1
|
Eyni MB, Shojaei A, Khasraghi SS. Enhancing performance of in-situ synthesized biocompatible shape memory polyurethane acrylate by cellulose nanocrystals. Int J Biol Macromol 2025; 300:140232. [PMID: 39855508 DOI: 10.1016/j.ijbiomac.2025.140232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
This study presents the development of biocompatible and biodegradable nanocomposites utilizing renewable cellulose nanocrystals (CNCs) in polycaprolactone (PCL)-based polyurethane acrylates (PUA) through in situ polymerization. First, CNCs were derived from cotton linter via acid hydrolysis; then functionalized with 3-methacryloxypropyltrimethoxysilane to produce silane-modified CNCs (S-CNCs). CNCs offered uniform dispersion in PUA up to 2 wt% loading, resulting in significant property enhancements, including ∼60 % increase in tensile strength and ∼25 % increase in Young's modulus. Despite the chemical interaction of S-CNCs with PUA, they tended to agglomerate beyond 0.5 wt% loading due to the promotion of chemical interactions between S-CNC particles at higher concentrations. Despite this, comparable improvements (e.g. ∼50 % in tensile strength and ∼25 % in Young's modulus) were observed at just 0.5 wt% S-CNC loading. Both neat PUA and PUA nanocomposites demonstrated exceptional shape memory properties, with shape fixity exceeding 95 % and shape recovery approaching 100 %. However, S-CNCs also halved the shape recovery time compared to neat PUA, a critical advancement for time-sensitive applications. Meanwhile, the biocompatibility of PUA was largely preserved in the presence of the nanoparticles, particularly for S-CNC.
Collapse
Affiliation(s)
- Mahbubeh Beikmohammadi Eyni
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran.
| | - Samaneh Salkhi Khasraghi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| |
Collapse
|
2
|
Valioglu F, Valipour F, Atazadeh S, Hasansadeh M, Khosrowshahi ND, Nezamdoust FV, Mohammad-Jafarieh P, Rahbarghazi R, Mahdipour M. Recent advances in shape memory scaffolds and regenerative outcomes. Biomed Eng Lett 2024; 14:1279-1301. [PMID: 39465110 PMCID: PMC11502725 DOI: 10.1007/s13534-024-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 10/29/2024] Open
Abstract
The advent of tissue engineering (TE) technologies has revolutionized human medicine over the last few decades. Despite splendid advances in the fabricating and development of different substrates for regenerative purposes, non-responsive static composites have been used to heal injured tissues. After being transplanted into the target sites, grafts will lose their original features, leading to a reduction in regenerative potential. Along with these statements, the use of shape memory polymers (SMPs), smart substrates with unique physicochemical properties, has been extended in different disciplines of regenerative medicine in recent years. These substrates are intelligent and they can easily change physicogeometry features such as stiffness, strain size, shape, etc. in response to external stimuli. It has been proposed that SMPs can easily acquire their original properties after deformation, even in the presence or absence of certain stimuli. It has been indicated that the application of distinct synthesis protocols is required to fabricate dynamically switchable surfaces with prominent cell-to-substrate interaction, resulting in better regulation of cell function, dynamic growth, and reparative mechanisms. Here, we aimed to scrutinize the prominent regenerative properties of SMPs in the TE and regenerative medicine fields. Whether and how SMPs can orchestrate certain cell behavior, with reconfigurable features and adaptability were discussed in detail.
Collapse
Affiliation(s)
- Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Fereshteh Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Atazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Maryam Hasansadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | | | - Fereshteh Vaziri Nezamdoust
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Mohammad-Jafarieh
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Jung W, Chen TY, Santiago AG, Chen P. Memory effects of transcription regulator-DNA interactions in bacteria. Proc Natl Acad Sci U S A 2024; 121:e2407647121. [PMID: 39361642 PMCID: PMC11474097 DOI: 10.1073/pnas.2407647121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
Memory effect refers to the phenomenon where past events influence a system's current and future states or behaviors. In biology, memory effects often arise from intra- or intermolecular interactions, leading to temporally correlated behaviors. Single-molecule studies have shown that enzymes and DNA-binding proteins can exhibit time-correlated behaviors of their activity. While memory effects are well documented and studied in vitro, no such examples exist in cells to our knowledge. Combining single-molecule tracking (SMT) and single-cell protein quantitation, we find in living Escherichia coli cells distinct temporal correlations in the binding/unbinding events on DNA by MerR- and Fur-family metalloregulators, manifesting as memory effects with timescales of ~1 s. These memory effects persist irrespective of the type of the metalloregulators or their metallation states. Moreover, these temporal correlations of metalloregulator-DNA interactions are associated with spatial confinements of the metalloregulators near their DNA binding sites, suggesting microdomains of ~100 nm in size that possibly result from the spatial organizations of the bacterial chromosome without the involvement of membranes. These microdomains likely facilitate repeated binding events, enhancing regulator-DNA contact frequency and potentially gene regulation efficiency. These findings provide unique insights into the spatiotemporal dynamics of protein-DNA interactions in bacterial cells, introducing the concept of microdomains as a crucial player in memory effect-driven gene regulation.
Collapse
Affiliation(s)
- Won Jung
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Tai-Yen Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
- Department of Chemistry, University of Houston, Houston, TX77204
| | - Ace George Santiago
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
- 10x Genomics, Pleasanton, CA94588
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
4
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
5
|
Slavkovic V, Palic N, Milenkovic S, Zivic F, Grujovic N. Thermo-Mechanical Characterization of 4D-Printed Biodegradable Shape-Memory Scaffolds Using Four-Axis 3D-Printing System. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5186. [PMID: 37512458 PMCID: PMC10386114 DOI: 10.3390/ma16145186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
This study was conducted on different models of biodegradable SMP (shape-memory polymer) scaffolds. A comparison was conducted utilizing a basic FDM (fused deposition modeling)/MEX (material extrusion) printer with a standard printing technique and a novel, modified, four-axis printing method with a PLA (poly lactic acid) polymer as the printing material. This way of making the 4D-printed BVS (biodegradable vascular stent) made it possible to achieve high-quality surfaces due to the difference in printing directions and improved mechanical properties-tensile testing showed a doubling in the elongation at break when using the four-axis-printed specimen compared to the regular printing, of 8.15 mm and 3.92 mm, respectfully. Furthermore, the supports created using this method exhibited a significant level of shape recovery following thermomechanical programming. In order to test the shape-memory effect, after the thermomechanical programming, two approaches were applied: one approach was to heat up the specimen after unloading it inside temperature chamber, and the other was to heat it in a warm bath. Both approaches led to an average recovery of the original height of 99.7%, while the in-chamber recovery time was longer (120 s) than the warm-bath recovery (~3 s) due to the more direct specimen heating in the latter case. This shows that 4D printing using the newly proposed four-axis printing is an effective, promising technique that can be used in the future to make biodegradable structures from SMP.
Collapse
Affiliation(s)
- Vukasin Slavkovic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nikola Palic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Fatima Zivic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad Grujovic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
6
|
Chittari SS, Obermeyer AC, Knight AS. Investigating Fundamental Principles of Nonequilibrium Assembly Using Temperature-Sensitive Copolymers. J Am Chem Soc 2023; 145:6554-6561. [PMID: 36913711 DOI: 10.1021/jacs.3c00883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Both natural biomaterials and synthetic materials benefit from complex energy landscapes that provide the foundation for structure-function relationships and environmental sensitivity. Understanding these nonequilibrium dynamics is important for the development of design principles to harness this behavior. Using a model system of poly(ethylene glycol) methacrylate-based thermoresponsive lower critical solution temperature (LCST) copolymers, we explored the impact of composition and stimulus path on nonequilibrium thermal hysteretic behavior. Through turbidimetry analysis of nonsuperimposable heat-cool cycles, we observe that LCST copolymers show clear hysteresis that varies as a function of pendent side chain length and hydrophobicity. Hysteresis is further impacted by the temperature ramp rate, as insoluble states can be kinetically trapped under optimized temperature protocols. This systematic study brings to light fundamental principles that can enable the harnessing of out-of-equilibrium effects in synthetic soft materials.
Collapse
Affiliation(s)
- Supraja S Chittari
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Abigail S Knight
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Naveen BS, Jose NT, Krishnan P, Mohapatra S, Pendharkar V, Koh NYH, Lim WY, Huang WM. Evolution of Shore Hardness under Uniaxial Tension/Compression in Body-Temperature Programmable Elastic Shape Memory Hybrids. Polymers (Basel) 2022; 14:4872. [PMID: 36432998 PMCID: PMC9697891 DOI: 10.3390/polym14224872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022] Open
Abstract
Body-temperature programmable elastic shape memory hybrids (SMHs) have great potential for the comfortable fitting of wearable devices. Traditionally, shore hardness is commonly used in the characterization of elastic materials. In this paper, the evolution of shore hardness in body-temperature programmable elastic SMHs upon cyclic loading, and during the shape memory cycle, is systematically investigated. Upon cyclic loading, similar to the Mullins effect, significant softening appears, when the applied strain is over a certain value. On the other hand, after programming, in general, the measured hardness increases with increase in programming strain. However, for certain surfaces, the hardness decreases slightly and then increases rapidly. The underlying mechanism for this phenomenon is explained by the formation of micro-gaps between the inclusion and the matrix after programming. After heating, to melt the inclusions, all samples (both cyclically loaded and programmed) largely recover their original hardness.
Collapse
Affiliation(s)
- Balasundaram Selvan Naveen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nivya Theresa Jose
- Polymer Science and Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Pranav Krishnan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Subham Mohapatra
- Department of Mechanical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Vivek Pendharkar
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nicholas Yuan Han Koh
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Woon Yong Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
8
|
Abstract
Shape memory materials have been widely used as programmable soft matter for developing multifunctional hybrid actuators. Several challenges of fabrication and effective modelling of these soft actuating systems can be addressed by implementing novel 3D printing techniques and simulations to aid the designer. In this study, the temperature-dependent recovery of an embedded U-shaped Shape Memory Alloy (SMA) and the shape fixity of a 3D-printed Shape Memory Polymer (SMP) matrix were exploited to create a bi-state Shape Memory Composite (SMC) soft actuator. Electrical heating allowed the SMA to achieve the bi-state condition, undergoing phase transformation to a U shape in the rubbery phase and a flat shape in the glassy phase of the SMP. A COMSOL Multiphysics model was developed to predict the deformation and recovery of the SMC by leveraging the in-built SMA constitutive relations and user-defined material subroutine for the SMP. The bi-state actuation model was validated by capturing the mid-point displacement of the 80 mm length × 10 mm width × 2 mm-thick 3D-printed SMC. The viability of the SMC as a periodic actuator in terms of shape recovery was addressed through modelling and simulation. Results indicated that the proposed COMSOL model was in good agreement with the experiment. In addition, the effect of varying the volume ratio of the SMA wire in the SMC on the maximum and recovered deflection was also obtained. Our model can be used to design SMC actuators with various performance profiles to facilitate future designs in soft robotics and wearable technology applications.
Collapse
|
9
|
Naveen BS, Naseem ABM, Ng CJL, Chan JW, Lee RZX, Teo LET, Wang T, Nripan M, Huang WM. Body-Temperature Programmable Soft-Shape Memory Hybrid Sponges for Comfort Fitting. Polymers (Basel) 2021; 13:3501. [PMID: 34685259 PMCID: PMC8537981 DOI: 10.3390/polym13203501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Porous shape memory hybrids are fabricated with different matrix (silicone) hardness and different inclusion (polycaprolactone, PCL) ratios. They are characterized to obtain their mechanical response to cyclic loads (with/without pre-straining/programming) and their shape memory performances after body-temperature programming are investigated. These materials are lightweight due to their porous structures. Wetted hydrogels used in the fabrication process for creating pores are reusable and hence this process is eco-friendly. These porous shape memory hybrids exhibit the good shape memory effect of around 90% with higher inclusion (PCL) ratios, which is better than the solid versions reported in the literature. Hence, it is concluded that these materials have great potential to be used in, for instance, insoles and soles for comfort fitting, as demonstrated.
Collapse
Affiliation(s)
- Balasundaram Selvan Naveen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (B.S.N.); (A.B.M.N.); (C.J.L.N.); (J.W.C.); (R.Z.X.L.); (L.E.T.T.)
| | - Azharuddin Bin Mohamed Naseem
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (B.S.N.); (A.B.M.N.); (C.J.L.N.); (J.W.C.); (R.Z.X.L.); (L.E.T.T.)
| | - Catherine Jia Lin Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (B.S.N.); (A.B.M.N.); (C.J.L.N.); (J.W.C.); (R.Z.X.L.); (L.E.T.T.)
| | - Jun Wei Chan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (B.S.N.); (A.B.M.N.); (C.J.L.N.); (J.W.C.); (R.Z.X.L.); (L.E.T.T.)
| | - Rayner Zheng Xian Lee
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (B.S.N.); (A.B.M.N.); (C.J.L.N.); (J.W.C.); (R.Z.X.L.); (L.E.T.T.)
| | - Leonard Ee Tong Teo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (B.S.N.); (A.B.M.N.); (C.J.L.N.); (J.W.C.); (R.Z.X.L.); (L.E.T.T.)
| | - Taoxi Wang
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China;
| | - Mathews Nripan
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (B.S.N.); (A.B.M.N.); (C.J.L.N.); (J.W.C.); (R.Z.X.L.); (L.E.T.T.)
| |
Collapse
|
10
|
He X, Zeng L, Cheng X, Yang C, Chen J, Chen H, Ni H, Bai Y, Yu W, Zhao K, Hu P. Shape memory composite hydrogel based on sodium alginate dual crosslinked network with carboxymethyl cellulose. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. Shape memory materials and 4D printing in pharmaceutics. Adv Drug Deliv Rev 2021; 173:216-237. [PMID: 33774118 DOI: 10.1016/j.addr.2021.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Shape memory materials (SMMs), including alloys and polymers, can be programmed into a temporary configuration and then recover the original shape in which they were processed in response to a triggering external stimulus (e.g. change in temperature or pH, contact with water). For this behavior, SMMs are currently raising a lot of attention in the pharmaceutical field where they could bring about important innovations in the current treatments. 4D printing involves processing of SMMs by 3D printing, thus adding shape evolution over time to the already numerous customization possibilities of this new manufacturing technology. SMM-based drug delivery systems (DDSs) proposed in the scientific literature were here reviewed and classified according to the target pursued through the shape recovery process. Administration route, therapeutic goal, temporary and original shape, triggering stimulus, main innovation features and possible room for improvement of the DDSs were especially highlighted.
Collapse
|
12
|
Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 2021; 6:e10206. [PMID: 34027093 PMCID: PMC8126827 DOI: 10.1002/btm2.10206] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
In clinical terms, bone grafting currently involves the application of autogenous, allogeneic, or xenogeneic bone grafts, as well as natural or artificially synthesized materials, such as polymers, bioceramics, and other composites. Many of these are associated with limitations. The ideal scaffold for bone tissue engineering should provide mechanical support while promoting osteogenesis, osteoconduction, and even osteoinduction. There are various structural complications and engineering difficulties to be considered. Here, we describe the biomimetic possibilities of the modification of natural or synthetic materials through physical and chemical design to facilitate bone tissue repair. This review summarizes recent progresses in the strategies for constructing biomimetic scaffolds, including ion-functionalized scaffolds, decellularized extracellular matrix scaffolds, and micro- and nano-scale biomimetic scaffold structures, as well as reactive scaffolds induced by physical factors, and other acellular scaffolds. The fabrication techniques for these scaffolds, along with current strategies in clinical bone repair, are described. The developments in each category are discussed in terms of the connection between the scaffold materials and tissue repair, as well as the interactions with endogenous cells. As the advances in bone tissue engineering move toward application in the clinical setting, the demonstration of the therapeutic efficacy of these novel scaffold designs is critical.
Collapse
Affiliation(s)
- Sijing Jiang
- Department of Plastic SurgeryFirst Affiliated Hospital of Anhui Medical University, Anhui Medical UniversityHefeiChina
| | - Mohan Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| |
Collapse
|
13
|
Salah T, Ziout A. Optimization of Actuation Load and Shape Recovery Speed of Polyester-Based/Fe 3O 4 Composite Foams. MATERIALS 2021; 14:ma14051264. [PMID: 33799981 PMCID: PMC7962100 DOI: 10.3390/ma14051264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
In this research, polyester-based polymers/Fe3O4 nanocomposite foams were prepared in order to study their performance; namely shape recovery speed and actuation load. A foamed structure was obtained through a solid-state foaming process, which was studied and optimized in previous research. The optimum foaming parameters were applied in an attempt to achieve the highest foaming ratio possible. A Taguchi Map was then designed to determine the number of experiments to be conducted. The experimental results showed that the maximum actuation load obtained was 3.35 N, while optimal (fastest) recovery speed was 6.36 mm/min. Furthermore, temperature had no impact on the actuation load as long as a temperature above the Tg was applied. Moreover, the addition of nanoparticles reduced shape recovery speed due to discontinuity within the polymer matrix.
Collapse
|
14
|
Antony GJM, Poulose P, Aruna ST, Shanuja SK, Gnanamani A, Suneetha YK, Raja S. Synthesis and Properties of a New Chitosan‐Based Shape Memory Polymer and its Composites. ChemistrySelect 2021. [DOI: 10.1002/slct.202004712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Priya Poulose
- Structural Technological Division CSIR-National Aerospace Laboratories Bangalore 560017 India
| | | | | | - Arumugam Gnanamani
- Microbiology Division CSIR- Central Leather Research Institute Chennai 600020
| | | | - Samikkannu Raja
- Structural Technological Division CSIR-National Aerospace Laboratories Bangalore 560017 India
| |
Collapse
|
15
|
Zirdehi EM, Dumlu H, Eggeler G, Varnik F. On the Size Effect of Additives in Amorphous Shape Memory Polymers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E327. [PMID: 33435200 PMCID: PMC7826723 DOI: 10.3390/ma14020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Small additive molecules often enhance structural relaxation in polymers. We explore this effect in a thermoplastic shape memory polymer via molecular dynamics simulations. The additive-to-monomer size ratio is shown to play a key role here. While the effect of additive-concentration on the rate of shape recovery is found to be monotonic in the investigated range, a non-monotonic dependence on the size-ratio emerges at temperatures close to the glass transition. This work thus identifies the additives' size to be a qualitatively novel parameter for controlling the recovery process in polymer-based shape memory materials.
Collapse
Affiliation(s)
- Elias M. Zirdehi
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany;
| | - Hakan Dumlu
- Institute for Materials (IFM), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (H.D.); (G.E.)
| | - Gunther Eggeler
- Institute for Materials (IFM), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (H.D.); (G.E.)
| | - Fathollah Varnik
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany;
| |
Collapse
|
16
|
Shape Memory Biomaterials and Their Clinical Applications. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Sarvari R, Keyhanvar P, Agbolaghi S, Gholami Farashah MS, Sadrhaghighi A, Nouri M, Roshangar L. Shape-memory materials and their clinical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1833010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, University of Medical Sciences, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Thermo-Responsive Shape Memory Effect and Conversion of Porous Structure in a Polyvinyl Chloride Foam. Polymers (Basel) 2020; 12:polym12092025. [PMID: 32899892 PMCID: PMC7563293 DOI: 10.3390/polym12092025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022] Open
Abstract
In this paper, a thermo-responsive shape memory effect in a polyvinyl chloride thermoset foam is characterized. Excellent shape recovery performance is observed in foam samples programmed both at room temperature and above their transition temperature. The conversion of porous structures in the foam from closed-cell to open-cell after a shape memory effect cycle is revealed via a series of specially designed oil-dripping experiments and optical images of the micro pores. Programming the strain higher than 20% results in an apparent increase in open-cell level, whereas programming temperatures have almost no influence.
Collapse
|
19
|
Xiao R, Huang WM. Heating/Solvent Responsive Shape-Memory Polymers for Implant Biomedical Devices in Minimally Invasive Surgery: Current Status and Challenge. Macromol Biosci 2020; 20:e2000108. [PMID: 32567193 DOI: 10.1002/mabi.202000108] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/03/2020] [Indexed: 12/16/2022]
Abstract
This review is about the fundamentals and practical issues in applying both heating and solvent responsive shape memory polymers (SMPs) for implant biomedical devices via minimally invasive surgery. After revealing the general requirements in the design of biomedical devices based on SMPs and the fundamentals for the shape-memory effect in SMPs, the underlying mechanisms, characterization methods, and several representative biomedical applications, including vascular stents, tissue scaffolds, occlusion devices, drug delivery systems, and the current R&D status of them, are discussed. The new opportunities arising from emerging technologies, such as 3D printing, and new materials, such as vitrimer, are also highlighted. Finally, the major challenge that limits the practical clinical applications of SMPs at present is addressed.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
20
|
|
21
|
Zhu H, Chen S, Song J, Ren S, Fang G, Li S. Depolymerization of proanthocyanidins and application exploration in the field of preparation of flexible materials. NEW J CHEM 2020. [DOI: 10.1039/d0nj04191b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heat-induced flexible shape memory material was prepared.
Collapse
Affiliation(s)
- Hongfei Zhu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education
- Northeast Forestry University
- Harbin 150040
- China
- College of Materials Science and Engineering
| | - Siqi Chen
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education
- Northeast Forestry University
- Harbin 150040
- China
- College of Materials Science and Engineering
| | - Jie Song
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education
- Northeast Forestry University
- Harbin 150040
- China
- College of Materials Science and Engineering
| | - Shixue Ren
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education
- Northeast Forestry University
- Harbin 150040
- China
- College of Materials Science and Engineering
| | - Guizhen Fang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education
- Northeast Forestry University
- Harbin 150040
- China
- College of Materials Science and Engineering
| | - Shujun Li
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education
- Northeast Forestry University
- Harbin 150040
- China
- College of Materials Science and Engineering
| |
Collapse
|
22
|
Electrospun PCL-based polyurethane/HA microfibers as drug carrier of dexamethasone with enhanced biodegradability and shape memory performances. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04568-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Brulé V, Rafsanjani A, Asgari M, Western TL, Pasini D. Three-dimensional functional gradients direct stem curling in the resurrection plant Selaginella lepidophylla. J R Soc Interface 2019; 16:20190454. [PMID: 31662070 PMCID: PMC6833318 DOI: 10.1098/rsif.2019.0454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
Upon hydration and dehydration, the vegetative tissue of Selaginella lepidophylla can reversibly swell and shrink to generate complex morphological transformations. Here, we investigate how structural and compositional properties at tissue and cell wall levels in S. lepidophylla lead to different stem curling profiles between inner and outer stems. Our results show that directional bending in both stem types is associated with cross-sectional gradients of tissue density, cell orientation and secondary cell wall composition between adaxial and abaxial stem sides. In inner stems, longitudinal gradients of cell wall thickness and composition affect tip-to-base tissue swelling and shrinking, allowing for more complex curling as compared to outer stems. Together, these features yield three-dimensional functional gradients that allow the plant to reproducibly deform in predetermined patterns that vary depending on the stem type. This study is the first to demonstrate functional gradients at different hierarchical levels combining to operate in a three-dimensional context.
Collapse
Affiliation(s)
- Véronique Brulé
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC, CanadaH3A 1B1
| | - Ahmad Rafsanjani
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC, CanadaH3A 0C3
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Meisam Asgari
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC, CanadaH3A 0C3
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| | - Tamara L. Western
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC, CanadaH3A 1B1
| | - Damiano Pasini
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC, CanadaH3A 0C3
| |
Collapse
|
24
|
|
25
|
Cheng X, Chen Y, Dai S, Bilek MMM, Bao S, Ye L. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation. J Mech Behav Biomed Mater 2019; 100:103372. [PMID: 31369958 DOI: 10.1016/j.jmbbm.2019.103372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/30/2019] [Accepted: 07/24/2019] [Indexed: 11/19/2022]
Abstract
Shape memory polyurethanes (SMPU) have been of great interest in biomedical applications because of their unique ability to recover a primary shape by external actuation. This advantage can allow for easy suture and minimum tissue damage caused by surgery. Since SMPU suffer from low stiffness and low strength, carbon fibres have been widely used to reinforce SMPU, and their shape memory properties have been investigated using thermomechanical tensile tests. In reality, however, bending situations are more common than tensile situations, such as human skulls. In this study, carbon fibre reinforced SMPU (CF/SMPU) composites were studied as promising cranial implants that can offer shape memory properties, shape flexibility and high strength. First, the basic properties of pristine SMPU and CF/SMPU composites were characterised, including glass transition temperature (Tg), the viscosity of SMPU, the morphology of CF/SMPU, and their tensile and flexural mechanical properties. Then, a new method using rheometer was developed to study the shape memory behaviours of SMPU and CF/SMPU with three-point bending under relatively small deformations (≤1%), including flexural stress during programming and cooling, and bending recovery force during shape recovery. Finally, due to the invisibility of recovery process that was conducted in an enclosed temperature-controlling chamber of rheometer, the finite element method (FEM) was used to simulate the bending recovery test. The results showed carbon fibres significantly enhanced the mechanical properties (Young's modulus and flexural modulus) of SMPU. In terms of bending shape recovery, compared to pristine SMPU, CF/SMPU composites obtained substantially higher flexural stress during programming and cooling processes, and larger, more stable recovery force during recovery. The FEM results consolidated the peak recovery force of SMPU and the continuously growing recovery force of CF/SMPU as the temperature increased. Our findings on the improved mechanical and shape memory properties can provide a solid foundation for the potential applications of CF/SMPU composites as cranial implants.
Collapse
Affiliation(s)
- Xinying Cheng
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, 2006, Australia
| | - Yuan Chen
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, 2006, Australia.
| | - Shaocong Dai
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, 2006, Australia
| | - Marcela M M Bilek
- Applied and Plasma Physics, School of Physics, The University of Sydney, NSW, 2006, Australia
| | - Shisan Bao
- Discipline of Pathology and School of Medical Science, The University of Sydney, NSW, 2006, Australia; Bosch Institute, The University of Sydney, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, NSW, 2006, Australia; Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Lin Ye
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
26
|
Yang Z, Duan C, Sun Y, Wang T, Zhang X, Wang Q. Utilizing Polyhexahydrotriazine (PHT) to Cross-Link Polyimide Oligomers for High-Temperature Shape Memory Polymer. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zenghui Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chunjian Duan
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yong Sun
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tingmei Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xinrui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qihua Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
27
|
Shape memory and self-healing properties of polymer-grafted Fe3O4 nanocomposites implemented with supramolecular quadruple hydrogen bonds. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
|
29
|
Molecular design, synthesis and biomedical applications of stimuli-responsive shape memory hydrogels. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Zhao W, Liu L, Zhang F, Leng J, Liu Y. Shape memory polymers and their composites in biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:864-883. [PMID: 30678978 DOI: 10.1016/j.msec.2018.12.054] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/17/2018] [Indexed: 11/29/2022]
Abstract
As a kind of intelligent material, shape memory polymer (SMP) can respond to outside stimuli and possesses good properties including shape memory effect, deformability and biological compatibility, etc. SMPs have been introduced for medical applications such as tissue engineering, biological sutures, stents and bladder sensors. Due to the shape memory effect, the medical devices based on SMP can be implanted into body through minimally invasive surgery in contraction or folded state and recovered to their requisite original shapes at target position. In this paper, a review of SMPs utilized in biomedical applications and their actuation methods are listed. Various biomedical applications and potential applications based on the beneficial properties of SMP are also summarized.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 YiKuang Street, Harbin 150080, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 YiKuang Street, Harbin 150080, People's Republic of China.
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin 150001, People's Republic of China.
| |
Collapse
|
31
|
Formation of Poly(ε-caprolactone) Networks via Supramolecular Hydrogen Bonding Interactions. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2199-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Chang P, Xu S, Zhao B, Zheng S. A design of shape memory networks of poly(ε-caprolactone)s via POSS-POSS interactions. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengfei Chang
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 PR China
| | - Sen Xu
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 PR China
| | - Bingjie Zhao
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 PR China
| | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 PR China
| |
Collapse
|
33
|
Synthesis and characterization of bio-compatible shape memory polymers with potential applications to endovascular embolization of intracranial aneurysms. J Mech Behav Biomed Mater 2018; 88:422-430. [DOI: 10.1016/j.jmbbm.2018.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 11/19/2022]
|
34
|
Prem N, Vega JC, Böhm V, Sindersberger D, Monkman GJ, Zimmermann K. Properties of Polydimethylsiloxane and Magnetoactive Polymers with Electroconductive Particles. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nina Prem
- Mechatronics Research Unit; OTH-Regensburg; Seybothstr. 2, 93053 Regensburg Germany
| | - Jhohan Chavez Vega
- Technical Mechanics Group, Technische Universität Ilmenau,; Max-Planck-Ring 14, 98693 Ilmenau Germany
| | - Valter Böhm
- Technical Mechanics Group, Technische Universität Ilmenau,; Max-Planck-Ring 14, 98693 Ilmenau Germany
| | - Dirk Sindersberger
- Mechatronics Research Unit; OTH-Regensburg; Seybothstr. 2, 93053 Regensburg Germany
| | - Gareth J. Monkman
- Mechatronics Research Unit; OTH-Regensburg; Seybothstr. 2, 93053 Regensburg Germany
| | - Klaus Zimmermann
- Technical Mechanics Group, Technische Universität Ilmenau,; Max-Planck-Ring 14, 98693 Ilmenau Germany
| |
Collapse
|
35
|
Huang H, Su Y, Zhou X, Liao C, Hsu C, Du Y, Xu J, Wang X. Shaping monodispersed azo molecular glass microspheres using polarized light. SOFT MATTER 2018; 14:5847-5855. [PMID: 29957819 DOI: 10.1039/c8sm00813b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Azo molecular glass (IAC-4) microspheres with a monodispersed diameter over ten microns were fabricated by microfluidics and unique shape manipulation was achieved based on their fascinating photoinduced deformation behaviour. After irradiation with a polarized laser beam (λ = 488 nm), the IAC-4 microspheres were transformed into uniform mushroom-like particles, and their three-dimensional (3D) asymmetric shapes were precisely manipulated by adjusting the irradiation time and the polarization state of light. By observing the particle morphology in three orthogonal views (top view, front view and side view) by scanning electron microscopy (SEM), the photoinduced deformation behaviour of the ten-micron-sized particles was comprehensively revealed in the 3D space for the first time. It was observed that the photoinduced deformation asymmetrically occurred on the upper part of the microspheres due to the strong optical absorption of the azo chromophores. Besides, the deformation manner of the upper part was decided by the direction of the electric vibration of the refracted light. This work not only depicts a clear picture of the photoinduced deformation behaviour of the ten-micron-sized azo particles upon polarized light irradiation, but also provides a new method to controllably manipulate the particle shape from spheres to complex 3D architectures.
Collapse
Affiliation(s)
- Hao Huang
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ding Z, Yuan L, Guan Q, Gu A, Liang G. A reconfiguring and self-healing thermoset epoxy/chain-extended bismaleimide resin system with thermally dynamic covalent bonds. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Liu D, Nie WC, Wen ZB, Fan CJ, Xiao WX, Li B, Lin XJ, Yang KK, Wang YZ. Strategy for Constructing Shape-Memory Dynamic Networks through Charge-Transfer Interactions. ACS Macro Lett 2018; 7:705-710. [PMID: 35632951 DOI: 10.1021/acsmacrolett.8b00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recently, charge transfer (CT) interactions have received attention for the fabrication of supramolecular architectures due to their inherent compatibilities, directional nature and solvent tolerance. In this study, we report a shape-memory dynamic network constructed by the CT interaction between π-electron-rich naphthalene embedded in poly(ethylene glycol) (PEG-Np) and π-electron-poor six-arm methyl-viologen-ended poly(ethylene glycol) (6PEG-MV), which was verified by ultraviolet-visible spectroscopy (UV-vis), fluorescence spectra and swelling tests. Interestingly, the mechanical properties of this CT complex were dramatically enhanced compared with the control without CT interaction. Moreover, the excellent shape-memory effect (SME) was realized due to the good crystallization of the PEG segment and stable netpoints based on the CT interaction. In addition, as we expected, this supramolecular polymer network is self-healable and reprocessable.
Collapse
Affiliation(s)
- Dan Liu
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Wu-Cheng Nie
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Zhi-Bin Wen
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Cheng-Jie Fan
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Wen-Xia Xiao
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Bei Li
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Xu-Jing Lin
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
38
|
Recent Progress in Shape Memory Polymers for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2118-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Du L, Xu ZY, Fan CJ, Xiang G, Yang KK, Wang YZ. A Fascinating Metallo-Supramolecular Polymer Network with Thermal/Magnetic/Light-Responsive Shape-Memory Effects Anchored by Fe3O4 Nanoparticles. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02641] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lan Du
- Center
for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE),
College of Chemistry, National Engineering Laboratory of Eco-Friendly
Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials
Engineering, and ‡College of Physics, Sichuan University, Chengdu 610064, China
| | - Zhi-Yuan Xu
- Center
for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE),
College of Chemistry, National Engineering Laboratory of Eco-Friendly
Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials
Engineering, and ‡College of Physics, Sichuan University, Chengdu 610064, China
| | - Cheng-Jie Fan
- Center
for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE),
College of Chemistry, National Engineering Laboratory of Eco-Friendly
Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials
Engineering, and ‡College of Physics, Sichuan University, Chengdu 610064, China
| | - Gang Xiang
- Center
for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE),
College of Chemistry, National Engineering Laboratory of Eco-Friendly
Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials
Engineering, and ‡College of Physics, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- Center
for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE),
College of Chemistry, National Engineering Laboratory of Eco-Friendly
Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials
Engineering, and ‡College of Physics, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Center
for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE),
College of Chemistry, National Engineering Laboratory of Eco-Friendly
Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials
Engineering, and ‡College of Physics, Sichuan University, Chengdu 610064, China
| |
Collapse
|
40
|
Wang TX, Renata C, Chen HM, Huang WM. Elastic Shape Memory Hybrids Programmable at Around Body-Temperature for Comfort Fitting. Polymers (Basel) 2017; 9:polym9120674. [PMID: 30965970 PMCID: PMC6418555 DOI: 10.3390/polym9120674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 11/26/2022] Open
Abstract
A series of silicone based elastic shape memory hybrids are fabricated. Their shape memory performance, mechanical behaviors at room temperature with/without programming and during fitting at 37 °C are investigated. It is found that these materials have good shape memory effect and are always highly elastic. At 37 °C, there are 10 min or more for fitting. Thus, it is concluded that this type of material has great potential as an elastic shape memory material for comfort fitting.
Collapse
Affiliation(s)
- Tao Xi Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Chris Renata
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Hong Mei Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
41
|
Peterson GI, Dobrynin AV, Becker ML. Biodegradable Shape Memory Polymers in Medicine. Adv Healthc Mater 2017; 6. [PMID: 28941154 DOI: 10.1002/adhm.201700694] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/04/2017] [Indexed: 01/13/2023]
Abstract
Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications.
Collapse
Affiliation(s)
- Gregory I. Peterson
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| | - Andrey V. Dobrynin
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| | - Matthew L. Becker
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| |
Collapse
|
42
|
Díaz Lantada A. Systematic Development Strategy for Smart Devices Based on Shape-Memory Polymers. Polymers (Basel) 2017; 9:polym9100496. [PMID: 30965799 PMCID: PMC6418897 DOI: 10.3390/polym9100496] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 11/16/2022] Open
Abstract
Shape-memory polymers are outstanding "smart" materials, which can perform important geometrical changes, when activated by several types of external stimuli, and which can be applied to several emerging engineering fields, from aerospace applications, to the development of biomedical devices. The fact that several shape-memory polymers can be structured in an additive way is an especially noteworthy advantage, as the development of advanced actuators with complex geometries for improved performance can be achieved, if adequate design and manufacturing considerations are taken into consideration. Present study presents a review of challenges and good practices, leading to a straightforward methodology (or integration of strategies), for the development of "smart" actuators based on shape-memory polymers. The combination of computer-aided design, computer-aided engineering and additive manufacturing technologies is analyzed and applied to the complete development of interesting shape-memory polymer-based actuators. Aspects such as geometrical design and optimization, development of the activation system, selection of the adequate materials and related manufacturing technologies, training of the shape-memory effect, final integration and testing are considered, as key processes of the methodology. Current trends, including the use of low-cost 3D and 4D printing, and main challenges, including process eco-efficiency and biocompatibility, are also discussed and their impact on the proposed methodology is considered.
Collapse
Affiliation(s)
- Andrés Díaz Lantada
- Product Development Lab, Mechanical Engineering Department, Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal 2, 28006 Madrid, Spain.
| |
Collapse
|
43
|
Yan P, Zhao W, Jiang L, Wu B, Hu K, Yuan Y, Lei J. Reconfiguration and shape memory triggered by heat and light of carbon nanotube-polyurethane vitrimer composites. J Appl Polym Sci 2017. [DOI: 10.1002/app.45784] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peiyao Yan
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Wei Zhao
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Bo Wu
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Kai Hu
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Ye Yuan
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| |
Collapse
|
44
|
Li N, Chen W, Chen G, Tian J. Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength. Carbohydr Polym 2017; 171:77-84. [DOI: 10.1016/j.carbpol.2017.04.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/31/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
|
45
|
Wu W, Ye W, Wu Z, Geng P, Wang Y, Zhao J. Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E970. [PMID: 28825617 PMCID: PMC5578336 DOI: 10.3390/ma10080970] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
The success of the 3D-printing process depends upon the proper selection of process parameters. However, the majority of current related studies focus on the influence of process parameters on the mechanical properties of the parts. The influence of process parameters on the shape-memory effect has been little studied. This study used the orthogonal experimental design method to evaluate the influence of the layer thickness H, raster angle θ, deformation temperature Td and recovery temperature Tr on the shape-recovery ratio Rr and maximum shape-recovery rate Vm of 3D-printed polylactic acid (PLA). The order and contribution of every experimental factor on the target index were determined by range analysis and ANOVA, respectively. The experimental results indicated that the recovery temperature exerted the greatest effect with a variance ratio of 416.10, whereas the layer thickness exerted the smallest effect on the shape-recovery ratio with a variance ratio of 4.902. The recovery temperature exerted the most significant effect on the maximum shape-recovery rate with the highest variance ratio of 1049.50, whereas the raster angle exerted the minimum effect with a variance ratio of 27.163. The results showed that the shape-memory effect of 3D-printed PLA parts depended strongly on recovery temperature, and depended more weakly on the deformation temperature and 3D-printing parameters.
Collapse
Affiliation(s)
- Wenzheng Wu
- School of Mechanical Science and Engineering, Jilin University, Renmin Street 5988, Changchun 130025, China.
| | - Wenli Ye
- School of Mechanical Science and Engineering, Jilin University, Renmin Street 5988, Changchun 130025, China.
| | - Zichao Wu
- School of Mechanical Science and Engineering, Jilin University, Renmin Street 5988, Changchun 130025, China.
| | - Peng Geng
- School of Mechanical Science and Engineering, Jilin University, Renmin Street 5988, Changchun 130025, China.
| | - Yulei Wang
- School of Mechanical Science and Engineering, Jilin University, Renmin Street 5988, Changchun 130025, China.
| | - Ji Zhao
- School of Mechanical Science and Engineering, Jilin University, Renmin Street 5988, Changchun 130025, China.
| |
Collapse
|
46
|
Hendrikson WJ, Rouwkema J, Clementi F, van Blitterswijk CA, Farè S, Moroni L. Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication 2017; 9:031001. [PMID: 28726680 DOI: 10.1088/1758-5090/aa8114] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tissue engineering needs innovative solutions to better fit the requirements of a minimally invasive approach, providing at the same time instructive cues to cells. The use of shape memory polyurethane has been investigated by producing 4D scaffolds via additive manufacturing technology. Scaffolds with two different pore network configurations (0/90° and 0/45°) were characterized by dynamic-mechanical analysis. The thermo-mechanical analysis showed a Tg at about 32 °C (Tg = T trans), indicating no influence of the fabrication process on the transition temperature. In addition, shape recovery tests showed a good recovery of the permanent shape for both scaffold configurations. When cells were seeded onto the scaffolds in the temporary shape and the permanent shape was recovered, cells were significantly more elongated after shape recovery. Thus, the mechanical stimulus imparted by shape recovery is able to influence the shape of cells and nuclei. The obtained results indicate that a single mechanical stimulus is sufficient to initiate changes in the morphology of adherent cells.
Collapse
Affiliation(s)
- Wilhelmus J Hendrikson
- University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, 7500AE, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Xie H, Cheng CY, Deng XY, Fan CJ, Du L, Yang KK, Wang YZ. Creating Poly(tetramethylene oxide) Glycol-Based Networks with Tunable Two-Way Shape Memory Effects via Temperature-Switched Netpoints. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02773] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hui Xie
- Center for Degradable and
Flame-Retardant Polymeric Materials, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Ying Cheng
- Center for Degradable and
Flame-Retardant Polymeric Materials, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao-Ying Deng
- Center for Degradable and
Flame-Retardant Polymeric Materials, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Cheng-Jie Fan
- Center for Degradable and
Flame-Retardant Polymeric Materials, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lan Du
- Center for Degradable and
Flame-Retardant Polymeric Materials, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- Center for Degradable and
Flame-Retardant Polymeric Materials, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Center for Degradable and
Flame-Retardant Polymeric Materials, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
48
|
Sáenz-Pérez M, Laza JM, García-Barrasa J, Vilas JL, León LM. Influence of the soft segment nature on the thermomechanical behavior of shape memory polyurethanes. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24567] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Míriam Sáenz-Pérez
- Department of Physical Chemistry; Macromolecular Chemistry Research Group, Faculty of Science and Technology, University of the Basque Country (UPV/EHU); Leioa 48940 Spain
- The Footwear Technology Center of La Rioja; Arnedo 26580 Spain
| | - José Manuel Laza
- Department of Physical Chemistry; Macromolecular Chemistry Research Group, Faculty of Science and Technology, University of the Basque Country (UPV/EHU); Leioa 48940 Spain
| | | | - José Luis Vilas
- Department of Physical Chemistry; Macromolecular Chemistry Research Group, Faculty of Science and Technology, University of the Basque Country (UPV/EHU); Leioa 48940 Spain
| | - Luis Manuel León
- Department of Physical Chemistry; Macromolecular Chemistry Research Group, Faculty of Science and Technology, University of the Basque Country (UPV/EHU); Leioa 48940 Spain
| |
Collapse
|
49
|
Salvekar AV, Huang WM, Xiao R, Wong YS, Venkatraman SS, Tay KH, Shen ZX. Water-Responsive Shape Recovery Induced Buckling in Biodegradable Photo-Cross-Linked Poly(ethylene glycol) (PEG) Hydrogel. Acc Chem Res 2017; 50:141-150. [PMID: 28181795 DOI: 10.1021/acs.accounts.6b00539] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The phenomenon of recovering the permanent shape from a severely deformed temporary shape, but only in the presence of the right stimulus, is known as the shape memory effect (SME). Materials with such an interesting effect are known as shape memory materials (SMMs). Typical stimuli to trigger shape recovery include temperature (heating or cooling), chemical (including water/moisture and pH value), and light. As a SMM is able not only to maintain the temporary shape but also to respond to the right stimulus when it is applied, via shape-shifting, a seamless integration of sensing and actuation functions is achieved within one single piece of material. Hydrogels are defined by their ability to absorb a large amount of water (from 10-20% up to thousands of times their dry weight), which results in significant swelling. On the other hand, dry hydrogels indeed belong to polymers, so they exhibit heat- and chemoresponsive SMEs as most polymers do. While heat-responsive SMEs have been spotted in a handful of wet hydrogels, so far, most dry hydrogels evince the heat and water (moisture)-responsive SMEs. Since water is one of the major components in living biological systems, water-responsive SMMs hold great potential for various implantable applications, including wound healing, intravascular devices, soft tissue reconstruction, and controlled drug delivery. This provides motivation to combine water-activated SMEs and swelling in hydrogels together to enhance the performance. In many applications, such as vascular occlusion via minimally invasive surgery for liver cancer treatment, the operation time (for both start and finish) is required to be well controlled. Due to the gradual and slow manner of water absorption for water-activated SMEs and swelling in hydrogels, even a combination of both effects encounters many difficulties to meet the timerequirements in real procedures of vascular occlusion. Recently, we have reported a bioabsorbable radiopaque water-responsive shape memory embolization plug for temporary vascular occlusion. The plug consists of a composite with a poly(dl-lactide-co-glycolide) (PLGA) core (loaded with radiopaque filler) and cross-linked poly(ethylene glycol) (PEG) hydrogel outer layer. The device can be activated by body fluid (or water) after about 2 min of immersion in water. The whole occlusion process is completed within a few dozens of seconds. The underlying mechanism is water-responsive shape recovery induced buckling, which occurs in an expeditious manner within a short time period and does not require complete hydration of the whole hydrogel. In this paper, we experimentally and analytically investigate the water-activated shape recovery induced buckling in this biodegradable PEG hydrogel to understand the fundamentals in precisely controlling the buckling time. The molecular mechanism responsible for the water-induced SME in PEG hydrogel is also elucidated. The original diameter and amount of prestretching are identified as two influential parameters to tailor the buckling time between 1 and 4 min as confirmed by both experiments and simulation. The phenomenon reported here, chemically induced buckling via a combination of the SME and swelling, is generic, and the study reported here should be applicable to other water- and non-water-responsive gels.
Collapse
Affiliation(s)
- Abhijit Vijay Salvekar
- School of Mechanical
and Aerospace Engineering, Nanyang Technological University, 50 Nanyang
Avenue, 639798 Singapore, Singapore
| | - Wei Min Huang
- School of Mechanical
and Aerospace Engineering, Nanyang Technological University, 50 Nanyang
Avenue, 639798 Singapore, Singapore
| | - Rui Xiao
- Institute of Soft Matter Mechanics, College
of Mechanics and Materials, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Yee Shan Wong
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Subbu S. Venkatraman
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Kiang Hiong Tay
- Department
of Diagnostic Radiology, Singapore General Hospital, Singapore 169608, Singapore
| | - Ze Xiang Shen
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| |
Collapse
|
50
|
Chen D, Xia X, Wong TW, Bai H, Behl M, Zhao Q, Lendlein A, Xie T. Omnidirectional Shape Memory Effect via Lyophilization of PEG Hydrogels. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Di Chen
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xuhui Xia
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Tuck W. Wong
- Advanced Membrane Technology Research Centre; Universiti Teknologi Malaysia; Johor 81310 Malaysia
| | - Hao Bai
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Marc Behl
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 Teltow 14513 Germany
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Andreas Lendlein
- Institute of Biomaterial Science; Helmholtz-Zentrum Geesthacht; Kantstr. 55 Teltow 14513 Germany
| | - Tao Xie
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|