1
|
Smolders A, Rivetti L, Vatterodt N, Korreman S, Lomax A, Sharma M, Studen A, Weber DC, Jeraj R, Albertini F. DiffuseRT: predicting likely anatomical deformations of patients undergoing radiotherapy. Phys Med Biol 2024; 69:155016. [PMID: 38986481 DOI: 10.1088/1361-6560/ad61b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective. Predicting potential deformations of patients can improve radiotherapy treatment planning. Here, we introduce new deep-learning models that predict likely anatomical changes during radiotherapy for head and neck cancer patients.Approach. Denoising diffusion probabilistic models (DDPMs) were developed to generate fraction-specific anatomical changes based on a reference cone-beam CT (CBCT), the fraction number and the dose distribution delivered. Three distinct DDPMs were developed: (1) theimage modelwas trained to directly generate likely future CBCTs, (2) the deformable vector field (DVF) model was trained to generate DVFs that deform a reference CBCT and (3) thehybrid modelwas trained similarly to the DVF model, but without relying on an external deformable registration algorithm. The models were trained on 9 patients with longitudinal CBCT images (224 CBCTs) and evaluated on 5 patients (152 CBCTs).Results. The generated images mainly exhibited random positioning shifts and small anatomical changes for early fractions. For later fractions, all models predicted weight losses in accordance with the training data. The distributions of volume and position changes of the body, esophagus, and parotids generated with the image and hybrid models were more similar to the ground truth distribution than the DVF model, evident from the lower Wasserstein distance achieved with the image (0.33) and hybrid model (0.30) compared to the DVF model (0.36). Generating several images for the same fraction did not yield the expected variability since the ground truth anatomical changes were only in 76% of the fractions within the 95% bounds predicted with the best model. Using the generated images for robust optimization of simplified proton therapy plans improved the worst-case clinical target volume V95 with 7% compared to optimizing with 3 mm set-up robustness while maintaining a similar integral dose.Significance. The newly developed DDPMs generate distributions similar to the real anatomical changes and have the potential to be used for robust anatomical optimization.
Collapse
Affiliation(s)
- A Smolders
- Paul Scherrer Institute, Center for Proton Therapy, Villigen, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | - L Rivetti
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - N Vatterodt
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - S Korreman
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - A Lomax
- Paul Scherrer Institute, Center for Proton Therapy, Villigen, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | - M Sharma
- Department of Radiation Oncology, University of California, San Francisco, CA, United States of America
| | - A Studen
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - D C Weber
- Paul Scherrer Institute, Center for Proton Therapy, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - R Jeraj
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
- University of Wisconsin-Madison, Madison, WI, United States of America
| | - F Albertini
- Paul Scherrer Institute, Center for Proton Therapy, Villigen, Switzerland
| |
Collapse
|
2
|
Liu W, Feng H, Taylor PA, Kang M, Shen J, Saini J, Zhou J, Giap HB, Yu NY, Sio TS, Mohindra P, Chang JY, Bradley JD, Xiao Y, Simone CB, Lin L. NRG Oncology and Particle Therapy Co-Operative Group Patterns of Practice Survey and Consensus Recommendations on Pencil-Beam Scanning Proton Stereotactic Body Radiation Therapy and Hypofractionated Radiation Therapy for Thoracic Malignancies. Int J Radiat Oncol Biol Phys 2024; 119:1208-1221. [PMID: 38395086 PMCID: PMC11209785 DOI: 10.1016/j.ijrobp.2024.01.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/25/2023] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally fractionated PBSPT because of concerns of amplified uncertainties at the larger dose per fraction. The NRG Oncology and Particle Therapy Cooperative Group Thoracic Subcommittee surveyed proton centers in the United States to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Among other points, the recommendations highlight the need for volumetric image guidance and multiple computed tomography-based robust optimization and robustness tools to minimize further the effect of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona.
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona; College of Mechanical and Power Engineering, China Three Gorges University, Yichang, Hubei, China; Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, Guangdong, China
| | - Paige A Taylor
- Imaging and Radiation Oncology Core Houston Quality Assurance Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Jatinder Saini
- Seattle Cancer Care Alliance Proton Therapy Center and Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Huan B Giap
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Terence S Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Pranshu Mohindra
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Joe Y Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey D Bradley
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Liyong Lin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Liu W, Feng H, Taylor PA, Kang M, Shen J, Saini J, Zhou J, Giap HB, Yu NY, Sio TS, Mohindra P, Chang JY, Bradley JD, Xiao Y, Simone CB, Lin L. Proton Pencil-Beam Scanning Stereotactic Body Radiation Therapy and Hypofractionated Radiation Therapy for Thoracic Malignancies: Patterns of Practice Survey and Recommendations for Future Development from NRG Oncology and PTCOG. ARXIV 2024:arXiv:2402.00489v1. [PMID: 38351927 PMCID: PMC10862926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally-fractionated PBSPT due to concerns of amplified uncertainties at the larger dose per fraction. NRG Oncology and Particle Therapy Cooperative Group (PTCOG) Thoracic Subcommittee surveyed US proton centers to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Amongst other points, the recommendations highlight the need for volumetric image guidance and multiple CT-based robust optimization and robustness tools to minimize further the impact of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Paige A. Taylor
- The Imaging and Radiation Oncology Core Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minglei Kang
- New York Proton Center, New York City, New York, USA
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Jatinder Saini
- Seattle Cancer Care Alliance Proton Therapy Center and Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Huan B. Giap
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Nathan Y. Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Terence S. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Pranshu Mohindra
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Joe Y. Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Jeffrey D. Bradley
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Liyong Lin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
4
|
Janson M, Glimelius L, Fredriksson A, Traneus E, Engwall E. Treatment planning of scanned proton beams in RayStation. Med Dosim 2023; 49:2-12. [PMID: 37996354 DOI: 10.1016/j.meddos.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023]
Abstract
The use of scanned proton beams in external beam radiation therapy has seen a rapid development over the past decade. This technique places new demands on treatment planning, as compared to conventional photon-based radiation therapy. In this article, several proton specific functions as implemented in the treatment planning system RayStation are presented. We will cover algorithms for energy layer and spot selection, basic optimization including the handling of spot weight limits, optimization of the linear energy transfer (LET) distribution, robust optimization including the special case of 4D optimization, proton arc planning, and automatic planning using deep learning. We will further present the Monte Carlo (MC) proton dose engine in RayStation to some detail, from the material interpretation of the CT data, through the beam model parameterization, to the actual MC transport mechanism. Useful tools for plan evaluation, including robustness evaluation, and the versatile scripting interface are also described. The overall aim of the paper is to give an overview of some of the key proton planning functions in RayStation, with example usages, and at the same time provide the details about the underlying algorithms that previously have not been fully publicly available.
Collapse
|
5
|
Uh J, Wang C, Jordan JA, Pirlepesov F, Becksfort JB, Ates O, Krasin MJ, Hua CH. A hybrid method of correcting CBCT for proton range estimation with deep learning and deformable image registration. Phys Med Biol 2023; 68:10.1088/1361-6560/ace754. [PMID: 37442128 PMCID: PMC10846632 DOI: 10.1088/1361-6560/ace754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/13/2023] [Indexed: 07/15/2023]
Abstract
Objective. This study aimed to develop a novel method for generating synthetic CT (sCT) from cone-beam CT (CBCT) of the abdomen/pelvis with bowel gas pockets to facilitate estimation of proton ranges.Approach. CBCT, the same-day repeat CT, and the planning CT (pCT) of 81 pediatric patients were used for training (n= 60), validation (n= 6), and testing (n= 15) of the method. The proposed method hybridizes unsupervised deep learning (CycleGAN) and deformable image registration (DIR) of the pCT to CBCT. The CycleGAN and DIR are respectively applied to generate the geometry-weighted (high spatial-frequency) and intensity-weighted (low spatial-frequency) components of the sCT, thereby each process deals with only the component weighted toward its strength. The resultant sCT is further improved in bowel gas regions and other tissues by iteratively feeding back the sCT to adjust incorrect DIR and by increasing the contribution of the deformed pCT in regions of accurate DIR.Main results. The hybrid sCT was more accurate than deformed pCT and CycleGAN-only sCT as indicated by the smaller mean absolute error in CT numbers (28.7 ± 7.1 HU versus 38.8 ± 19.9 HU/53.2 ± 5.5 HU;P≤ 0.012) and higher Dice similarity of the internal gas regions (0.722 ± 0.088 versus 0.180 ± 0.098/0.659 ± 0.129;P≤ 0.002). Accordingly, the hybrid method resulted in more accurate proton range for the beams intersecting gas pockets (11 fields in 6 patients) than the individual methods (the 90th percentile error in 80% distal fall-off, 1.8 ± 0.6 mm versus 6.5 ± 7.8 mm/3.7 ± 1.5 mm;P≤ 0.013). The gamma passing rates also showed a significant dosimetric advantage by the hybrid method (99.7 ± 0.8% versus 98.4 ± 3.1%/98.3 ± 1.8%;P≤ 0.007).Significance. The hybrid method significantly improved the accuracy of sCT and showed promises in CBCT-based proton range verification and adaptive replanning of abdominal/pelvic proton therapy even when gas pockets are present in the beam path.
Collapse
Affiliation(s)
- Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Chuang Wang
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Jacob A Jordan
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Fakhriddin Pirlepesov
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Jared B Becksfort
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Ozgur Ates
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Matthew J Krasin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| |
Collapse
|
6
|
Fredman E, Weinstock-Sabbah M, Icht O, Moore A, Shochet T, Limon D, Bragilovski D. Same-day versus delayed simulation imaging after placement of a perirectal hydrogel spacer for prostate radiotherapy. Front Oncol 2023; 13:1236113. [PMID: 37519789 PMCID: PMC10375909 DOI: 10.3389/fonc.2023.1236113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Placement of a perirectal hydrogel spacer has been demonstrated to reduce the risk of rectal toxicity from prostate radiation. Practices vary regarding the timing of CT simulation after hydrogel placement, and the ideal schedule remains unknown. Methods Thirty patients with localized prostate adenocarcinoma underwent transrectal ultrasound-guided placement of an iodinated SpaceOAR™ hydrogel prior to radiotherapy. Per evolving practice, 15 completed same-day simulation and 15 returned for simulation 1-2 weeks later. Hydrogel volume, perirectal distance, air-void volume, and rectal dosimetry per NRG GU005 were compared between CT simulation, 1st fraction Cone-Beam-CT (CBCT), and final CBCT. Results CT simulation occurred 8.8 ± 2.4 days after placement in the delayed group, with no significant difference in the interval between simulation and 1st fraction between groups (p = 0.165). Greater observed de-creases in hydrogel volume (0.57 cc vs. 0.04 cc, p = 0.0002), and perirectal distance at both mid-gland (1.32 mm vs. 0.17 mm) and tallest point (2.40 mm vs. 0.04 mm) were seen on 1st-fraction CBCT in the same-day group (p = 0.0039; p = 0.0002). Per dosimetry recalculated on 1st fraction CBCT, five (D3 cc and D50%) versus one (D50%) rectal dose parameters were exceeded in the same-day and delayed groups, respectively, and 10 versus one parameters had a relative increase of ≥ 20%. Conclusion Due to the evolving anatomic changes in the days following hydrogel placement, same-day simulation scanning may introduce unintended variability in rectal dosimetry at the time of prostate radiotherapy.
Collapse
Affiliation(s)
- Elisha Fredman
- Department of Radiation Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikvah, Israel
| | - Miriam Weinstock-Sabbah
- Department of Radiation Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikvah, Israel
| | - Oded Icht
- Department of Radiation Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikvah, Israel
| | - Assaf Moore
- Department of Radiation Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikvah, Israel
| | - Tzippora Shochet
- Department of Biostatistics, Rabin Medical Center, Petah Tikvah, Israel
| | - Dror Limon
- Department of Radiation Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikvah, Israel
| | - Dimitri Bragilovski
- Department of Radiation Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikvah, Israel
| |
Collapse
|
7
|
Ricotti R, Pella A, Mirandola A, Fiore MR, Chalaszczyk A, Paganelli C, Antonioli L, Vai A, Tagaste B, Belotti G, Rossi M, Ciocca M, Orlandi E, Baroni G. Dosimetric effect of variable rectum and sigmoid colon filling during carbon ion radiotherapy to sacral chordoma. Phys Med 2021; 90:123-133. [PMID: 34628271 DOI: 10.1016/j.ejmp.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Carbon ion radiotherapy (CIRT) is sensitive to anatomical density variations. We examined the dosimetric effect of variable intestinal filling condition during CIRT to ten sacral chordoma patients. METHODS For each patient, eight virtual computed tomography scans (vCTs) were generated by varying the density distribution within the rectum and the sigmoid in the planning computed tomography (pCT) with a density override approach mimicking a heterogeneous combination of gas and feces. Totally full and empty intestinal preparations were modelled. In addition, five different intestinal filling conditions were modelled by a mixed density pattern derived from two combined and weighted Gaussian distributions simulating gas and feces respectively. Finally, a patient-specific mixing proportion was estimated by evaluating the daily amount of gas detected in the cone beam computed tomography (CBCT). Dose distribution was recalculated on each vCT and dose volume histograms (DVHs) were examined. RESULTS No target coverage degradation was observed at different vCTs. Rectum and sigma dose degradation ranged respectively between: [-6.7; 21.6]GyE and [-0.7; 15.4]GyE for D50%; [-377.4; 1197.9] and [-95.2; 1027.5] for AUC; [-1.2; 10.7]GyE and [-2.6; 21.5]GyE for D1%. CONCLUSIONS Variation of intestinal density can greatly influence the penetration depth of charged particle and might compromise dose distribution. In particular cases, with large clinical target volume in very close proximity to rectum and sigmoid colon, it is appropriate to evaluate the amount of gas present in the daily CBCT images even if it is totally included in the reference planning structures.
Collapse
Affiliation(s)
- R Ricotti
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy.
| | - A Pella
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - A Mirandola
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - M R Fiore
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - A Chalaszczyk
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - C Paganelli
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - L Antonioli
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - A Vai
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - B Tagaste
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - G Belotti
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - M Rossi
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - M Ciocca
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - E Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - G Baroni
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy; Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
8
|
Yao W, Schweitzer N, Biswal N, Polf J, Farr J, Vujaskovic Z. Impact of bowel and rectum air on target dose with robustly optimized intensity-modulated proton therapy plans. Acta Oncol 2020; 59:1186-1192. [PMID: 32500780 DOI: 10.1080/0284186x.2020.1769859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Pelvic target dose from intensity-modulated proton therapy (IMPT) is sensitive to patient bowel motion. Robustly optimized plans in regard to bowel filling may improve the dose coverage in the treatment course. Our purpose is to investigate the effect of air volume in large and small bowel and rectum on target dose from IMPT plans. METHODS AND MATERIAL Data from 17 cancer patients (11 prostate, 3 gynecologic, 2 colon, and 1 embryonal rhabdomyosarcoma) with planning CT (pCT) and weekly or biweekly scanned quality assurance CTs (QACTs; 82 QACT scans total) were studied. Air in bowels and rectum traversed by proton pencil beams was contoured. The robust treatment plan was made by using 3 CT sets: the pCT set and 2 virtual CT sets that were copies of pCT but in which the fillings of bowels and rectum were overridden to be either air or muscle. Each plan had 2-5 beams with a mean of 3 beams. Targets in the pCT were mapped to the QACTs by deformable image registration, and the dose in QACTs was calculated. Dose coverage (D99 and D95) and correlations between dose coverage and changes in air volume were analyzed. The significance of the correlation was analyzed by t test. RESULTS Mean changes of D99 in QACTs were within 3% of those in the pCT for all prostate and colon cases but >3% in 2 of the 3 gynecologic cases and in the embryonal rhabdomyosarcoma case. Of these three cases with mean change of D99 > 3%, air volume may be the main cause in 2. For the prostate cases, correlation coefficients were <0.7 between change in air volume and change in D99 and D95, because other anatomy changes also contributed to dose deviation. Correlation coefficients in the non-prostate cases were >0.9 between D99 change and rectum and between D95 change and small bowel, indicating a greater effect of the air volume on target dose. CONCLUSION The air volume may still have an important effect on target dose coverage in treatment plans using 3 CT sets, particularly when the air is traversed by multiple beams.
Collapse
Affiliation(s)
- Weiguang Yao
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Noah Schweitzer
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nrusingh Biswal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jerimy Polf
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan Farr
- Applications of Detectors and Accelerators to Medicine, Meyrin, Switzerland
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|