1
|
Hedberg YS. Chromium and leather: a review on the chemistry of relevance for allergic contact dermatitis to chromium. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00027-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
As other causes decline in importance, chromium-tanned leather has become a more important source for chromium allergy, which affects around 1% of the general population. The aim of this review is to give suggestions on how to minimize the risk of leather-related allergic contact dermatitis, which can be elicited in chromium-allergic persons by hexavalent and trivalent chromium released from leather. Hexavalent chromium is the more potent chromium form and requires a lower skin dose to elicit allergic reactions. It is formed on the surface of some, antioxidant-free, leathers at dry conditions (< 35% relative humidity) and is influenced by the tanning process and other conditions, such as UV irradiation, contact with alkaline solutions, and leather age. Trivalent chromium is the dominant form released from chromium-tanned leather and its released amount is sufficient to elicit allergic reactions in some chromium-allergic individuals when they are exposed repetitively and over longer time (days – months). A low initial test result (< 3 mg/kg) for hexavalent chromium with the current standard test (ISO 17075) does not guarantee a low release of chromium from the leather or a low release of hexavalent chromium under typical exposure conditions during the service life of the leather. Information, labels, and certificates regarding leather products are often insufficient to protect chromium-allergic individuals. Correct labelling and information on the possible content of different allergens, as well as different tanning alternatives for certain leather products, are crucial.
Graphical abstract
Collapse
|
2
|
Mao Q, Li Q, Li H, Yuan S, Zhang J. Oxidative paraben removal with chlorine dioxide: Reaction kinetics and mechanism. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Serbezeanu D, Carja ID, Nicolescu A, Aflori M, Vlad-Bubulac T, Butnaru M, Damian RF, Dunca S, Shova S. Synthesis, crystal structure and biological activity of new phosphoester-p-substituted-methylparabens. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|