1
|
Versari I, Salucci S, Bavelloni A, Battistelli M, Traversari M, Wang A, Sampaolesi M, Faenza I. The Emerging Role and Clinical Significance of PI3K-Akt-mTOR in Rhabdomyosarcoma. Biomolecules 2025; 15:334. [PMID: 40149870 PMCID: PMC11940244 DOI: 10.3390/biom15030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Rhabdomyosarcoma (RMS) is a common soft tissue sarcoma primarily affecting children and young adults. This disease is more prevalent in children under 15, with two main types: embryonal Rhabdomyosarcoma (eRMS), which has a better prognosis, and alveolar Rhabdomyosarcoma (aRMS), which is more aggressive and associated with specific genetic alterations. The PI3K-Akt-mTOR pathway is often hyperactivated in RMS, contributing to cell proliferation, survival, and resistance to therapies. The presence of phosphorylated components of this pathway correlates with poor survival outcomes. Here, we discuss various therapeutic approaches targeting the PI3K-Akt-mTOR pathway. These include the use of specific inhibitors (e.g., PI3K inhibitors, Akt inhibitors) and combination therapies that may enhance treatment efficacy. Dietary supplements like curcumin and repurposed drugs such as chloroquine are also mentioned for their potential to induce apoptosis in RMS cells. We also emphasize the need for innovative strategies to improve survival rates, which have remained stagnant over the years. Targeting super-enhancers and transcription factors associated with RMS may provide new therapeutic avenues. Overall, this review underscores the critical role of the PI3K-Akt-mTOR pathway in RMS and the potential for targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (I.V.); (S.S.)
| | - Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (I.V.); (S.S.)
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Mirko Traversari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Ashley Wang
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (A.W.); (M.S.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (A.W.); (M.S.)
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (I.V.); (S.S.)
| |
Collapse
|
2
|
Pozzo E, Yedigaryan L, Giarratana N, Wang CC, Garrido GM, Degreef E, Marini V, Rinaldi G, van der Veer BK, Sassi G, Eelen G, Planque M, Fanzani A, Koh KP, Carmeliet P, Yustein JT, Fendt SM, Uyttebroeck A, Sampaolesi M. miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma. Cell Rep 2025; 44:115171. [PMID: 39799567 DOI: 10.1016/j.celrep.2024.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/15/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs). In this study, we identify miRNAs impacting FN-RMS cell identity, revealing miR-449a and miR-340 as major regulators of the cell cycle and p53 signaling. Through miR-eCLIP technology, we demonstrate that miR-449a and miR-340 directly target transcripts involved in glycolysis and mitochondrial pyruvate transport, inhibiting the mitochondrial pyruvate carrier (MPC) complex. Pharmacological MPC inhibition induces a similar metabolic shift, reducing metastatic potential and leading to cell cycle exit. Overall, miR-449 and miR-340 orchestrate FN-RMS cell identity, positioning MPC inhibition as a strategy to shift FN-RMS cells toward a non-tumorigenic, quiescent state.
Collapse
Affiliation(s)
- Enrico Pozzo
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Nefele Giarratana
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Chao-Chi Wang
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Gabriel Miró Garrido
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ewoud Degreef
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Bernard K van der Veer
- Laboratory of Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Gabriele Sassi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Clinical and Experimental Endocrinology (CEE), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kian Peng Koh
- Laboratory of Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Jason T Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, USA
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Anne Uyttebroeck
- Department of Pediatric Hemato-Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Geng Z, Wang P, Yang G, Li Y, Zhao Y. Circulating Hsa-miR499a-5p as markers in dysmobility syndrome patients: a new index for diagnosing dysmobility syndrome based on osteoporosis and predicting fracture risk. Postgrad Med J 2024; 100:297-304. [PMID: 38263934 DOI: 10.1093/postmj/qgae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Dysmobility syndrome based on osteoporosis (ODS) is a disease characterized by low bone mass and low muscle mass. Its features are high fracture and high fall risk. Falls and fractures are the most important factors affecting the quality of life and lifespan of ODS. However, there is no serum marker for the evaluation of ODS patients.Our previous studies have shown that the expression of circulating miRNA is stable and is a good marker for disease diagnosis. Therefore, this study aims to explore potential serum markers of ODS. METHODS A total of 78 subjects were included in this study. The data including appendicular skeletal muscle mass index, bone mineral density, bone metabolism markers, and other relevant information were collected for analysis. Real-time quantitative polymerase chain reaction was used to detect 19 miRNAs associated with muscle mass reduction. The correlation of quantitative data was analyzed by Pearson. The receiver operating characteristic curve was used to evaluate the performance of miRNA as a biomarker. RESULTS In this study, we found that the muscle mass and strength of patients with ODS are significantly reduced and are negatively correlated with the risk of fracture. The hsa-miR-499a-5p is specifically downregulated in ODS, and is positively correlated with muscle mass and strength, and negatively correlated with the risk of fracture. Compared with muscle mass and strength, hsa-miR-499a-5p has better sensitivity and specificity as a diagnostic marker. CONCLUSION hsa-miR-499a-5p is a potential serum biomarker for assessing muscle function and predicting fall or fracture risk in the ODS population.
Collapse
Affiliation(s)
- Zixiang Geng
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine , Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peige Wang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine , Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guangyue Yang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine , Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Li
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongfang Zhao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine , Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022; 11:2293. [PMID: 35892590 PMCID: PMC9332174 DOI: 10.3390/cells11152293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Pouya FD, Rasmi Y, Gazouli M, Zografos E, Nemati M. MicroRNAs as therapeutic targets in breast cancer metastasis. Drug Deliv Transl Res 2022; 12:1029-1046. [PMID: 33987801 DOI: 10.1007/s13346-021-00999-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is a complex disease with multiple risk factors involved in its pathogenesis. Among these factors, microRNAs are considered for playing a fundamental role in the development and progression of malignant breast tumors. In recent years, various studies have demonstrated that several microRNAs exhibit increased or decreased expression in metastatic breast cancer, acting as indicators of metastatic potential in body fluids and tissue samples. The identification of these microRNA expression patterns could prove instrumental for the development of novel therapeutic molecules that either mimic or inhibit microRNA action. Additionally, an efficient delivery system mediated by viral vectors, nonviral carriers, or scaffold biomaterials is a prerequisite for implementing microRNA-based therapies; therefore, this review attempts to highlight essential microRNA molecules involved in the metastatic process of breast cancer and discuss recent advances in microRNA-based therapeutic approaches with potential future applications to the treatment sequence of breast cancer.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Eleni Zografos
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Biogenesis and Function of Extracellular Vesicles in Pathophysiological Processes Skeletal Muscle Atrophy. Biochem Pharmacol 2022; 198:114954. [DOI: 10.1016/j.bcp.2022.114954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
7
|
Mytidou C, Koutsoulidou A, Zachariou M, Prokopi M, Kapnisis K, Spyrou GM, Anayiotos A, Phylactou LA. Age-Related Exosomal and Endogenous Expression Patterns of miR-1, miR-133a, miR-133b, and miR-206 in Skeletal Muscles. Front Physiol 2021; 12:708278. [PMID: 34867435 PMCID: PMC8637414 DOI: 10.3389/fphys.2021.708278] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle growth and maintenance depend on two tightly regulated processes, myogenesis and muscle regeneration. Both processes involve a series of crucial regulatory molecules including muscle-specific microRNAs, known as myomiRs. We recently showed that four myomiRs, miR-1, miR-133a, miR-133b, and miR-206, are encapsulated within muscle-derived exosomes and participate in local skeletal muscle communication. Although these four myomiRs have been extensively studied for their function in muscles, no information exists regarding their endogenous and exosomal levels across age. Here we aimed to identify any age-related changes in the endogenous and muscle-derived exosomal myomiR levels during acute skeletal muscle growth. The four endogenous and muscle-derived myomiRs were investigated in five skeletal muscles (extensor digitorum longus, soleus, tibialis anterior, gastrocnemius, and quadriceps) of 2-week–1-year-old wild-type male mice. The expression of miR-1, miR-133a, and miR-133b was found to increase rapidly until adolescence in all skeletal muscles, whereas during adulthood it remained relatively stable. By contrast, endogenous miR-206 levels were observed to decrease with age in all muscles, except for soleus. Differential expression of the four myomiRs is also inversely reflected on the production of two protein targets; serum response factor and connexin 43. Muscle-derived exosomal miR-1, miR-133a, and miR-133b levels were found to increase until the early adolescence, before reaching a plateau phase. Soleus was found to be the only skeletal muscle to release exosomes enriched in miR-206. In this study, we showed for the first time an in-depth longitudinal analysis of the endogenous and exosomal levels of the four myomiRs during skeletal muscle development. We showed that the endogenous expression and extracellular secretion of the four myomiRs are associated to the function and size of skeletal muscles as the mice age. Overall, our findings provide new insights for the myomiRs’ significant role in the first year of life in mice.
Collapse
Affiliation(s)
- Chrystalla Mytidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Margarita Zachariou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marianna Prokopi
- Theramir Ltd., Limassol, Cyprus.,Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - George M Spyrou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
8
|
Mytidou C, Koutsoulidou A, Katsioloudi A, Prokopi M, Kapnisis K, Michailidou K, Anayiotos A, Phylactou LA. Muscle-derived exosomes encapsulate myomiRs and are involved in local skeletal muscle tissue communication. FASEB J 2021; 35:e21279. [PMID: 33484211 DOI: 10.1096/fj.201902468rr] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022]
Abstract
Exosomes are extracellular vesicles that are released from most cell types encapsulating specific molecular cargo. Exosomes serve as mediators of cell-to-cell and tissue-to-tissue communications under normal and pathological conditions. It has been shown that exosomes carrying muscle-specific miRNAs, myomiRs, are secreted from skeletal muscle cells in vitro and are elevated in the blood of muscle disease patients. The aim of this study was to investigate the secretion of exosomes encapsulating the four myomiRs from skeletal muscle tissues and to assess their role in inter-tissue communication between neighboring skeletal muscles in vivo. We demonstrate, for the first time, that isolated, intact skeletal muscle tissues secrete exosomes encapsulating the four myomiRs, miR-1, miR-133a, miR-133b, and miR-206. Notably, we show that the sorting of the four myomiRs within exosomes varies between skeletal muscles of different muscle fiber-type composition. miR-133a and miR-133b downregulation in TA muscles caused a reduction of their levels in neighboring skeletal muscles and in serum exosomes. In conclusion, our results reveal that skeletal muscle-derived exosomes encapsulate the four myomiRs, some of which enter the blood, while a portion is used for the local communication between proximal muscle tissues. These findings provide important evidence regarding novel pathways implicated in skeletal muscle function.
Collapse
Affiliation(s)
- Chrystalla Mytidou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - Marianna Prokopi
- Theramir Ltd, Limassol, Cyprus.,Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,Department of Research and Development, German Oncology Center, Limassol, Cyprus
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Kyriaki Michailidou
- The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,Biostatistics Unit, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| |
Collapse
|
9
|
Guide Cells Support Muscle Regeneration and Affect Neuro-Muscular Junction Organization. Int J Mol Sci 2021; 22:ijms22041939. [PMID: 33669272 PMCID: PMC7920023 DOI: 10.3390/ijms22041939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Muscular regeneration is a complex biological process that occurs during acute injury and chronic degeneration, implicating several cell types. One of the earliest events of muscle regeneration is the inflammatory response, followed by the activation and differentiation of muscle progenitor cells. However, the process of novel neuromuscular junction formation during muscle regeneration is still largely unexplored. Here, we identify by single-cell RNA sequencing and isolate a subset of vessel-associated cells able to improve myogenic differentiation. We termed them 'guide' cells because of their remarkable ability to improve myogenesis without fusing with the newly formed fibers. In vitro, these cells showed a marked mobility and ability to contact the forming myotubes. We found that these cells are characterized by CD44 and CD34 surface markers and the expression of Ng2 and Ncam2. In addition, in a murine model of acute muscle injury and regeneration, injection of guide cells correlated with increased numbers of newly formed neuromuscular junctions. Thus, we propose that guide cells modulate de novo generation of neuromuscular junctions in regenerating myofibers. Further studies are necessary to investigate the origin of those cells and the extent to which they are required for terminal specification of regenerating myofibers.
Collapse
|
10
|
Yang C, Yang W, Wong Y, Wang K, Teng Y, Chang M, Liao K, Nian F, Chao C, Tsai J, Hwang W, Lin M, Tzeng T, Wang P, Campbell M, Chen L, Tsai T, Chang P, Kung H. Muscle atrophy-related myotube-derived exosomal microRNA in neuronal dysfunction: Targeting both coding and long noncoding RNAs. Aging Cell 2020; 19:e13107. [PMID: 32233025 PMCID: PMC7253071 DOI: 10.1111/acel.13107] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/27/2022] Open
Abstract
In mammals, microRNAs can be actively secreted from cells to blood. miR‐29b‐3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR‐29b‐3p was upregulated in normal and premature aging mouse muscle and plasma. miR‐29b‐3p was also upregulated in the blood of aging individuals, and circulating levels of miR‐29b‐3p were negatively correlated with relative appendicular skeletal muscle. Consistently, miR‐29b‐3p was observed in exosomes isolated from long‐term differentiated atrophic C2C12 cells. When C2C12‐derived miR‐29b‐3p‐containing exosomes were uptaken by neuronal SH‐SY5Y cells, increased miR‐29b‐3p levels in recipient cells were observed. Moreover, miR‐29b‐3p overexpression led to downregulation of neuronal‐related genes and inhibition of neuronal differentiation. Interestingly, we identified HIF1α‐AS2 as a novel c‐FOS targeting lncRNA that is induced by miR‐29b‐3p through down‐modulation of c‐FOS and is required for miR‐29b‐3p‐mediated neuronal differentiation inhibition. Our results suggest that atrophy‐associated circulating miR‐29b‐3p may mediate distal communication between muscle cells and neurons.
Collapse
Affiliation(s)
- Chia‐Pei Yang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Wan‐Shan Yang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Yu‐Hui Wong
- Brain Research Center National Yang‐Ming University Taipei Taiwan
| | - Kai‐Hsuan Wang
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
| | - Yuan‐Chi Teng
- Program in Molecular Medicine School of Life Sciences National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Department of Life Sciences Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
| | - Ming‐Hsuan Chang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Ko‐Hsun Liao
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Fang‐Shin Nian
- Institute of Brain Science National Yang‐Ming University Taipei Taiwan
- Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan
| | - Chuan‐Chuan Chao
- The Ph.D. Program for Cancer Molecular Biology and Drug Discovery College of Medical Science and Technology Taipei Medical University Taipei Taiwan
| | - Jin‐Wu Tsai
- Institute of Brain Science National Yang‐Ming University Taipei Taiwan
| | - Wei‐Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine National Yang‐Ming University Taipei Taiwan
| | - Ming‐Wei Lin
- Institute of Public Health National Yang‐Ming University Taipei Taiwan
| | - Tsai‐Yu Tzeng
- Cancer Progression Research Center National Yang‐Ming University Taipei Taiwan
| | - Pei‐Ning Wang
- Brain Research Center National Yang‐Ming University Taipei Taiwan
- Department of Neurology Neurological InstituteTaipei Veterans General Hospital Taipei Taiwan
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
| | - Mel Campbell
- UC Davis Comprehensive Cancer CenterUniversity of California Davis CA USA
| | - Liang‐Kung Chen
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
- Department of Geriatric Medicine School of Medicine National Yang Ming University Taipei Taiwan
- Center for Geriatrics and Gerontology Taipei Veterans General Hospital Taipei Taiwan
| | - Ting‐Fen Tsai
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
- Program in Molecular Medicine School of Life Sciences National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Department of Life Sciences Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
| | - Pei‐Ching Chang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
- Cancer Progression Research Center National Yang‐Ming University Taipei Taiwan
| | - Hsing‐Jien Kung
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
- The Ph.D. Program for Cancer Molecular Biology and Drug Discovery College of Medical Science and Technology Taipei Medical University Taipei Taiwan
- UC Davis Comprehensive Cancer CenterUniversity of California Davis CA USA
| |
Collapse
|
11
|
Comprehensive Overview of Non-coding RNAs in Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:197-211. [PMID: 32285413 DOI: 10.1007/978-981-15-1671-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cardiac development in the human embryo is characterized by the interactions of several transcription and growth factors leading the heart from a primordial linear tube into a synchronous contractile four-chamber organ. Studies on cardiogenesis showed that cell proliferation, differentiation, fate specification and morphogenesis are spatiotemporally coordinated by cell-cell interactions and intracellular signalling cross-talks. In recent years, research has focused on a class of inter- and intra-cellular modulators called non-coding RNAs (ncRNAs), transcribed from the noncoding portion of the DNA and involved in the proper formation of the heart. In this chapter, we will summarize the current state of the art on the roles of three major forms of ncRNAs [microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs)] in orchestrating the four sequential phases of cardiac organogenesis.
Collapse
|
12
|
Von den Hoff JW, Carvajal Monroy PL, Ongkosuwito EM, van Kuppevelt TH, Daamen WF. Muscle fibrosis in the soft palate: Delivery of cells, growth factors and anti-fibrotics. Adv Drug Deliv Rev 2019; 146:60-76. [PMID: 30107211 DOI: 10.1016/j.addr.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/29/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The healing of skeletal muscle injuries after major trauma or surgical reconstruction is often complicated by the development of fibrosis leading to impaired function. Research in the field of muscle regeneration is mainly focused on the restoration of muscle mass while far less attention is paid to the prevention of fibrosis. In this review, we take as an example the reconstruction of the muscles in the soft palate of cleft palate patients. After surgical closure of the soft palate, muscle function during speech is often impaired by a shortage of muscle tissue as well as the development of fibrosis. We will give a short overview of the most common approaches to generate muscle mass and then focus on strategies to prevent fibrosis. These include anti-fibrotic strategies that have been developed for muscle and other organs by the delivery of small molecules, decorin and miRNAs. Anti-fibrotic compounds should be delivered in aligned constructs in order to obtain the organized architecture of muscle tissue. The available techniques for the preparation of aligned muscle constructs will be discussed. The combination of approaches to generate muscle mass with anti-fibrotic components in an aligned muscle construct may greatly improve the functional outcome of regenerative therapies for muscle injuries.
Collapse
Affiliation(s)
- Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Paola L Carvajal Monroy
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, P.O. Box 2060, 3000CB Rotterdam, The Netherlands.
| | - Edwin M Ongkosuwito
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Breuls N, Giacomazzi G, Sampaolesi M. (Epi)genetic Modifications in Myogenic Stem Cells: From Novel Insights to Therapeutic Perspectives. Cells 2019; 8:cells8050429. [PMID: 31075875 PMCID: PMC6562881 DOI: 10.3390/cells8050429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is considered to be an ideal target for stem cell therapy as it has an inherent regenerative capacity. Upon injury, the satellite cells, muscle stem cells that reside under the basal lamina of the myofibres, start to differentiate in order to reconstitute the myofibres while maintaining the initial stem cell pool. In recent years, it has become more and more evident that epigenetic mechanisms such as histon modifications, DNA methylations and microRNA modulations play a pivatol role in this differentiation process. By understanding the mechanisms behind myogenesis, researchers are able to use this knowledge to enhance the differentiation and engraftment potential of different muscle stem cells. Besides manipulation on an epigenetic level, recent advances in the field of genome-engineering allow site-specific modifications in the genome of these stem cells. Combining epigenetic control of the stem cell fate with the ability to site-specifically correct mutations or add genes for further cell control, can increase the use of stem cells as treatment of muscular dystrophies drastically. In this review, we will discuss the advances that have been made in genome-engineering and the epigenetic regulation of muscle stem cells and how this knowledge can help to get stem cell therapy to its full potential.
Collapse
Affiliation(s)
- Natacha Breuls
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
| | - Giorgia Giacomazzi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, and Interuniversity Institute of Myology, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
14
|
Curtin CM, Castaño IM, O'Brien FJ. Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer. Adv Healthc Mater 2018; 7. [PMID: 29068566 DOI: 10.1002/adhm.201700695] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/21/2017] [Indexed: 12/17/2022]
Abstract
microRNA-based therapies are an advantageous strategy with applications in both regenerative medicine (RM) and cancer treatments. microRNAs (miRNAs) are an evolutionary conserved class of small RNA molecules that modulate up to one third of the human nonprotein coding genome. Thus, synthetic miRNA activators and inhibitors hold immense potential to finely balance gene expression and reestablish tissue health. Ongoing industry-sponsored clinical trials inspire a new miRNA therapeutics era, but progress largely relies on the development of safe and efficient delivery systems. The emerging application of biomaterial scaffolds for this purpose offers spatiotemporal control and circumvents biological and mechanical barriers that impede successful miRNA delivery. The nascent research in scaffold-mediated miRNA therapies translates know-how learnt from studies in antitumoral and genetic disorders as well as work on plasmid (p)DNA/siRNA delivery to expand the miRNA therapies arena. In this progress report, the state of the art methods of regulating miRNAs are reviewed. Relevant miRNA delivery vectors and scaffold systems applied to-date for RM and cancer treatment applications are discussed, as well as the challenges involved in their design. Overall, this progress report demonstrates the opportunity that exists for the application of miRNA-activated scaffolds in the future of RM and cancer treatments.
Collapse
Affiliation(s)
- Caroline M. Curtin
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| |
Collapse
|
15
|
Giacomazzi G, Holvoet B, Trenson S, Caluwé E, Kravic B, Grosemans H, Cortés-Calabuig Á, Deroose CM, Huylebroeck D, Hashemolhosseini S, Janssens S, McNally E, Quattrocelli M, Sampaolesi M. MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors. Nat Commun 2017; 8:1249. [PMID: 29093487 PMCID: PMC5665910 DOI: 10.1038/s41467-017-01359-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MDs) are often characterized by impairment of both skeletal and cardiac muscle. Regenerative strategies for both compartments therefore constitute a therapeutic avenue. Mesodermal iPSC-derived progenitors (MiPs) can regenerate both striated muscle types simultaneously in mice. Importantly, MiP myogenic propensity is influenced by somatic lineage retention. However, it is still unknown whether human MiPs have in vivo potential. Furthermore, methods to enhance the intrinsic myogenic properties of MiPs are likely needed, given the scope and need to correct large amounts of muscle in the MDs. Here, we document that human MiPs can successfully engraft into the skeletal muscle and hearts of dystrophic mice. Utilizing non-invasive live imaging and selectively induced apoptosis, we report evidence of striated muscle regeneration in vivo in mice by human MiPs. Finally, combining RNA-seq and miRNA-seq data, we define miRNA cocktails that promote the myogenic potential of human MiPs.
Collapse
Affiliation(s)
- Giorgia Giacomazzi
- Translational Cardiomyology, Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Bryan Holvoet
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, 3000, Leuven, Belgium
| | - Sander Trenson
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Ellen Caluwé
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Bojana Kravic
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Hanne Grosemans
- Translational Cardiomyology, Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | | | - Christophe M Deroose
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, 3000, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.,Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Said Hashemolhosseini
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Elizabeth McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Mattia Quattrocelli
- Translational Cardiomyology, Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium.,Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Maurilio Sampaolesi
- Translational Cardiomyology, Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium. .,Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, 27100, Italy.
| |
Collapse
|
16
|
Murphy C, Withrow J, Hunter M, Liu Y, Tang YL, Fulzele S, Hamrick MW. Emerging role of extracellular vesicles in musculoskeletal diseases. Mol Aspects Med 2017; 60:123-128. [PMID: 28965750 DOI: 10.1016/j.mam.2017.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022]
Abstract
Research into the biology of extracellular vesicles (EVs), including exosomes and microvesicles, has expanded significantly with advances in EV isolation techniques, a better understanding of the surface markers that characterize exosomes and microvesicles, and greater information derived from -omics approaches on the proteins, lipids, mRNAs, and microRNAs (miRNAs) transported by EVs. We have recently discovered a role for exosome-derived miRNAs in age-related bone loss and osteoarthritis, two conditions that impose a significant public health burden on the aging global population. Previous work has also revealed multiple roles for EVs and their miRNAs in muscle regeneration and congenital myopathies. Thus, EVs appear to be involved in a number of degenerative conditions that impact the musculoskeletal system, indicating that the musculoskeletal system is an excellent model for investigating the role of EVs in tissue maintenance and repair. This review highlights the role of EVs in bone, skeletal muscle, and joint health, including both normal tissue metabolism as well as tissue injury repair and regeneration. A consistent theme that emerges from study of musculoskeletal EVs is that various miRNAs appear to mediate a number of key pathological processes. These findings point to a potential therapeutic opportunity to target EV-derived miRNAs as a strategy for improving musculoskeletal function.
Collapse
Affiliation(s)
- Cameron Murphy
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Joseph Withrow
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Monte Hunter
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutao Liu
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yao Liang Tang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark W Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
17
|
Wang H, Wang B. Extracellular vesicle microRNAs mediate skeletal muscle myogenesis and disease. Biomed Rep 2016; 5:296-300. [PMID: 27588172 PMCID: PMC4997983 DOI: 10.3892/br.2016.725] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/11/2016] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle function is important for good health and independent living, and has been subject to numerous studies focused on skeletal muscle development, function and metabolism. However, progressive and degenerative changes in skeletal muscle function often occur following physiological and pathological stress, and these lead to the progression of diabetes, obesity, chronic kidney disease, and cardiovascular or respiratory diseases. Identifying the mechanisms that influence the processes regulating skeletal muscle function is a key priority. Recently, studies have demonstrated that microRNAs (miRNAs) play important roles in regulating biological processes. For instance, exosomes are key tools for communication between cells. Therefore, by determining how select miRNAs are transported to target organs and initiate their effects, these results will help explain muscle and organ crosstalk, improve our understanding and application of current therapeutic approaches and lead to the identification of new therapeutic strategies and targets aimed at maintaining and/or improving skeletal muscle health.
Collapse
Affiliation(s)
- Haidong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Bin Wang
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
18
|
MicroRNA-Regulated Proinflammatory Cytokines in Sarcopenia. Mediators Inflamm 2016; 2016:1438686. [PMID: 27382188 PMCID: PMC4921629 DOI: 10.1155/2016/1438686] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/18/2016] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia has been defined as the aging-related disease with the declined mass, strength, and function of skeletal muscle, which is the major cause of frailty and falls in elders. The activation of inflammatory signal pathways due to diseases and aging is suggested to reveal the critical impact on sarcopenia. Several proinflammatory cytokines, especially interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), play crucial roles in modulation of inflammatory signaling pathway during the aging-related loss of skeletal muscle. MicroRNAs (miRNAs) have emerged as the important regulators for the mass and functional maintenance of skeletal muscle through regulating gene expression of proinflammatory cytokines. In this paper, we have systematically discussed regulatory mechanisms of miRNAs for the expression and secretion of inflammatory cytokines during sarcopenia, which will provide some novel targets and therapeutic strategies for controlling aging-related atrophy of skeletal muscle and corresponding chronic inflammatory diseases.
Collapse
|
19
|
Ballarino M, Morlando M, Fatica A, Bozzoni I. Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest 2016; 126:2021-30. [PMID: 27249675 DOI: 10.1172/jci84419] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA is likely to be the most rediscovered macromolecule in biology. Periodically, new non-canonical functions have been ascribed to RNA, such as the ability to act as a catalytic molecule or to work independently from its coding capacity. Recent annotations show that more than half of the transcriptome encodes for RNA molecules lacking coding activity. Here we illustrate how these transcripts affect skeletal muscle differentiation and related disorders. We discuss the most recent scientific discoveries that have led to the identification of the molecular circuitries that are controlled by RNA during the differentiation process and that, when deregulated, lead to pathogenic events. These findings will provide insights that can aid in the development of new therapeutic interventions for muscle diseases.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Cell Differentiation
- Genetic Markers
- Humans
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Muscle Development/genetics
- Muscle Development/physiology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Musculoskeletal Diseases/genetics
- Musculoskeletal Diseases/metabolism
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/blood
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcriptome
Collapse
|