1
|
Khayata M, Sanchez Nadales A, Xu B. Contemporary applications of multimodality imaging in infective endocarditis. Expert Rev Cardiovasc Ther 2024; 22:27-39. [PMID: 37996246 DOI: 10.1080/14779072.2023.2288152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Infective endocarditis (IE) is an increasingly important condition with significant morbidity and mortality. With advancements in cardiovascular interventions including prosthetic valve implantation and utilization of intracardiac devices, the prevalence of IE is rising in the modern era. Early detection and management of this condition are critical. AREAS COVERED This review presents a contemporary review of the applications of multi-modality imaging in IE, taking a comparative approach of the various imaging modalities. EXPERT OPINION Transthoracic and transesophageal echocardiography are essential imaging modalities in establishing the diagnosis of IE, as well as evaluating for complications of IE. Other imaging modalities such as cardiac computed tomography and nuclear imaging play an important role as adjuvant imaging modalities for the evaluation of IE, particularly in prosthetic valve IE and cardiovascular implantable device associated IE. It is crucial to understand the strengths, weaknesses, and clinical application of each imaging modality, to improve the diagnosis, management, and outcomes of patients with IE.
Collapse
Affiliation(s)
- Mohamed Khayata
- Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | - Bo Xu
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydnell and Arnold Family Heart, Vascular, and Thoracic Institute, Cleveland, OH, USA
| |
Collapse
|
2
|
Schwarz A, Werner R, Wimmert L, Vornehm M, Gauer T, Hofmann C. Dose reduction in sequence scanning 4D CT imaging through respiratory signal-guided tube current modulation: A feasibility study. Med Phys 2023; 50:7539-7547. [PMID: 37831550 DOI: 10.1002/mp.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Respiratory signal-guided 4D CT sequence scanning such as the recently introduced Intelligent 4D CT (i4DCT) approach reduces image artifacts compared to conventional 4D CT, especially for irregular breathing. i4DCT selects beam-on periods during scanning such that data sufficiency conditions are fulfilled for each couch position. However, covering entire breathing cycles during beam-on periods leads to redundant projection data and unnecessary dose to the patient during long exhalation phases. PURPOSE We propose and evaluate the feasibility of respiratory signal-guided dose modulation (i.e., temporary reduction of the CT tube current) to reduce the i4DCT imaging dose while maintaining high projection data coverage for image reconstruction. METHODS The study is designed as an in-silico feasibility study. Dose down- and up-regulation criteria were defined based on the patients' breathing signals and their representative breathing cycle learned before and during scanning. The evaluation (including an analysis of the impact of the dose modulation criteria parameters) was based on 510 clinical 4D CT breathing curves. Dose reduction was determined as the fraction of the downregulated dose delivery time to the overall beam-on time. Furthermore, under the assumption of a 10-phase 4D CT and amplitude-based reconstruction, beam-on periods were considered negatively affected by dose modulation if the downregulation period covered an entire phase-specific amplitude range for a specific breathing phase (i.e., no appropriate reconstruction of the phase image possible for this specific beam-on period). Corresponding phase-specific amplitude bins are subsequently denoted as compromised bins. RESULTS Dose modulation resulted in a median dose reduction of 10.4% (lower quartile: 7.4%, upper quartile: 13.8%, maximum: 28.6%; all values corresponding to a default parameterization of the dose modulation criteria). Compromised bins were observed in 1.0% of the beam-on periods (72 / 7370 periods) and affected 10.6% of the curves (54/510 curves). The extent of possible dose modulation depends strongly on the individual breathing patterns and is weakly correlated with the median breathing cycle length (Spearman correlation coefficient 0.22, p < 0.001). Moreover, the fraction of beam-on periods with compromised bins is weakly anti-correlated with the patient's median breathing cycle length (Spearman correlation coefficient -0.24; p < 0.001). Among the curves with the 17% longest average breathing cycles, no negatively affected beam-on periods were observed. CONCLUSION Respiratory signal-guided dose modulation for i4DCT imaging is feasible and promises to significantly reduce the imaging dose with little impact on projection data coverage. However, the impact on image quality remains to be investigated in a follow-up study.
Collapse
Affiliation(s)
- Annette Schwarz
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Siemens Healthcare GmbH, Forchheim, Germany
| | - René Werner
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Wimmert
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Vornehm
- Siemens Healthcare GmbH, Forchheim, Germany
- Computational Imaging Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Gauer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
3
|
Kirkness JP, Dusting J, Eikelis N, Pirakalathanan P, DeMarco J, Shiao SL, Fouras A. Association of x-ray velocimetry (XV) ventilation analysis compared to spirometry. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1148310. [PMID: 37440838 PMCID: PMC10335741 DOI: 10.3389/fmedt.2023.1148310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction X-ray Velocimetry (XV) ventilation analysis is a 4-dimensional imaging-based method for quantifying regional ventilation, aiding in the assessment of lung function. We examined the performance characteristics of XV ventilation analysis by examining correlation to spirometry and measurement repeatability. Methods XV analysis was assessed in 27 patients receiving thoracic radiotherapy for non-lung cancer malignancies. Measurements were obtained pre-treatment and at 4 and 12-months post-treatment. XV metrics such as ventilation defect percent (VDP) and regional ventilation heterogeneity (VH) were compared to spirometry at each time point, using correlation analysis. Repeatability was assessed between multiple runs of the analysis algorithm, as well as between multiple breaths in the same patient. Change in VH and VDP in a case series over 12 months was used to determine effect size and estimate sample sizes for future studies. Results VDP and VH were found to significantly correlate with FEV1 and FEV1/FVC (range: -0.36 to -0.57; p < 0.05). Repeatability tests demonstrated that VDP and VH had less than 2% variability within runs and less than 8% change in metrics between breaths. Three cases were used to illustrate the advantage of XV over spirometry, where XV indicated a change in lung function that was either undetectable or delayed in detection by spirometry. Case A demonstrated an improvement in XV metrics over time despite stable spirometric values. Case B demonstrated a decline in XV metrics as early as 4-months, although spirometric values did not change until 12-months. Case C demonstrated a decline in XV metrics at 12 months post-treatment while spirometric values remained normal throughout the study. Based on the effect sizes in each case, sample sizes ranging from 10 to 38 patients would provide 90% power for future studies aiming to detect similar changes. Conclusions The performance and safety of XV analysis make it ideal for both clinical and research applications across most lung indications. Our results support continued research and provide a basis for powering future studies using XV as an endpoint to examine lung health and determine therapeutic efficacy.
Collapse
Affiliation(s)
| | | | | | | | - John DeMarco
- Department of Radiation Oncology and Biomedical Sciences, Cedar-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen L. Shiao
- Department of Radiation Oncology and Biomedical Sciences, Cedar-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
4
|
Ibad HA, de Cesar Netto C, Shakoor D, Sisniega A, Liu S, Siewerdsen JH, Carrino JA, Zbijewski W, Demehri S. Computed Tomography: State-of-the-Art Advancements in Musculoskeletal Imaging. Invest Radiol 2023; 58:99-110. [PMID: 35976763 PMCID: PMC9742155 DOI: 10.1097/rli.0000000000000908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Although musculoskeletal magnetic resonance imaging (MRI) plays a dominant role in characterizing abnormalities, novel computed tomography (CT) techniques have found an emerging niche in several scenarios such as trauma, gout, and the characterization of pathologic biomechanical states during motion and weight-bearing. Recent developments and advancements in the field of musculoskeletal CT include 4-dimensional, cone-beam (CB), and dual-energy (DE) CT. Four-dimensional CT has the potential to quantify biomechanical derangements of peripheral joints in different joint positions to diagnose and characterize patellofemoral instability, scapholunate ligamentous injuries, and syndesmotic injuries. Cone-beam CT provides an opportunity to image peripheral joints during weight-bearing, augmenting the diagnosis and characterization of disease processes. Emerging CBCT technologies improved spatial resolution for osseous microstructures in the quantitative analysis of osteoarthritis-related subchondral bone changes, trauma, and fracture healing. Dual-energy CT-based material decomposition visualizes and quantifies monosodium urate crystals in gout, bone marrow edema in traumatic and nontraumatic fractures, and neoplastic disease. Recently, DE techniques have been applied to CBCT, contributing to increased image quality in contrast-enhanced arthrography, bone densitometry, and bone marrow imaging. This review describes 4-dimensional CT, CBCT, and DECT advances, current logistical limitations, and prospects for each technique.
Collapse
Affiliation(s)
- Hamza Ahmed Ibad
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Delaram Shakoor
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Alejandro Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen Liu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John A. Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Wojciech Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shadpour Demehri
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Daly M, McWilliam A, Radhakrishna G, Choudhury A, Eccles CL. Radiotherapy respiratory motion management in hepatobiliary and pancreatic malignancies: a systematic review of patient factors influencing effectiveness of motion reduction with abdominal compression. Acta Oncol 2022; 61:833-841. [PMID: 35611555 DOI: 10.1080/0284186x.2022.2073186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/28/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The effectiveness of abdominal compression for motion management in hepatobiliary-pancreatic (HPB) radiotherapy has not been systematically evaluated. METHODS & MATERIALS A systematic review was carried out using PubMed/Medline, Cochrane Library, Web of Science, and CINAHL databases up to 1 July 2021. No date restrictions were applied. Additional searches were carried out using the University of Manchester digital library, Google Scholar and of retrieved papers' reference lists. Studies conducted evaluating respiratory motion utilising imaging with and without abdominal compression in the same patients available in English were included. Studies conducted in healthy volunteers or majority non-HPB sites, not providing descriptive motion statistics or patient characteristics before and after compression in the same patients or published without peer-review were excluded. A narrative synthesis was employed by tabulating retrieved studies and organising chronologically by abdominal compression device type to help identify patterns in the evidence. RESULTS The inclusion criteria were met by 6 studies with a total of 152 patients. Designs were a mix of retrospective and prospective quantitative designs with chronological, non-randomised recruitment. Abdominal compression reduced craniocaudal respiratory motion in the majority of patients, although in four studies there were increases seen in at least one direction. The influence of patient comorbidities on effectiveness of compression, and/or comfort with compression was not evaluated in any study. CONCLUSION Abdominal compression may not be appropriate for all patients, and benefit should be weighed with potential increase in motion or discomfort in patients with small initial motion (<5 mm). Patient factors including male sex, and high body mass index (BMI) were found to impact the effectiveness of compression, however with limited evidence. High-quality studies are warranted to fully assess the clinical impact of abdominal compression on treatment outcomes and toxicity prospective in comparison to other motion management strategies.
Collapse
Affiliation(s)
- Mairead Daly
- Division of Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| | - Alan McWilliam
- Division of Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
- The Christie NHSFT, Manchester, United Kingdom
| | | | - Ananya Choudhury
- Division of Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
- The Christie NHSFT, Manchester, United Kingdom
| | - Cynthia L Eccles
- Division of Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
- The Christie NHSFT, Manchester, United Kingdom
| |
Collapse
|
6
|
Yip SWY, Griffith JF, Lee RKL, Liu KL. 4D CT to assess spinal instability in developmental anomaly of posterior arch of atlas. BJR Case Rep 2022; 8:20210038. [PMID: 36101739 PMCID: PMC9461738 DOI: 10.1259/bjrcr.20210038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/10/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
Four-dimensional (4D) CT uniquely allows cinematic visualization of the entirety of joint motion throughout dynamic movement, which can reveal subtle or transient internal joint derangements not evident on static images. As developmental anomalies of the posterior arch can predispose to cervical spinal instability and neurological morbidity, precise assessment of spinal movement during motion is of clinical relevance. We describe the use of 4D-CT in a subject with partial absence of posterior C1 arch. This, to our knowledge, is the first such report. In at-risk individuals, 4D-CT has the potential to enable an assessment of spinal instability with a higher level of clarity and, in this sense, its more routine implementation may be a future direction.
Collapse
Affiliation(s)
- Stefanie WY Yip
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - James F Griffith
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ryan KL Lee
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | |
Collapse
|
7
|
Uncertainty in organ delineation using low-dose computed tomography images with high-strength iterative reconstruction technique in radiotherapy for prostate cancer. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Introduction
This study aimed to investigate the uncertainty in organ delineation of low-dose computed tomography (CT) images using a high-strength iterative reconstruction (IR) during radiotherapy planning for the treatment of prostate cancer.
Methods
Two CT datasets were prepared with different dose levels by adjusting the reconstruction slice thickness. Two observers independently delineated the prostate, seminal vesicles, bladder and rectum on both images without referring to other modality images. The delineated organ volumes were compared between both images. Observer delineation variability was assessed using Dice similarity coefficient (DSC) and mean distance to agreement.
Results
No significant differences regarding the delineated organ volumes were observed between the low- and standard-dose images for all organs. Regarding inter-observer variability, the DSC was relatively high for both images, whereas mean distance to agreement was not significantly different between images (p > 0·05 for all). Intra-observer variability for each observer showed high DSC (>0·8 and >0·9 for seminal vesicles and other organs, respectively) but no significant differences in the mean distance to agreement (p > 0·05 for all).
Conclusions
Our results indicate that low-dose CT images with high-strength IR would be available for organ delineation in the radiotherapy treatment planning for prostate cancer.
Collapse
|
8
|
Fujimoto K, Shiinoki T, Yuasa Y, Tanaka H. Estimation of liver elasticity using the finite element method and four-dimensional computed tomography images as a biomarker of liver fibrosis. Med Phys 2021; 48:1286-1298. [PMID: 33449406 DOI: 10.1002/mp.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Current radiotherapy planning procedures are generally designed based on anatomical information only and use computed tomography (CT) images that do not incorporate organ-functional information. In this study, we developed a method for estimating liver elasticity using the finite element method (FEM) and four-dimensional CT (4DCT) images acquired during radiotherapy planning, and we subsequently evaluated its feasibility as a biomarker for liver fibrosis. MATERIALS AND METHODS Twenty patients who underwent 4DCT and ultrasound-based transient elastography (UTE) were enrolled. All patients had chronic liver disease or cirrhosis. Liver elasticity measurements of the UTE were performed on the right lobe of the patient's liver in 20 patients. The serum biomarkers of the aspartate aminotransferase (AST)-to-platelet ratio index (APRI) and fibrosis-4 index (FIB-4) were available in 18 of the 20 total patients, which were measured within 1 week after undergoing 4DCT. The displacement between the 4DCT images obtained at the endpoints of exhalation and inspiration was determined using the actual (via deformable image registration) and simulated (via FEM) respiration-induced displacement. The elasticity of each element of the liver model was optimized by minimizing the error between the actual and simulated respiration-induced displacement. Then, each patient's estimated liver elasticity was defined as the mean Young's modulus of the liver's right lobe and that of the whole liver using the estimated elasticity map. The estimated liver elasticity was evaluated for correlations with the elasticity obtained via UTE and with two serum biomarkers (APRI and FIB-4). RESULTS The mean ± standard deviation (SD) of the errors between the actual and simulated respiration-induced displacement in the liver model was 0.54 ± 0.33 mm. The estimated liver's right lobe elasticity was statistically significantly correlated with the UTE (r = 0.87, P < 0.001). Furthermore, the estimated whole liver elasticity was statistically significantly correlated with the UTE (r = 0.84, P < 0.001), APRI score (r = 0.62, P = 0.005), and FIB-4 score (r = 0.54, P = 0.021). CONCLUSION In this study, liver elasticity was estimated through FEM-based simulation and actual respiratory-induced liver displacement obtained from 4DCT images. Furthermore, we assessed that the estimated elasticity of the liver's right lobe was strongly correlated with the UTE. Therefore, the estimated elasticity has the potential to be a feasible imaging biomarker for assessing liver fibrosis using only 4DCT images without additional inspection or equipment costs. Because our results were derived from a limited sample of 20 patients, it is necessary to evaluate the accuracy of elasticity estimation for each liver segment on larger groups of biopsied patients to utilize liver elasticity information for radiotherapy planning.
Collapse
Affiliation(s)
- Koya Fujimoto
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Yuki Yuasa
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Hidekazu Tanaka
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| |
Collapse
|
9
|
Noid G, Zhu J, Tai A, Mistry N, Schott D, Prah D, Paulson E, Schultz C, Li XA. Improving Structure Delineation for Radiation Therapy Planning Using Dual-Energy CT. Front Oncol 2020; 10:1694. [PMID: 32984048 PMCID: PMC7484725 DOI: 10.3389/fonc.2020.01694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- George Noid
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin Zhu
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nilesh Mistry
- Siemens Medical Solutions USA, Inc., Malvern, PA, United States
| | - Diane Schott
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Douglas Prah
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: X. Allen Li,
| |
Collapse
|
10
|
Milano MT, Mahesh M, Mettler FA, Elee J, Vetter RJ. Patient Radiation Exposure: Imaging During Radiation Oncology Procedures: Executive Summary of NCRP Report No. 184. J Am Coll Radiol 2020; 17:1176-1182. [PMID: 32105647 DOI: 10.1016/j.jacr.2020.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/25/2022]
Abstract
The National Council on Radiation Protection and Measurements (NCRP) recently assessed patient radiation exposure in the United States, which was summarized in its 2019 NCRP Report No. 184. This work involved an estimation of the number of medical procedures using ionizing radiation, as well as the associated effective doses from these procedures. The NCRP Report No. 184 committee elected to not incorporate radiation dose from radiotherapy into its calculated population dose exposures, as the assessment of effective dose for the population undergoing radiotherapy is more complex than that for other medical radiation exposures. However, the aim of NCRP Report No. 184 was to raise awareness of ancillary radiation exposures to patients undergoing radiotherapy. Overall, it was estimated that annually, in 2016, approximately 800,000 patients received approximately 1 million courses of radiation therapy. Each of these treatments includes various types of imaging that may not be familiar to radiologists or others. Exposures from radiotherapy planning and delivery are reviewed in the report and summarized in this executive summary. The imaging techniques, use of this imaging, and associated tissue doses are described. Imaging can contribute a few percent to the planned treatment doses (which are prescribed to specified target volumes) as well as exposing patients to radiation outside of the target volume (in the imaging field of view).
Collapse
Affiliation(s)
- Michael T Milano
- Residency Program Director; Director of Shaped Beam Radiosurgery Program, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.
| | - Mahadevappa Mahesh
- Professor, The Russell H. Morgan Department of Radiology and Radiological Science; Professor of Medicine, Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Co-Chair for the NCRP Report 184; Chair of Faculty Senate at the School of Medicine; Board Member of American College of Radiology; Board Member of American Association of Physicists in Medicine
| | - Fred A Mettler
- Professor Emeritus, Department of Radiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jennifer Elee
- Louisiana Department of Environmental Quality, Baton Rouge, Louisiana
| | - Richard J Vetter
- Professor Emeritus of Biophysics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Metzger A, Renz P, Hasan S, Karlovits S, Sohn J, Gresswell S. Unforeseen Computed Tomography Resimulation for Initial Radiation Planning: Associated Factors and Clinical Impact. Adv Radiat Oncol 2019; 4:716-721. [PMID: 31673665 PMCID: PMC6817516 DOI: 10.1016/j.adro.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/04/2022] Open
Abstract
Purpose Repeat computed tomography (CT) simulation is problematic because of additional expense of clinic resources, patient inconvenience, additional radiation exposure, and treatment delay. We investigated the factors and clinical impact of unplanned CT resimulations in our network. Methods and Materials We used the billing records of 18,170 patients treated at 5 clinics. A total of 213 patients were resimulated before their first treatment. The disease site, location, use of 4-dimensional CT (4DCT), contrast, image fusion, and cause for resimulation were recorded. Odds ratios determined statistical significance. Results Our total rate of resimulation was 1.2%. Anal/colorectal (P < .001) and head and neck (P < .001) disease sites had higher rates of resimulation. Brain (P = .001) and lung/thorax (P = .008) had lower rates of resimulation. The most common causes for resimulation were setup change (11.7%), change in patient anatomy (9.8%), and rectal filling (8.5%). The resimulation rate for 4DCTs was 3.03% compared with 1.0% for non-4DCTs (P < .001). Median time between simulations was 7 days. Conclusions The most common sites for resimulation were anal/colorectal and head and neck, largely because of change in setup or changes in anatomy. The 4DCT technique correlated with higher resimulation rates. The resimulation rate was 1.2%, and median treatment delay was 7 days. Further studies are warranted to limit the rate of resimulation.
Collapse
Affiliation(s)
- April Metzger
- Division of Radiation Oncology, Allegheny Health Network, Pittsburgh, Pennsylvania
- Corresponding author.
| | - Paul Renz
- Division of Radiation Oncology, West Virginia University, Morgantown, West Virginia
| | - Shaakir Hasan
- Division of Radiation Oncology, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Stephen Karlovits
- Division of Radiation Oncology, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Jason Sohn
- Division of Radiation Oncology, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Steven Gresswell
- Division of Radiation Oncology, Keesler Air Force Base, Biloxi, Mississippi
| |
Collapse
|
12
|
Noid G, Tai A, Schott D, Mistry N, Liu Y, Gilat-Schmidt T, Robbins JR, Li XA. Technical Note: Enhancing soft tissue contrast and radiation-induced image changes with dual-energy CT for radiation therapy. Med Phys 2018; 45:4238-4245. [PMID: 29972868 DOI: 10.1002/mp.13083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/28/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The purpose of this work is to investigate the use of low-energy monoenergetic decompositions obtained from dual-energy CT (DECT) to enhance image contrast and the detection of radiation-induced changes of CT textures in pancreatic cancer. METHODS The DECT data acquired for 10 consecutive pancreatic cancer patients during routine nongated CT-guided radiation therapy (RT) using an in-room CT (Definition AS Open, Siemens Healthcare, Malvern, PA) were analyzed. With a sequential DE protocol, the scanner rapidly performs two helical acquisitions, the first at a tube voltage of 80 kVp and the second at a tube voltage of 140 kVp. Virtual monoenergetic images across a range of energies from 40 to 140 keV were reconstructed using an image-based material decomposition. Intravenous (IV) bolus-free contrast enhancement in pancreas patient tumors was measured across a spectrum of monoenergies. For treatment response assessment, the changes in CT histogram features (including mean CT number (MCTN), entropy, kurtosis) in pancreas tumors were measured during treatment. The results from the monoenergetic decompositions were compared to those obtained from the standard 120 kVp CT protocol for the same subjects. RESULTS Data of monoenergetic decompositions of the 10 patients confirmed the expected enhancement of soft tissue contrast as the energy is decreased. The changes in the selected CT histogram features in the pancreas during RT delivery were amplified with the low-energy monoenergetic decompositions, as compared to the changes measured from the 120 kVp CTs. For the patients studied, the average reduction in the MCTN in pancreas from the first to the last (the 28th) treatment fraction was 4.09 HU for the standard 120 kVp and 11.15 HU for the 40 keV monoenergetic decomposition. CONCLUSIONS Low-energy monoenergetic decompositions from DECT substantially increase soft tissue contrast and increase the magnitude of radiation-induced changes in CT histogram textures during RT delivery for pancreatic cancer. Therefore, quantitative DECT may assist the detection of early RT response.
Collapse
Affiliation(s)
- George Noid
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Diane Schott
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Nilesh Mistry
- Siemens Medical Solutions USA, Inc., 40 Liberty Blvd., Malvern, PA, 19355-9998, USA
| | - Yu Liu
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Taly Gilat-Schmidt
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Jared R Robbins
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| |
Collapse
|