DOI: 10.1186/2001-1326-3-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Abstract
Recent scientific breakthroughs in stem cell biology suggest that a sustainable treatment approach to cure diabetes mellitus (DM) can be achieved in the near future. However, the transplantation complexities and the difficulty in obtaining the stem cells from adult cells of pancreas, liver, bone morrow and other cells is a major concern. The epoch-making strategy of transcription-factor based cellular reprogramming suggest that these barriers could be overcome, and it is possible to reprogram any cells into functional β cells. Contemporary biological and analytical techniques help us to predict the key transcription factors needed for β-cell regeneration. These β cell-specific transcription factors could be modulated with diverse reprogramming protocols. Among cellular reprogramming strategies, small molecule approach gets proclaimed to have better clinical prospects because it does not involve genetic manipulation. Several small molecules targeting certain epigenetic enzymes and/or signaling pathways have been successful in helping to induce pancreatic β-cell specification. Recently, a synthetic DNA-based small molecule triggered targeted transcriptional activation of pancreas-related genes to suggest the possibility of achieving desired cellular phenotype in a precise mode. Here, we give a brief overview of treating DM by regenerating pancreatic β-cells from various cell sources. Through a comprehensive overview of the available transcription factors, small molecules and reprogramming strategies available for pancreatic β-cell regeneration, this review compiles the current progress made towards the generation of clinically relevant insulin-producing β-cells.
Collapse
Affiliation(s)
| | | | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
17
|
Shaer A, Azarpira N, Vahdati A, Karimi MH, Shariati M. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters. EXP CLIN TRANSPLANT 2014; 13:68-75. [PMID: 24417176 DOI: 10.6002/ect.2013.0131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. MATERIALS AND METHODS A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. RESULTS Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. CONCLUSIONS This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.
Collapse
Affiliation(s)
- Anahita Shaer
- From the Department of Biology, Science and Research Branch, Islamic Azad University, Fars; and the Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | | | | | | | | |
Collapse
|
18
|
The action of antidiabetic plants of the canadian james bay cree traditional pharmacopeia on key enzymes of hepatic glucose homeostasis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:189819. [PMID: 23864882 PMCID: PMC3707264 DOI: 10.1155/2013/189819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/13/2013] [Indexed: 02/07/2023]
Abstract
We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada) to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase) and glycogen synthase (GS) activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK), Akt, and Glycogen synthase kinase-3 (GSK-3) were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines.
Collapse
|
19
|
Duncanson S, Sambanis A. Dual factor delivery of CXCL12 and Exendin-4 for improved survival and function of encapsulated beta cells under hypoxic conditions. Biotechnol Bioeng 2013; 110:2292-300. [DOI: 10.1002/bit.24872] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
|
20
|
Correia CR, Reis RL, Mano JF. Multilayered hierarchical capsules providing cell adhesion sites. Biomacromolecules 2013; 14:743-51. [PMID: 23330726 DOI: 10.1021/bm301833z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Liquified capsules featuring (i) an external shell by layer-by-layer assembly of poly(l-lysine), alginate, and chitosan, and encapsulating (ii) surface functionalized poly(l-lactic acid) (PLLA) microparticles were developed. We hypothesize that, while the liquified environment enhances the diffusion of essential molecules for cell survival, microparticles dispersed in the liquified core of capsules provide the physical support required for cellular functions of anchorage-dependent cells. The influence of the incorporation of PLL on the regime growth, thickness, and stability was analyzed. Results show a more resistant and thicker film with an exponential build-up growth regime. Moreover, capsules ability to support cell survival was assessed. Capsules containing microparticles revealed an enhanced biological outcome in cell metabolic activity and proliferation, suggesting their potential to boost the development of innovative biomaterial designs for bioencapsulation systems and tissue engineering products.
Collapse
Affiliation(s)
- Clara R Correia
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | | | | |
Collapse
|
21
|
Park JH, Pérez RA, Jin GZ, Choi SJ, Kim HW, Wall IB. Microcarriers designed for cell culture and tissue engineering of bone. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:172-90. [PMID: 23126371 DOI: 10.1089/ten.teb.2012.0432] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microspherical particulates have been an attractive form of biomaterials that find usefulness in cell delivery and tissue engineering. A variety of compositions, including bioactive ceramics, degradable polymers, and their composites, have been developed into a microsphere form and have demonstrated the potential to fill defective bone and to populate tissue cells on curved matrices. To enhance the capacity of cell delivery, the conventional solid form of spheres is engineered to have either a porous structure to hold cells or a thin shell to in-situ encapsulate cells within the structure. Microcarriers can also be a potential reservoir system of bioactive molecules that have therapeutic effects in regulating cell behaviors. Due to their specific form, advanced technologies to culture cell-loaded microcarriers are required, such as simple agitation or shaking, spinner flask, and rotating chamber system. Here, we review systematically, from material design to culture technology, the microspherical carriers used for the delivery of cells and tissue engineering, particularly of bone.
Collapse
Affiliation(s)
- Jeong-Hui Park
- Biomaterials and Tissue Engineering Lab, Department of Nanobiomedical Science & WCU Research Center, Dankook University, Cheonan, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Gallego-Perez D, Higuita-Castro N, Reen RK, Palacio-Ochoa M, Sharma S, Lee LJ, Lannutti JJ, Hansford DJ, Gooch KJ. Micro/nanoscale technologies for the development of hormone-expressing islet-like cell clusters. Biomed Microdevices 2012; 14:779-89. [PMID: 22573223 DOI: 10.1007/s10544-012-9657-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-expressing islet-like cell clusters derived from precursor cells have significant potential in the treatment of type-I diabetes. Given that cluster size and uniformity are known to influence islet cell behavior, the ability to effectively control these parameters could find applications in the development of anti-diabetic therapies. In this work, we combined micro and nanofabrication techniques to build a biodegradable platform capable of supporting the formation of islet-like structures from pancreatic precursors. Soft lithography and electrospinning were used to create arrays of microwells (150-500 μm diameter) structurally interfaced with a porous sheet of micro/nanoscale polyblend fibers (~0.5-10 μm in cross-sectional size), upon which human pancreatic ductal epithelial cells anchored and assembled into insulin-expressing 3D clusters. The microwells effectively regulated the spatial distribution of the cells on the platform, as well as cluster size, shape and homogeneity. Average cluster cross-sectional area (~14000-17500 μm(2)) varied in proportion to the microwell dimensions, and mean circularity values remained above 0.7 for all microwell sizes. In comparison, clustering on control surfaces (fibers without microwells or tissue culture plastic) resulted in irregularly shaped/sized cell aggregates. Immunoreactivity for insulin, C-peptide and glucagon was detected on both the platform and control surfaces; however, intracellular levels of C-peptide/cell were ~60 % higher on the platform.
Collapse
Affiliation(s)
- Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gabr MM, Zakaria MM, Refaie AF, Ismail AM, Abou-El-Mahasen MA, Ashamallah SA, Khater SM, El-Halawani SM, Ibrahim RY, Uin GS, Kloc M, Calne RY, Ghoneim MA. Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant 2012; 22:133-45. [PMID: 22710060 DOI: 10.3727/096368912x647162] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Harvesting, expansion, and directed differentiation of human bone marrow-derived mesenchymal stem cells (BM-MSCs) could provide an autologous source of surrogate β-cells that would alleviate the limitations of availability and/or allogenic rejection following pancreatic or islet transplantation. Bone marrow cells were obtained from three adult type 2 diabetic volunteers and three nondiabetic donors. After 3 days in culture, adherent MSCs were expanded for two passages. At passage 3, differentiation was carried out in a three-staged procedure. Cells were cultured in a glucose-rich medium containing several activation and growth factors. Cells were evaluated in vitro by flow cytometry, immunolabeling, RT-PCR, and human insulin and c-peptide release in responses to increasing glucose concentrations. One thousand cell clusters were inserted under the renal capsule of diabetic nude mice followed by monitoring of their diabetic status. At the end of differentiation, ∼5-10% of cells were immunofluorescent for insulin, c-peptide or glucagon; insulin, and c-peptide were coexpressed. Nanogold immunolabeling for electron microscopy demonstrated the presence of c-peptide in the rough endoplasmic reticulum. Insulin-producing cells (IPCs) expressed transcription factors and genes of pancreatic hormones similar to those expressed by pancreatic islets. There was a stepwise increase in human insulin and c-peptide release by IPCs in response to increasing glucose concentrations. Transplantation of IPCs into nude diabetic mice resulted in control of their diabetic status for 3 months. The sera of IPC-transplanted mice contained human insulin and c-peptide but negligible levels of mouse insulin. When the IPC-bearing kidneys were removed, rapid return of diabetic state was noted. BM-MSCs from diabetic and nondiabetic human subjects could be differentiated without genetic manipulation to form IPCs that, when transplanted, could maintain euglycemia in diabetic mice for 3 months. Optimization of the culture conditions are required to improve the yield of IPCs and their functional performance.
Collapse
|
24
|
Zhu D, Chen L, Hong T. Position Statement of the Chinese Diabetes Society regarding stem cell therapy for diabetes. J Diabetes 2012; 4:18-21. [PMID: 22040058 DOI: 10.1111/j.1753-0407.2011.00166.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Dalong Zhu
- Division of Endocrinology, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu, China
| | | | | |
Collapse
|
25
|
Soejitno A, Prayudi PKA. The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab 2011; 2:197-210. [PMID: 23148185 PMCID: PMC3474639 DOI: 10.1177/2042018811420198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A continuous search for a permanent cure for diabetes mellitus is underway with several remarkable discoveries over the past few decades. One of these is the potential of pancreatic stem/progenitor cells to rejuvenate functional β cells. However, the existence of these cell populations is still obscure and a lack of phenotype characterization hampers their use in clinical settings. Cellular reprogramming through induced pluripotent stem (iPS) cell technology can become an alternative strategy to generate insulin-producing cells in a relatively safe (autologous-derived cells, thus devoid of rejection risk) and efficient way (high cellular proliferation) but retain a precise morphological and genetic composition, similar to that of the native β cells. iPS cell technology is a technique of transducing any cell types with key transcription factors to yield embryonic-like stem cells with high clonogenicity and is able to give rise into all cell lineages from three germ layers (endoderm, ectoderm, and mesoderm). This approach can generate β-like pancreatic cells that are fully functional as proven by either in vitro or in vivo studies. This novel proof-of-concept stem cell technology brings new expectations on applying stem cell therapy for diabetes mellitus in clinical settings.
Collapse
Affiliation(s)
- Andreas Soejitno
- Department of Molecular Medicine and Stem Cell Research, Faculty of Medicine Udayana University, Denpasar, Indonesia
| | - Pande Kadek Aditya Prayudi
- Department of Molecular Medicine and Stem Cell Research, Faculty of Medicine Udayana University, Denpasar, Indonesia
| |
Collapse
|
26
|
Abstract
BACKGROUND Diabetes can be treated by β-cell replacement therapy but the supply of graft material from human donors is too limited to make a significant clinical impact. Substitute β-cells generated from stem cell populations offer a potential source for the large numbers of cells required. SOURCES OF DATA Primary peer-reviewed reports of experimental studies. AREAS OF AGREEMENT Embryonic stem cells and/or induced pluripotent stem (iPS) cells are currently the most promising starting populations from which to generate large numbers of β-cells. Differentiation protocols that recapitulate in vivo development generate insulin-expressing cells in vitro. AREAS OF CONTROVERSY Differentiation outcomes may depend on the source of the initial pluripotent cells. The insulin-expressing cells are not fully functional. In vivo maturation is inconsistent and not well understood. AREAS TIMELY FOR DEVELOPING RESEARCH Improvement of current protocols for complete in vitro differentiation to a functional β-cell phenotype. Systematic analysis to identify the most appropriate starting material. Improved purification methods to ensure safety of material for clinical transplantation.
Collapse
Affiliation(s)
- Yue Wu
- Diabetes Research Group, King's College London, London, UK
| | | | | |
Collapse
|
27
|
Dinarvand P, Hashemi SM, Soleimani M. Effect of transplantation of mesenchymal stem cells induced into early hepatic cells in streptozotocin-induced diabetic mice. Biol Pharm Bull 2010; 33:1212-7. [PMID: 20606315 DOI: 10.1248/bpb.33.1212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular replacement therapy for diabetes mellitus has received much attention. In this study we investigated the effect of transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) induced into endoderm and early hepatic cells in streptozotocin (STZ)-induced diabetic mice. Mouse BM-MSCs were cultured in the presence of hepatocyte growth factor (HGF) and fibroblast growth factor (FGF-4) for 2 weeks and transplanted into diabetic mice. Blood glucose levels, intraperitoneal glucose tolerance test, serum insulin, body weight and islets histology were analyzed. The results demonstrated that transplantation of syngeneic induced MSCs could reverse STZ-induced diabetes in mice. The treatment of mice with hyperglycemia and islet destruction resulted in the repair of pancreatic islets. Blood glucose levels, intraperitoneal glucose tolerance test, and serum insulin were significantly recovered in induced BM-MSCs (iBM-MSCs) group. In addition, in the iBM-MSCs group the body weight and the number of islets were significantly increased compared to other groups. The results demonstrate that BM-MSCs induced into endoderm and early hepatic cells are suitable candidates for cell-based therapy of diabetes mellitus.
Collapse
Affiliation(s)
- Peyman Dinarvand
- Department of Stem Cells and Tissue Engineering, Stem Cell Technology Research Center, Tehran 14155-3117, Iran
| | | | | |
Collapse
|
28
|
Zhi ZL, Liu B, Jones PM, Pickup JC. Polysaccharide Multilayer Nanoencapsulation of Insulin-Producing β-Cells Grown as Pseudoislets for Potential Cellular Delivery of Insulin. Biomacromolecules 2010; 11:610-6. [DOI: 10.1021/bm901152k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zheng-liang Zhi
- Metabolic Unit, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom, and Diabetes Research Group, School of Biomedical and Health Sciences, King’s College London, Guy’s Campus, London, United Kingdom
| | - Bo Liu
- Metabolic Unit, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom, and Diabetes Research Group, School of Biomedical and Health Sciences, King’s College London, Guy’s Campus, London, United Kingdom
| | - Peter M Jones
- Metabolic Unit, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom, and Diabetes Research Group, School of Biomedical and Health Sciences, King’s College London, Guy’s Campus, London, United Kingdom
| | - John C Pickup
- Metabolic Unit, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom, and Diabetes Research Group, School of Biomedical and Health Sciences, King’s College London, Guy’s Campus, London, United Kingdom
| |
Collapse
|
29
|
Su J, Hu BH, Lowe WL, Kaufman DB, Messersmith PB. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 2009; 31:308-14. [PMID: 19782393 DOI: 10.1016/j.biomaterials.2009.09.045] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/11/2009] [Indexed: 11/19/2022]
Abstract
Pancreatic islet encapsulation within semi-permeable materials has been proposed for transplantation therapy of type I diabetes mellitus. Polymer hydrogel networks used for this purpose have been shown to provide protection from islet destruction by immunoreactive cells and antibodies. However, one of the fundamental deficiencies with current encapsulation methods is that the permselective barriers cannot protect islets from cytotoxic molecules of low molecular weight that are diffusible into the capsule material, which subsequently results in beta-cell destruction. Use of materials that can locally inhibit the interaction between the permeable small cytotoxic factors and islet cells may prolong the viability and function of encapsulated islet grafts. Here we report the design of anti-inflammatory hydrogels supporting islet cell survival in the presence of diffusible pro-inflammatory cytokines. We demonstrated that a poly(ethylene glycol)-containing hydrogel network, formed by native chemical ligation and presenting an inhibitory peptide for islet cell surface IL-1 receptor, was able to maintain the viability of encapsulated islet cells in the presence of a combination of cytokines including IL-1 beta, TNF-alpha, and INF-gamma. In stark contrast, cells encapsulated in unmodified hydrogels were mostly destroyed by cytokines which diffused into the capsules. At the same time, these peptide-modified hydrogels were able to efficiently protect encapsulated cells against beta-cell specific T-lymphocytes and maintain glucose-stimulated insulin release by islet cells. With further development, the approach of encapsulating cells and tissues within hydrogels presenting anti-inflammatory agents may represent a new strategy to improve cell and tissue graft function in transplantation and tissue engineering applications.
Collapse
Affiliation(s)
- Jing Su
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Human islet research is crucial to understanding the cellular biology of the pancreas in developing therapeutic options for diabetes patients and in attempting to prevent the development of this disease. The national Islet Cell Resource Center Consortium provides human pancreatic islets for diabetes research while simultaneously addressing the need to improve islet isolation and transplantation technologies. Since its inception in 2001, the consortium has supplied 297.6 million islet equivalents to 151 national and international scientists for use in clinical and laboratory projects. Data on the volume, quality, and frequency of shipments substantiate the importance of human islets for diabetes research, as do the number of funded grants for beta-cell projects and publications produced as a direct result of islets supplied by this resource. Limitations in using human islets are discussed, along with the future of islet distribution centers. The information presented here is instructive to clinicians, basic science investigators, and policy makers who determine the availability of funding for such work. Organ procurement coordinators also may find the information useful in explaining to donor families why research consent is so valuable.
Collapse
Affiliation(s)
- John S Kaddis
- Department of Information Sciences, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010-3000, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Current world literature. Curr Opin Organ Transplant 2009; 14:103-11. [PMID: 19337155 DOI: 10.1097/mot.0b013e328323ad31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:189-202. [PMID: 19300094 DOI: 10.1097/med.0b013e328329fcc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
von Herrath M. Can we learn from viruses how to prevent type 1 diabetes?: the role of viral infections in the pathogenesis of type 1 diabetes and the development of novel combination therapies. Diabetes 2009; 58:2-11. [PMID: 19114721 PMCID: PMC2606872 DOI: 10.2337/db08-9027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We will take a journey from basic pathogenetic mechanisms elicited by viral infections that play a role in the development of type 1 diabetes to clinical interventions, where we will discuss novel combination therapies. The role of viral infections in the development of type 1 diabetes is a rather interesting topic because in experimental models viruses appear capable of both accelerating as well as decelerating the immunological processes leading to type 1 diabetes. Consequently, I will discuss some of the underlying mechanisms for each situation and consider methods to investigate the proposed dichotomy for the involvement of viruses in human type 1 diabetes. Prevention of type 1 diabetes by infection supports the so-called "hygiene hypothesis." Interestingly, viruses invoke mechanisms that need to be exploited by novel combinatorial immune-based interventions, the first one being the elimination of autoaggressive T-cells attacking the beta-cells, ultimately leading to their immediate but temporally limited amelioration. The other is the invigoration of regulatory T-cells (Tregs), which can mediate long-term tolerance to beta-cell proteins in the pancreatic islets and draining lymph nodes. In combination, these two immune elements have the potential to permanently stop type 1 diabetes. It is my belief that only combination therapies will enable the permanent prevention and curing of type 1 diabetes.
Collapse
Affiliation(s)
- Matthias von Herrath
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
34
|
Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic beta-cells to correct diabetes in allogeneic mice. Gene Ther 2008; 16:340-8. [PMID: 19112449 DOI: 10.1038/gt.2008.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effectiveness of genetic engineering with lentivectors to protect transplanted cells from allogeneic rejection was examined using, as a model, type 1 diabetes treatment with beta-cell transplantation, whose widespread use has been limited by the requirement for sustained immunosuppressive treatment to prevent graft rejection. We examined whether lentivectors expressing select immunosuppressive proteins encoded by the adenoviral genome early region 3 (AdE3) would protect transplanted beta-cells from an alloimmune attack. The insulin-producing beta-cell line beta TC-tet (C3HeB/FeJ-derived) was transduced with lentiviruses encoding the AdE3 proteins gp19K and RID alpha/beta. The efficiency of lentiviral transduction of beta TC-tet cells exceeded 85%. Lentivector expression of gp19K decreased surface class I major histocompatibility complex expression by over 90%, whereas RID alpha/beta expression inhibited cytokine-induced Fas upregulation by over 75%. beta TC-tet cells transduced with gp19K and RID alpha/beta lentivectors, but not with a control lentivector, provided prolonged correction of hyperglycemia after transplantation into diabetic BALB/c severe combined immunodeficient mice reconstituted with allogeneic immune effector cells or into diabetic allogeneic BALB/c mice. Thus, genetic engineering of beta-cells using gp19K- and RID alpha/beta-expressing lentiviral vectors may provide an alternative that has the potential to eliminate or reduce treatment with the potent immunosuppressive agents necessary at present for prolonged engraftment with transplanted islets.
Collapse
|
35
|
Tateishi K, He J, Taranova O, Liang G, D'Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 2008; 283:31601-7. [PMID: 18782754 DOI: 10.1074/jbc.m806597200] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that islet cell transplantation for patients with type I diabetes holds great promise for achieving insulin independence. However, the extreme shortage of matched organ donors and the necessity for chronic immunosuppression has made it impossible for this treatment to be used for the general diabetic population. Recent success in generating insulin-secreting islet-like cells from human embryonic stem (ES) cells, in combination with the success in deriving human ES cell-like induced pluripotent stem (iPS) cells from human fibroblasts by defined factors, have raised the possibility that patient-specific insulin-secreting islet-like cells might be derived from somatic cells through cell fate reprogramming using defined factors. Here we confirm that human ES-like iPS cells can be derived from human skin cells by retroviral expression of OCT4, SOX2, c-MYC, and KLF4. Importantly, using a serum-free protocol, we successfully generated insulin-producing islet-like clusters (ILCs) from the iPS cells under feeder-free conditions. We demonstrate that, like human ES cells, skin fibroblast-derived iPS cells have the potential to be differentiated into islet-like clusters through definitive and pancreatic endoderm. The iPS-derived ILCs not only contain C-peptide-positive and glucagon-positive cells but also release C-peptide upon glucose stimulation. Thus, our study provides evidence that insulin-secreting ILCs can be generated from skin fibroblasts, raising the possibility that patient-specific iPS cells could potentially provide a treatment for diabetes in the future.
Collapse
Affiliation(s)
- Keisuke Tateishi
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2008; 15:383-93. [PMID: 18594281 DOI: 10.1097/med.0b013e32830c6b8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|