1
|
Diao W, Lu J, Li J, Wu X, Cai H, He X, Pan L, Cheng Z, Wu H, Jia Z, Mao W. Cysteine-Specific 18F and NIR Dual Labeling of Peptides via Vinyltetrazine Bioorthogonal Conjugation for Molecular Imaging. J Med Chem 2025; 68:1526-1539. [PMID: 39754584 DOI: 10.1021/acs.jmedchem.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Radiolabeled peptides are vital for positron emission tomography (PET) imaging, yet the 18F-labeling peptides remain challenging due to harsh conditions and time-consuming premodification requirements. Herein, we developed a novel vinyltetrazine-mediated bioorthogonal approach for highly efficient 18F-radiolabeling of a native peptide under mild conditions. This approach enabled radiosynthesis of various tumor-targeting PET tracers, including targeting the neurofibromin receptor (18F-P10a), the integrin αvβ3 (18F-P12a), and the platelet-derived growth factor receptor β (18F-ZPDGFRβ), with a radiochemical yield exceeding 90%. Preliminary evaluations revealed excellent hydrophilicity across these tracers, with 18F-P12a effectively visualizing integrin αvβ3 expression (tumor uptake: 1.57 ± 0.54%ID/g at 2 h). Additionally, we explored the potential for development of PET/near-infrared (NIR) dual-labeling agents using this method. The dual-modality agent 18F-Cy5-P12d enables specificity and colocalized imaging integrin αvβ3 expression (tumor uptake: 1.35 ± 0.24%ID/g at 2 h). Overall, this strategy offers a versatile platform for peptide radiolabeling and dual-modality agent development.
Collapse
Affiliation(s)
- Wei Diao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Nuclear Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Elctronic Science and Technology of China, Chengdu 610041, China
| | - Jing Lu
- Medical Insurance Office, West China Hospital of Sichuan University, Chengdu 610041, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhuzhong Cheng
- Department of Nuclear Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Elctronic Science and Technology of China, Chengdu 610041, China
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Ismuha RR, Ritawidya R, Daruwati I, Muchtaridi M. Future Prospect of Low-Molecular-Weight Prostate-Specific Membrane Antigen Radioisotopes Labeled as Theranostic Agents for Metastatic Castration-Resistant Prostate Cancer. Molecules 2024; 29:6062. [PMID: 39770150 PMCID: PMC11679579 DOI: 10.3390/molecules29246062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer ranks as the fourth most common cancer among men, with approximately 1.47 million new cases reported annually. The emergence of prostate-specific membrane antigen (PSMA) as a critical biomarker has revolutionized the diagnosis and treatment of prostate cancer. Recent advancements in low-molecular-weight PSMA inhibitors, with their diverse chemical structures and binding properties, have opened new avenues for research and therapeutic applications in prostate cancer management. These novel agents exhibit enhanced tumor targeting and specificity due to their small size, facilitating rapid uptake and localization at the target site while minimizing the retention in non-target tissues. The primary aim of this study is to evaluate the potential of low-molecular-weight PSMA inhibitors labeled with radioisotopes as theranostic agents for prostate cancer. This includes assessing their efficacy in targeted imaging and therapy and understanding their pharmacokinetic properties and mechanisms of action. This study is a literature review focusing on in vitro and clinical research data. The in vitro studies utilize PSMA-targeted radioligands labeled with radioisotopes to assess their binding affinity, specificity, and internalization in prostate cancer cell lines. Additionally, the clinical studies evaluate the safety, effectiveness, and biodistribution of radiolabeled PSMA ligands in patients with advanced prostate cancer. The findings indicate promising outcomes regarding the safety and efficacy of PSMA-targeted radiopharmaceuticals in clinical settings. The specific accumulation of these agents in prostate tumor lesions suggests their potential for various applications, including imaging and therapy. This research underscores the promise of radiopharmaceuticals targeting PSMA in advancing the diagnosis and treatment of prostate cancer. These agents improve diagnostic accuracy and patients' outcomes by enhancing imaging capabilities and enabling personalized treatment strategies.
Collapse
Affiliation(s)
- Ratu Ralna Ismuha
- Department of Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmacy, Dharmais Cancer Hospital—National Cancer Center, Jakarta 11420, Indonesia
| | - Rien Ritawidya
- Center for Research on Radioisotope Technology, Radiopharmaceuticals, and Biodosimetry, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; (R.R.); (I.D.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Isti Daruwati
- Center for Research on Radioisotope Technology, Radiopharmaceuticals, and Biodosimetry, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; (R.R.); (I.D.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| |
Collapse
|
3
|
Ab Aziz A, Mappiare S, Nam HY, Devi D, Johan MR, Kamarul T. Endotoxin Detection in Magnetic Resonance Imaging Contrast Agent Using Optimising Chromogenic Limulus Amebocyte Lysate Assay. Malays J Med Sci 2024; 31:284-291. [PMID: 39416745 PMCID: PMC11477474 DOI: 10.21315/mjms2024.31.5.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 10/19/2024] Open
Abstract
Endotoxin contamination in magnetic resonance imaging (MRI) contrast agents can pose a risk to patient safety causing immune reactions. Strict endotoxin limits are enforced for implants and catheters inserted into the body, but there are not clear rules for MRI contrast agents. Here, we investigated the efficacy of chromogenic LAL assay test for screening endotoxin activity in MRI contrast media manufactured in Malaysia. The powdered agent was dissolved in water for injection and endotoxin levels were measured. The coefficient of efficiency value for the standard curve, exhibiting r 2 ≥ 0.98, along with the absence of interfering substances and endotoxin activity below the regulatory threshold of 0.5 EU/mL, support the conclusion that the agent is unlikely to be pyrogenic or induce pyrogenic effect.
Collapse
Affiliation(s)
- Atiqah Ab Aziz
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sahrinanah Mappiare
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hui Yin Nam
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Durga Devi
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Xue L, Jie CVML, Desrayaud S, Auberson YP. Developing Low Molecular Weight PET and SPECT Imaging Agents. ChemMedChem 2024; 19:e202400094. [PMID: 38634545 DOI: 10.1002/cmdc.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Imaging agents for positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) have shown their utility in many situations, answering clinical questions related to drug development and medical considerations. The discovery and development of imaging agents follow a well-understood process, with variations related to available starting points and to the envisaged imaging application. This article describes the general development path leading from the expression of an imaging need and project initiation to a clinically usable imaging agent. The definition of the project rationale, the design and optimization of early leads, and the assessment of the imaging potential of an imaging agent candidate are followed by preclinical and clinical development activities that differ from those required for therapeutic agents. These include radiolabeling with a positron emitter and first-in-human clinical studies, to rapidly evaluate the ability of a new imaging agent to address the questions it was designed to answer.
Collapse
Affiliation(s)
- Lian Xue
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, Victoria 3052, Australia
| | - Caitlin V M L Jie
- ETH Zürich, Department of Chemistry and Applied Biosciences Center for Radiopharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093, Zürich, Switzerland
| | - Sandrine Desrayaud
- Novartis Biomedical Research, In Vivo preclinical PK/ADME, Novartis campus, WSJ-352/6/73.01, 4056, Basel, Switzerland
| | - Yves P Auberson
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis campus, WSJ-88.10.100, 4056, Basel, Switzerland
| |
Collapse
|
5
|
Zimmer L. Recent applications of positron emission tomographic (PET) imaging in psychiatric drug discovery. Expert Opin Drug Discov 2024; 19:161-172. [PMID: 37948046 DOI: 10.1080/17460441.2023.2278635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Psychiatry is one of the medical disciplines that suffers most from a lack of innovation in its therapeutic arsenal. Many failures in drug candidate trials can be explained by pharmacological properties that have been poorly assessed upstream, in terms of brain passage, brain target binding and clinical outcomes. Positron emission tomography can provide pharmacokinetic and pharmacodynamic data to help select candidate-molecules for further clinical trials. AREAS COVERED This review aims to explain and discuss the various methods using positron-emitting radiolabeled molecules to trace the cerebral distribution of the drug-candidate or indirectly measure binding to its therapeutic target. More than an exhaustive review of PET studies in psychopharmacology, this article highlights the contributions this technology can make in drug discovery applied to psychiatry. EXPERT OPINION PET neuroimaging is the only technological approach that can, in vivo in humans, measure cerebral delivery of a drug candidate, percentage and duration of target binding, and even the pharmacological effects. PET studies in a small number of subjects in the early stages of the development of a psychotropic drug can therefore provide the pharmacokinetic/pharmacodynamic data required for subsequent clinical evaluation. While PET technology is demanding in terms of radiochemical, radiopharmacological and nuclear medicine expertise, its integration into the development process of new drugs for psychiatry has great added value.
Collapse
Affiliation(s)
- Luc Zimmer
- Lyon Neuroscience Research Center, Université Claude Bernard, Lyon, France
- CERMEP, Hospices Civils de Lyon, Lyon, France
- Institut National des Sciences et Technologies Nucléaire, Saclay, France
| |
Collapse
|
6
|
Hamon N, Bridou L, Roux M, Maury O, Tripier R, Beyler M. Design of Bifunctional Pyclen-Based Lanthanide Luminescent Bioprobes for Targeted Two-Photon Imaging. J Org Chem 2023; 88:8286-8299. [PMID: 37273214 DOI: 10.1021/acs.joc.3c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the past, Lanthanide Luminescent Bioprobes (LLBs) based on pyclen-bearing π-extended picolinate antennas were synthesized and demonstrated well-adapted optical properties for biphotonic microscopy. The objective of this work is to develop a strategy to design bifunctional analogues of the previously studied LLBs presenting an additional reactive chemical group to allow their coupling to biological vectors to reach deep in vivo targeted two-photon bioimaging. Herein, we elaborated a synthetic scheme allowing the introduction of a primary amine on the para position of the macrocyclic pyridine unit. The photophysical and bioimaging studies demonstrate that the introduction of the reactive function does not alter the luminescent properties of the LLBs paving the way for further applications.
Collapse
Affiliation(s)
- Nadège Hamon
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 BREST, France
| | - Lucile Bridou
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon F-69342, France
| | - Margaux Roux
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon F-69342, France
| | - Olivier Maury
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon F-69342, France
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 BREST, France
| | - Maryline Beyler
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 BREST, France
| |
Collapse
|
7
|
Salerno KE, Roy S, Ribaudo C, Fisher T, Patel RB, Mena E, Escorcia FE. A Primer on Radiopharmaceutical Therapy. Int J Radiat Oncol Biol Phys 2023; 115:48-59. [PMID: 35970373 PMCID: PMC9772089 DOI: 10.1016/j.ijrobp.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022]
Abstract
The goal of this article is to serve as a primer for the United States-based radiation oncologist who may be interested in learning more about radiopharmaceutical therapy (RPT). Specifically, we define RPT, review the data behind its current and anticipated indications, and discuss important regulatory considerations for incorporating it into clinical practice. RPT represents an opportunity for radiation oncologists to leverage 2 key areas of expertise, namely therapeutic radiation therapy and oncology, and apply them in a distinct context in collaboration with nuclear medicine and medical oncology colleagues. Although not every radiation oncologist will incorporate RPT into their day-to-day practice, it is important to understand the role for this modality and how it can be appropriately used in select patients.
Collapse
Affiliation(s)
- Kilian E Salerno
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Soumyajit Roy
- Radiation Oncology Department, Rush Medical Center, Chicago, Illinois
| | - Cathy Ribaudo
- Division of Radiation Safety, National Institutes of Health, Bethesda, Maryland
| | - Teresa Fisher
- Division of Radiation Safety, National Institutes of Health, Bethesda, Maryland
| | - Ravi B Patel
- Radiation Oncology Department, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Esther Mena
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Freddy E Escorcia
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
8
|
Nanoparticles for Therapy and Diagnostic Imaging Techniques in Cancer. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Herscovitch P. Regulatory Agencies and PET/CT Imaging in the Clinic. Curr Cardiol Rep 2022; 24:1361-1371. [PMID: 35913674 PMCID: PMC9340745 DOI: 10.1007/s11886-022-01749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW The regulatory steps necessary to bring new PET radiopharmaceuticals to the clinic will be reviewed. The US Food and Drug Administration (FDA) provides approval to manufacture and use diagnostic radiopharmaceuticals, including those for cardiovascular PET/CT. Medicare not only provides insurance reimbursement for imaging procedures for its beneficiaries but also sets an example for third-party insurers to cover these procedures. RECENT FINDINGS FDA provides extensive guidance for performing studies to obtain the safety and efficacy data needed to approve PET radiopharmaceuticals, and the pace of approval has recently increased. There also has been considerable progress in insurance coverage for PET by Medicare. Several promising agents for cardiovascular PET imaging are in the development pipeline. Challenges remain, however, including low levels of reimbursement and the application of appropriate use criteria for imaging procedures. It is important for cardiologists to understand the regulatory steps involved in translating PET radiopharmaceuticals to the clinic. Recent progress in both FDA approvals and Medicare coverage should facilitate the clinical use of new PET agents for molecular imaging of the heart.
Collapse
Affiliation(s)
- Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Rm 1C-495, 10 Center DR, MSC1180, Bethesda, MD, 20892-1180, USA.
| |
Collapse
|
10
|
Venditto VJ, Sockolosky J, Nguyen J. Translational Drug Delivery: Time to be Frank for Future Success. Adv Drug Deliv Rev 2022; 189:114521. [PMID: 36030019 DOI: 10.1016/j.addr.2022.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jonathan Sockolosky
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| |
Collapse
|