1
|
Xie Z, Dai Z, Liu Z, Chen Y, Huang S, Liu S, Li J, Shen J. The impact of an RNA-binding protein group on regulating the RSPO-LGR4/5-ZNRF3/RNF43 module and the immune microenvironment in hepatocellular carcinoma. BMC Cancer 2025; 25:751. [PMID: 40264052 PMCID: PMC12012940 DOI: 10.1186/s12885-025-13874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality. RNA-binding proteins (RBPs) are potential therapeutic targets because of their role in tumor progression. This study investigated the interactions between specific HCC progression-associated RBPs (HPARBPs), namely, ILF3, PTBP1, U2AF2, NCBP2, RPS3, and SSB, in HCC and their downstream targets, as well as their impact on the immune microenvironment and their clinical value. METHODS Tissue samples from human HCC, collected from 28 patients who experienced recurrence following postoperative adjuvant therapy were examined. The mRNA levels of RBPs and their prospective targets were quantified through RNA isolation and quantitative real-time PCR. Data from two public datasets were scrutinized for both expression and clinical relevance. Through Student's t test and logistic regression, HPARBPs were identified. Enhanced cross-linking immunoprecipitation (eCLIP) experiments revealed RBP-RNA interactions in HepG2 cells. For functional enrichment, Metascape was used, whereas CIBERSORT was used to characterize the immune microenvironment. RESULTS Public database analysis confirmed widespread RBP expression abnormalities in HCC (false discovery rate < 0.00001 and fold change ≥ 1.15 or ≤ 0.85), leading to the identification of 42 HPARBPs and core modules. eCLIP data analysis revealed the specificity of downstream target genes and binding site features for core HPARBPs (signal value > 3, P value < 0.01). Four core HPARBPs may bind to RNAs of genes in the RSPO-LGR4/5-ZNRF3/RNF43 module, affecting the Wnt pathway and HCC progression. Immunoinfiltration analysis revealed changes in the HCC immune microenvironment due to altered expression of relevant genes. CONCLUSION In our study, we identified core HPARBPs that might contribute to HCC progression by binding to RNAs in the RSPO-LGR4/5-ZNRF3/RNF43 module. Changes in the expression of HPARBPs affect the HCC immune microenvironment. Our findings offer novel insights into the regulatory network of Wnt pathway-related RBPs and their potential clinical value in HCC.
Collapse
Affiliation(s)
- Zhengyao Xie
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Zhiyan Dai
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziyao Liu
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yiqiang Chen
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Shuting Huang
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Siyuan Liu
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| | - Jingjing Li
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| | - Jie Shen
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Comprehensive Cancer Centre, Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Zhang G, Yan S, Liu Y, Du Z, Min Q, Qin S. PROTACs coupled with oligonucleotides to tackle the undruggable. Bioanalysis 2025; 17:261-276. [PMID: 39895280 PMCID: PMC11864318 DOI: 10.1080/17576180.2025.2459528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Undruggable targets account for roughly 85% of human disease-related targets and represent a category of therapeutic targets that are difficult to tackle with traditional methods, but their considerable clinical importance. These targets are generally defined by planar functional interfaces and the absence of efficient ligand-binding pockets, making them unattainable for conventional pharmaceutical strategies. The advent of oligonucleotide-based proteolysis-targeting chimeras (PROTACs) has instilled renewed optimism in addressing these challenges. These PROTACs facilitate the targeted degradation of undruggable entities, including transcription factors (TFs) and RNA-binding proteins (RBPs), via proteasome-dependent mechanisms, thereby presenting novel therapeutic approaches for diseases linked to these targets. This review offers an in-depth examination of recent progress in the integration of PROTAC technology with oligonucleotides to target traditionally undruggable proteins, emphasizing the design principles and mechanisms of action of these innovative PROTACs.
Collapse
Affiliation(s)
- Guangshuai Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Si Yan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Yan Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Ziwei Du
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Qin Min
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, P.R. China
| |
Collapse
|
3
|
Rahman MO, Das A, Naeem N, Jabeen-E-Tahnim, Hossain MA, Alam MN, Azad AKM, Alyami SA, Alotaibi N, Al-Moisheer AS, Moni MA. An Integrated Framework to Identify Prognostic Biomarkers and Novel Therapeutic Targets in Hepatocellular Carcinoma-Based Disabilities. BIOLOGY 2024; 13:966. [PMID: 39765633 PMCID: PMC11673266 DOI: 10.3390/biology13120966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors globally, significantly affecting liver functions, thus necessitating the identification of biomarkers and effective therapeutics to improve HCC-based disabilities. This study aimed to identify prognostic biomarkers, signaling cascades, and candidate drugs for the treatment of HCC through integrated bioinformatics approaches such as functional enrichment analysis, survival analysis, molecular docking, and simulation. Differential expression and functional enrichment analyses revealed 176 common differentially expressed genes from two microarray datasets, GSE29721 and GSE49515, significantly involved in HCC development and progression. Topological analyses revealed 12 hub genes exhibiting elevated expression in patients with higher tumor stages and grades. Survival analyses indicated that 11 hub genes (CCNB1, AURKA, RACGAP1, CEP55, SMC4, RRM2, PRC1, CKAP2, SMC2, UHRF1, and FANCI) and three transcription factors (E2F1, CREB1, and NFYA) are strongly linked to poor patient survival. Finally, molecular docking and simulation identified seven candidate drugs with stable complexes to their target proteins: tozasertib (-9.8 kcal/mol), tamatinib (-9.6 kcal/mol), ilorasertib (-9.5 kcal/mol), hesperidin (-9.5 kcal/mol), PF-562271 (-9.3 kcal/mol), coumestrol (-8.4 kcal/mol), and clofarabine (-7.7 kcal/mol). These findings suggest that the identified hub genes and TFs could serve as valuable prognostic biomarkers and therapeutic targets for HCC-based disabilities.
Collapse
Affiliation(s)
- Md. Okibur Rahman
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Asim Das
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Nazratun Naeem
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Jabeen-E-Tahnim
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md. Ali Hossain
- Department of Computer Science & Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Department of Computer Science & Engineering, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md. Nur Alam
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - AKM Azad
- Department of Mathematics & Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Salem A. Alyami
- Department of Mathematics & Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Naif Alotaibi
- Department of Mathematics & Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - A. S. Al-Moisheer
- Department of Mathematics & Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Mohammod Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW 2795, Australia
| |
Collapse
|
4
|
Lu Y, Yang Z, Zhang J, Ma X, Bi X, Xu L, Feng K, Wu Z, Ma X, Zhuang L. RNA-binding protein QKI promotes the progression of HCC by interacting with long non-coding RNA EGOT. Int Immunopharmacol 2024; 136:112297. [PMID: 38810307 DOI: 10.1016/j.intimp.2024.112297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND RNA-binding proteins are revealed to play important roles during the progression of hepatocellular carcinoma (HCC). However, the regulatory mechanisms of RNA-binding protein Quaking (QKI) in the expression and role of long non-coding RNAs (lncRNAs) in HCC cells remain not well understood. METHODS Cell Counting Kit-8, wound-healing, Transwell and colony-forming assays were performed to evaluate the effects of QKI and lncRNA EGOT on proliferation and migration of HCC cells. Tumor growth of HCC was analyzed using a mouse xenograft model. Immunoprecipitation (RIP) assay was used to investigate the interaction between QKI and EGOT. RESULTS The expression of QKI was significantly upregulated in HCC tissues and the higher QKI level was significantly associated with a poorer prognosis. Overexpression of QKI promoted the proliferation, migration, and colony-forming ability of HCC cells in vitro and tumor growth of HCC in vivo. Mechanistically, QKI protein could bind to EGOT RNA and increase its expression. Inhibition of EGOT attenuated the effects of QKI on the malignant phenotypes of HCC cells. In addition, both QKI and EGOT could activate the SAPK/JNK signaling pathway in HCC cells. CONCLUSIONS Our findings indicated that QKI exerted promotive effects on the malignant phenotypes of HCC through its interaction with EGOT.
Collapse
Affiliation(s)
- Yi Lu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zhenpeng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Jie Zhang
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xuefeng Ma
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xiaoye Bi
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Longhai Xu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Keqing Feng
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zehua Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Xiang Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China.
| | - Likun Zhuang
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Ala U, Fagoonee S. RNA-binding protein transcripts as potential biomarkers for detecting Primary Sclerosing Cholangitis and for predicting its progression to Cholangiocarcinoma. Front Mol Biosci 2024; 11:1388294. [PMID: 38903178 PMCID: PMC11187294 DOI: 10.3389/fmolb.2024.1388294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Primary Sclerosing Cholangitis (PSC) is a persistent inflammatory liver condition that affects the bile ducts and is commonly diagnosed in young individuals. Despite efforts to incorporate various clinical, biochemical and molecular parameters for diagnosing PSC, it remains challenging, and no biomarkers characteristic of the disease have been identified hitherto. PSC is linked with an uncertain prognosis, and there is a pressing need to explore multiomics databases to establish a new biomarker panel for the early detection of PSC's gradual progression into Cholangiocarcinoma (CCA) and for the development of effective therapeutic interventions. Apart from non-coding RNAs, other components of the Ribonucleoprotein (RNP) complex, such as RNA-Binding Proteins (RBPs), also hold great promise as biomarkers due to their versatile expression in pathological conditions. In the present review, an update on the RBP transcripts that show dysregulated expression in PSC and CCA is provided. Moreover, by utilizing a bioinformatic data mining approach, we give insight into those RBP transcripts that also exhibit differential expression in liver and gall bladder, as well as in body fluids, and are promising as biomarkers for diagnosing and predicting the prognosis of PSC. Expression data were bioinformatically extracted from public repositories usingTCGA Bile Duct Cancer dataset for CCA and specific NCBI GEO datasets for both PSC and CCA; more specifically, RBPs annotations were obtained from RBP World database. Interestingly, our comprehensive analysis shows an elevated expression of the non-canonical RBPs, FANCD2, as well as the microtubule dynamics regulator, ASPM, transcripts in the body fluids of patients with PSC and CCA compared with their respective controls, with the same trend in expression being observed in gall bladder and liver cancer tissues. Consequently, the manipulation of tissue expression of RBP transcripts might be considered as a strategy to mitigate the onset of CCA in PSC patients, and warrants further experimental investigation. The analysis performed herein may be helpful in the identification of non-invasive biomarkers for the early detection of PSC and for predicting its progression into CCA. In conclusion, future clinical research should investigate in more depth the full potential of RBP transcripts as biomarkers for human pathologies.
Collapse
Affiliation(s)
- Ugo Ala
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center “Guido Tarone”, Turin, Italy
| |
Collapse
|
6
|
Yang L, Zhang Z, Yao X, Wu X, Zhang Z. HNRNPL facilitates ferroptosis in hepatocellular carcinoma cells by promoting S100A9 expression. Transl Oncol 2024; 43:101908. [PMID: 38368714 PMCID: PMC10884479 DOI: 10.1016/j.tranon.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024] Open
Abstract
OBJECTIVE This study probed into the effect of HNRNPL on ferroptosis in hepatocellular carcinoma (HCC) cells and related molecular mechanisms. METHODS Expression patterns of HNRNPL, Recombinant S100 Calcium Binding Protein A9 (S100A9) were analyzed in HCC tissues or cells. Following transfection, HCC cell activity was analyzed, followed by detection of levels of ROS, iron content, LPO, MDA, and GSH as well as the expression of ferroptosis-related proteins. For molecular mechanism, RIP, RNA pull-down assay and actinomycin D assay were implemented to verify the binding relationship between HNRNPL and S100A9. Finally, in vivo nude mouse xenograft tumor experiments were performed for further validate the crucial role of HNENPL expression in HCC. RESULTS HNRNPL and S100A9 were significantly overexpressed in HCC. sh-HNRNPL treatment led to a significant decrease in cellular activity, GSH content, and expression of GPX4 and SLC7A11, and a significant increase in iron content, LPO level, MDA, ROS content, and expression of ACSL4 and TFR1. In addition, after sh-HNRNPL was combined with oe-S100A9 or Fer-1, a ferroptosis inhibitor, both oe-S100A9 and Fer-1 reversed the promotional effect of sh-HNRNPL on ferroptosis of HCC cells when sh-HNRNPL acted alone. Mechanically, HNRNPL promoted S100A9 mRNA stability and expression through RBP. Furthermore, low expression of HNRNPL in vivo delayed the growth of xenograft tumors and the expression of ferroptosis-related proteins. CONCLUSION HNRNPL promotes S100A9 mRNA stability and expression through RBP action, thereby promoting ferroptosis in HCC cells.
Collapse
Affiliation(s)
- Lanfang Yang
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Zhibo Zhang
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiangqing Yao
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xukun Wu
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Zhao Zhang
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
7
|
Wang S, Sun H, Chen G, Wu C, Sun B, Lin J, Lin D, Zeng D, Lin B, Huang G, Lu X, Lin H, Liang Y. RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities. Crit Rev Oncol Hematol 2024; 195:104271. [PMID: 38272151 DOI: 10.1016/j.critrevonc.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) refer to a class of proteins that participate in alternative splicing, RNA stability, polyadenylation, localization and translation of RNAs, thus regulating gene expression in post-transcriptional manner. Dysregulation of RNA-RBP interaction contributes to various diseases, including cancer. In breast cancer, disorders in RBP expression and function influence the biological characteristics of tumor cells. Targeting RBPs has fostered the development of innovative therapies for breast cancer. However, the RBP-related mechanisms in breast cancer are not completely clear. In this review, we summarize the regulatory mechanisms of RBPs and their signaling crosstalk in breast cancer. Specifically, we emphasize the potential of certain RBPs as prognostic factors due to their effects on proliferation, invasion, apoptosis, and therapy resistance of breast cancer cells. Most importantly, we present a comprehensive overview of the latest RBP-related therapeutic strategies and novel therapeutic targets that have proven to be useful in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shimeng Wang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Hexing Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Guanyuan Chen
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Chengyu Wu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Bingmei Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Jiajia Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Danping Lin
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xiaofeng Lu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| | - Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| |
Collapse
|
8
|
Zhou YJ, Yang ML, He X, Gu HY, Ren JH, Cheng ST, Fu Z, Zhang ZZ, Chen J. RNA-binding protein RPS7 promotes hepatocellular carcinoma progression via LOXL2-dependent activation of ITGB1/FAK/SRC signaling. J Exp Clin Cancer Res 2024; 43:45. [PMID: 38326908 PMCID: PMC10851485 DOI: 10.1186/s13046-023-02929-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Metastasis is one of the leading cause contributes to treatment failure and poor prognosis of hepatocellular carcinoma (HCC) patients. The underlying mechanism of HCC metastasis remains to be determined. Although several RNA binding proteins (RBPs) have been found to participate in tumorigenesis and progression of liver cancer, the role of RBPs in HCC patients with extrahepatic metastases is poorly understood. METHODS By performing RNA-seq of primary HCC tissues (including HCC with extrahepatic metastasis and those did not develop metastasis), we identified a set of HCC metastasis-associated RBPs candidates. Among which, ribosomal protein S7 (RPS7) was found to be remarkably increased in HCC tissues and be strongly related to HCC poor survival. Overexpression or CRISPR-Cas9-mediated knockout were applied to investigate the role of RPS7 on the metastasis-associated phenotypes of HCC cells. RNA sequencing, RIP, RNA-pull down, dual luciferase reporter assay, nascent RNA capture assay, and RNA decay and so on, were applied to reveal the underlying mechanism of RPS7 induced HCC metastasis. RESULTS Gain- and loss- of function analyses revealed that RPS7 promoted HCC cells adhesion, migration and invasion capabilities, as well as lung metastasis. Mechanistically, we uncovered that lysyl oxidase-like 2 (LOXL2) was a critical downstream target of RPS7. RPS7 could stabilize LOXL2 mRNA by binding to AUUUA motifs in the 3155-3375 region of the 3'UTR of LOXL2 mRNA, thus increased LOXL2 expression via elevating LOXL2 mRNA abundance. Further research revealed that LOXL2 could accelerate focal adhesion formation through maintaining the protein stability of ITGB1 and activating ITGB1-mediated FAK/SRC signaling pathway, and thereby contribute to the pro-metastasis effect of RPS7. CONCLUSIONS Taken together, our data reveal a novel function of RPS7 in HCC metastasis, also reveal the critical roles of the RPS7/LOXL2/ITGB1 axis in HCC metastasis and shed new light on the exploration of molecular drugs against HCC.
Collapse
Affiliation(s)
- Yu-Jiao Zhou
- Department of Infectious Disease, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, No.20 Jinyu Road, Yubei District, Chongqing, 401122, China
| | - Min-Li Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xin He
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hui-Ying Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhou Fu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhen-Zhen Zhang
- Department of Infectious Disease, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, No.20 Jinyu Road, Yubei District, Chongqing, 401122, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
9
|
Zhou C, Wu Q, Zhao H, Xie R, He X, Gu H. Unraveling the Role of RNA-Binding Proteins, with a Focus on RPS5, in the Malignant Progression of Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:773. [PMID: 38255847 PMCID: PMC10815211 DOI: 10.3390/ijms25020773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major global health concern, demanding a thorough understanding of its molecular mechanisms for effective therapeutic strategies. RNA-binding proteins (RBPs) play critical roles in post-transcriptional gene regulation, with their dysregulation increasingly recognized as a hallmark of various cancers. However, the specific contributions of RBPs to HCC pathogenesis and prevention remain incompletely understood. In this study, we systematically conducted an examination of the expression profiles and clinical relevance of RBPs in 556 clinical samples from well-established cohorts. Through comprehensive analyses, a subset of RBPs exhibiting significant overexpression in HCC was identified, establishing a noteworthy correlation between their aberrant expression and HCC progression. Furthermore, 40S ribosomal protein S5 (RPS5), a ribosomal protein, emerged as a potential key contributor in HCC progression. Rigorous analyses established a correlation between elevated RPS5 expression and advanced clinicopathological features, suggesting its potential as a prognostic biomarker. Experiments further confirmed the impact of RPS5 on pivotal cellular processes implicated in cancer progression, including cell proliferation and metastasis. Further mechanistic studies unveiled the potential of RPS5 to activate the cell cycle by binding to key molecules involved in the pathway, thereby promoting the malignant progression of HCC. Additionally, our analysis of the etiology behind RPS5 overexpression in HCC posited it as an outcome of transcriptional regulation by the transcription factors Nuclear Respiratory Factor 1 (NRF1) and MYC-associated zinc finger protein (MAZ). In conclusion, our study contributes to the growing evidence elucidating the intricate involvement of RBPs, exemplified by RPS5, in the malignant progression of HCC. The integration of genomic, transcriptomic, and functional analyses provides a comprehensive understanding of the regulatory mechanisms associated with RPS5 in HCC. This comprehensive analysis not only advances our knowledge of the molecular drivers behind HCC but also highlights the potential therapeutic relevance of targeting RBPs and their regulatory network for the development of more effective treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Huiying Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China; (C.Z.); (Q.W.); (H.Z.); (R.X.); (X.H.)
| |
Collapse
|
10
|
Wang H, Chen W, Cui Y, Gong H, Li H. KIAA1429 protects hepatocellular carcinoma cells from ferroptotic cell death with a m 6 A-dependent posttranscriptional modification of SLC7A11. J Cell Mol Med 2023; 27:4118-4132. [PMID: 37830241 PMCID: PMC10746954 DOI: 10.1111/jcmm.17997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
N6 -methyladenosine (m6 A) modification represents the most abundant internal methylation of eukaryotic RNAs. KIAA1429 acts as a key component of the m6 A methyltransferase complex, but its function and mechanism in ferroptotic cell death of hepatocellular carcinoma (HCC) are barely defined. We found that KIAA1429 suppression triggered ferroptosis in HCC cells according to increased cell death, iron and MDA levels, C11-BODIPY-positive cells, ROS production and decreased GSH level. Ferroptosis inhibitors ferrostatin-1 (0.5 μM) and liproxstatin-1 (10 μM) blocked KIAA1429 suppression-induced ferroptosis of HCC cells. In addition, overexpressed KIAA1429 notably heightened the activity of cystine/glutamate antiporter (SLC7A11). SLC7A11 up-regulation partially hindered KIAA1429 inhibition-mediated ferroptosis of HCC cells. The regulation SLC7A11 by KIAA1429 was attenuated by global m6 A inhibitor cycloleucine (40 μM). RNA immunoprecipitation confirmed the binding of KIAA1429 to m6 A on SLC7A11 transcript. Additionally, it was proven that KIAA1429 inhibition mitigated HCC growth in subcutaneous xenograft mice through SLC7A11. Altogether, our findings first propose that KIAA1429 protects HCC cells from ferroptosis with a m6 A-dependent post-transcriptional modification of SLC7A11 and offer a novel insight into the dysregulated epi-transcriptomics in the context of HCC.
Collapse
Affiliation(s)
- Houhong Wang
- Department of General SurgeryThe Affiliated Bozhou Hospital of Anhui Medical UniversityBozhouAnhuiChina
| | - Wenli Chen
- Department of General SurgeryThe Affiliated Bozhou Hospital of Anhui Medical UniversityBozhouAnhuiChina
| | - Yayun Cui
- Division of Life Sciences and Medicine, Department of Cancer Radiotherapy, The First Affiliated Hospital of USTCUniversity of Science and Technology of China (Anhui Provincial Cancer Hospital)HefeiAnhuiChina
| | - Huihui Gong
- Faculty of Health and Life SciencesOxford Brookes UniversityOxfordUnited Kingdom
| | - Heng Li
- Department of Comprehensive SurgeryAnhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTCHefeiAnhuiChina
| |
Collapse
|
11
|
Zhang J, Zhou Y, Feng J, Xu X, Wu J, Guo C. Deciphering roles of TRIMs as promising targets in hepatocellular carcinoma: current advances and future directions. Biomed Pharmacother 2023; 167:115538. [PMID: 37729731 DOI: 10.1016/j.biopha.2023.115538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Tripartite motif (TRIM) family is assigned to RING-finger-containing ligases harboring the largest number of proteins in E3 ubiquitin ligating enzymes. E3 ubiquitin ligases target the specific substrate for proteasomal degradation via the ubiquitin-proteasome system (UPS), which seems to be a more effective and direct strategy for tumor therapy. Recent advances have demonstrated that TRIM genes associate with the occurrence and progression of hepatocellular carcinoma (HCC). TRIMs trigger or inhibit multiple biological activities like proliferation, apoptosis, metastasis, ferroptosis and autophagy in HCC dependent on its highly conserved yet diverse structures. Remarkably, autophagy is another proteolytic pathway for intracellular protein degradation and TRIM proteins may help to delineate the interaction between the two proteolytic systems. In depth research on the precise molecular mechanisms of TRIM family will allow for targeting TRIM in HCC treatment. We also highlight several potential directions warranted further development associated with TRIM family to provide bright insight into its translational values in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, University of Shanghai for Science and Technology, Shanghai 200433, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
12
|
Xiang M, Liu L, Wu T, Wei B, Liu H. RNA-binding proteins in degenerative joint diseases: A systematic review. Ageing Res Rev 2023; 86:101870. [PMID: 36746279 DOI: 10.1016/j.arr.2023.101870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs), which are conserved proteins comprising multiple intermediate sequences, can interact with proteins, messenger RNA (mRNA) of coding genes, and non-coding RNAs to perform different biological functions, such as the regulation of mRNA stability, selective polyadenylation, and the management of non-coding microRNA (miRNA) synthesis to affect downstream targets. This article will highlight the functions of RBPs, in degenerative joint diseases (intervertebral disc degeneration [IVDD] and osteoarthritis [OA]). It will reviews the latest advancements on the regulatory mechanism of RBPs in degenerative joint diseases, in order to understand the pathophysiology, early diagnosis and treatment of OA and IVDD from a new perspective.
Collapse
Affiliation(s)
- Min Xiang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tingrui Wu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bo Wei
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
13
|
Gjorgjieva M, Ay AS, Correia de Sousa M, Delangre E, Dolicka D, Sobolewski C, Maeder C, Fournier M, Sempoux C, Foti M. MiR-22 Deficiency Fosters Hepatocellular Carcinoma Development in Fatty Liver. Cells 2022; 11:cells11182860. [PMID: 36139435 PMCID: PMC9496902 DOI: 10.3390/cells11182860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
MiR-22 is mostly considered as a hepatic tumor-suppressor microRNA based on in vitro analyses. Yet, whether miR-22 exerts a tumor-suppressive function in the liver has not been investigated in vivo. Herein, in silico analyses of miR-22 expression were performed in hepatocellular carcinomas from human patient cohorts and different mouse models. Diethylnitrosamine-induced hepatocellular carcinomas were then investigated in lean and diet-induced obese miR-22-deficient mice. The proteome of liver tissues from miR-22-deficient mice prior to hepatocellular carcinoma development was further analyzed to uncover miR-22 regulated factors that impact hepatocarcinogenesis with miR-22 deficiency. MiR-22 downregulation was consistently observed in hepatocellular carcinomas from all human cohorts and mouse models investigated. The time of appearance of the first tumors was decreased and the number of tumoral foci induced by diethylnitrosamine was significantly increased by miR-22-deficiency in vivo, two features which were further drastically exacerbated with diet-induced obesity. At the molecular level, we provide evidence that the loss of miR-22 significantly affects the energetic metabolism and mitochondrial functions of hepatocytes, and the expression of tumor-promoting factors such as thrombospondin-1. Our study demonstrates that miR-22 acts as a hepatic tumor suppressor in vivo by restraining pro-carcinogenic metabolic deregulations through pleiotropic mechanisms and the overexpression of relevant oncogenes.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|