1
|
Ramiah D, Mmereki D. Remote radiotherapy treatment planning system: An efficiency tool for increasing patient flow in cancer treatment in South Africa. Ann Med Surg (Lond) 2024; 86:6355-6357. [PMID: 39359757 PMCID: PMC11444597 DOI: 10.1097/ms9.0000000000002537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/25/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Duvern Ramiah
- Division of Radiation Oncology, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Mmereki
- Division of Radiation Oncology, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Leech M, Abdalqader A, Alexander S, Anderson N, Barbosa B, Callens D, Chapman V, Coffey M, Cox M, Curic I, Dean J, Denney E, Kearney M, Leung VW, Mortsiefer M, Nirgianaki E, Povilaitis J, Strikou D, Thompson K, van den Bosch M, Velec M, Woodford K, Buijs M. The Radiation Therapist profession through the lens of new technology: A practice development paper based on the ESTRO Radiation Therapist Workshops. Tech Innov Patient Support Radiat Oncol 2024; 30:100243. [PMID: 38831996 PMCID: PMC11145757 DOI: 10.1016/j.tipsro.2024.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 06/05/2024] Open
Abstract
Technological advances in radiation therapy impact on the role and scope of practice of the radiation therapist. The European Society of Radiotherapy and Oncology (ESTRO) recently held two workshops on this topic and this position paper reflects the outcome of this workshop, which included radiation therapists from all global regions. Workflows, quality assurance, research, IGRT and ART as well as clinical decision making are the areas of radiation therapist practice that will be highly influenced by advancing technology in the near future. This position paper captures the opportunities that this will bring to the radiation therapist profession, to the practice of radiation therapy and ultimately to patient care.
Collapse
Affiliation(s)
- Michelle Leech
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
- Trinity St. James’s Cancer Institute, Dublin, Ireland
| | | | - Sophie Alexander
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Sutton, United Kingdom
| | - Nigel Anderson
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre - Austin Health, Heidelberg, Australia
| | - Barbara Barbosa
- Escola Internacional de Doutoramento, Universidad de Vigo, Spain
- Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto Research Center (CI-IPOP), Porto Comprehensive Cancer Center (Porto.CCC) & Rise@CI-IPOP (Health Research Network), Porto, Portugal
| | - Dylan Callens
- University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
- KU Leuven, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | | | - Mary Coffey
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
| | - Maya Cox
- Auckland City Hospital, Auckland, New Zealand
| | - Ilija Curic
- Radiosurgery and Stereotactic Radiotherapy Department, University Clinical Center of Serbia, Belgrade, Serbia
| | - Jenna Dean
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre - Austin Health, Heidelberg, Australia
| | | | - Maeve Kearney
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
- Trinity St. James’s Cancer Institute, Dublin, Ireland
| | - Vincent W.S. Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | | | | | - Justas Povilaitis
- The Hospital of Lithuanian University of Health Sciences Kauno klinikos, Kaunas, Lithuania
| | - Dimitra Strikou
- Radiation Oncology Unit, University and General Attikon Hospital, Athens, Greece
| | - Kenton Thompson
- Department of Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Michael Velec
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Katrina Woodford
- Department of Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Monica Buijs
- InHolland Haarlem, University of Applied Science, Haarlem, the Netherlands
| |
Collapse
|
3
|
Beckert R, Schiff JP, Morris E, Samson P, Kim H, Laugeman E. The impact of an Advanced Practice Radiation Therapist contouring for a CBCT-based adaptive radiotherapy program. Tech Innov Patient Support Radiat Oncol 2024; 30:100242. [PMID: 38495830 PMCID: PMC10940769 DOI: 10.1016/j.tipsro.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
We successfully implemented an APRT specializing in CBCT-guided online adaptive contouring. These data show statistical improvements in contouring time with APRT-led vs non-APRT led ART contouring, suggesting that an APRT specifically trained to manage the ART process may reduce physician workload and patient treatment time.
Collapse
Affiliation(s)
- Robbie Beckert
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| | - Joshua P Schiff
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| | - Eric Morris
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| | - Pamela Samson
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| | - Hyun Kim
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| | - Eric Laugeman
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| |
Collapse
|
4
|
Li W, Padayachee J, Navarro I, Winter J, Dang J, Raman S, Kong V, Berlin A, Catton C, Glicksman R, Malkov V, McPartlin A, Kataki K, Lindsay P, Chung P. Practice-based training strategy for therapist-driven prostate MR-Linac adaptive radiotherapy. Tech Innov Patient Support Radiat Oncol 2023; 27:100212. [PMID: 37265510 PMCID: PMC10230256 DOI: 10.1016/j.tipsro.2023.100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Purpose To develop a practice-based training strategy to transition from radiation oncologist to therapist-driven prostate MR-Linac adaptive radiotherapy. Methods and materials In phase 1, 7 therapists independently contoured the prostate and organs-at-risk on T2-weighted MR images from 11 previously treated MR-Linac prostate patients. Contours were evaluated quantitatively (i.e. Dice similarity coefficient [DSC] calculated against oncologist generated online contours) and qualitatively (i.e. oncologist using a 5-point Likert scale; a score ≥ 4 was deemed a pass, a 90% pass rate was required to proceed to the next phase). Phase 2 consisted of supervised online workflow with therapists required no intervention from the oncologist on 10 total cases to advance. Phase 3 involved unsupervised therapist-driven workflow, with offline support from oncologists prior to the next fraction. Results In phase 1, the mean DSC was 0.92 (range 0.85-0.97), and mean Likert score was 3.7 for the prostate. Five therapists did not attain a pass rate (3-5 cases with prostate contour score < 4), underwent follow-up one-on-one review, and performed contours on a further training set (n = 5). Each participant completed a median of 12 (range 10-13) cases in phase 2; of 82 cases, minor direction were required from the oncologist on 5 regarding target contouring. Radiation oncologists reviewed 179 treatment fractions in phase 3, and deemed 5 cases acceptable but with suggestions for next fraction; all other cases were accepted without suggestions. Conclusion A training stepwise program was developed and successfully implemented to enable a therapist-driven workflow for online prostate MR-Linac adaptive radiotherapy.
Collapse
Affiliation(s)
- Winnie Li
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jerusha Padayachee
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Inmaculada Navarro
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Jeff Winter
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jennifer Dang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Srinivas Raman
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Vickie Kong
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Berlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Charles Catton
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Rachel Glicksman
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Victor Malkov
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Andrew McPartlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Kaushik Kataki
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Patricia Lindsay
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Peter Chung
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Kosydar S, Woodfin MW, Halasz LM, Apisarnthanarax S, Rengan R, Lo SS. The Impact of COVID-19 on US Radiation Oncology Residents. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2022; 37:1525-1531. [PMID: 33694133 PMCID: PMC7946574 DOI: 10.1007/s13187-021-01993-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The purpose of our study is to assess the impact of COVID-19 on the clinical responsibilities, training, and wellness of US radiation oncology residents. An anonymous cross-sectional survey was sent to all 91 radiation oncology residency programs in the USA. The survey included questions related to demographics, changes in clinical duties and training, job prospects, and wellness indicators. Univariate and multivariate logistic regression analyses were used to evaluate factors associated with residents endorsing high satisfaction with their departments' response to COVID-19. A total of 96 residents completed the survey from 67 US radiation oncology programs. In the multivariate logistic regression model, remote contouring (OR: 3.91 (95% CI: 1.11, 13.80), p = 0.03) and belief that one will be adequately trained to independently practice after completing residency (OR: 4.68 (1.12, 19.47), p = 0.03) were significantly associated with high resident satisfaction with their department's response to COVID-19. Most residents indicated that hypofractionation was encouraged to a greater extent (n = 79, 82.3%), patients were triaged by disease risk (n = 67, 69.8%), and most agreed/strongly agreed that they have been provided with adequate personal protective equipment (PPE) (n = 85, 88.5%). The COVID-19 pandemic has affected the training and wellness of radiation oncology residents. Our analysis suggests that radiation oncology programs might increase resident satisfaction with their department's response to COVID-19 by enabling remote contouring and working with residents to identity and remedy possible concerns regarding their ability to independently practice post residency.
Collapse
Affiliation(s)
- Samuel Kosydar
- School of Medicine, University of Washington, Seattle, WA, USA
| | | | - Lia M Halasz
- School of Medicine, University of Washington, Seattle, WA, USA
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Smith Apisarnthanarax
- School of Medicine, University of Washington, Seattle, WA, USA
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Ramesh Rengan
- School of Medicine, University of Washington, Seattle, WA, USA
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Simon S Lo
- School of Medicine, University of Washington, Seattle, WA, USA.
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Joyce E, Jackson M, Skok J, Peet B, McNair HA. Images and images: Current roles of therapeutic radiographers. Radiography (Lond) 2022; 28:1093-1100. [PMID: 36054937 DOI: 10.1016/j.radi.2022.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Therapeutic radiography is a small profession and has adapted in response to advanced techniques. An increase in on-line adaptive MRI-guided radiotherapy (MRIgRT) will require role extension for therapeutic radiographers (TRs). This study will investigate the current role description for TRs and the activities they currently undertake with regards to MRIgRT. METHOD A training needs analysis was used to ask TRs about their current roles and responsibilities and essential skills required for MRIgRT. For the purposes of this paper, the authors present the results from the demographics of the individual, their current job title with roles and responsibilities, and experience with decision making and image assessment. Descriptive statistics was used to analyse the data. RESULTS 261 responses were received (n = 261). Only 28% of job titles listed contained the protected title of 'therapeutic radiographer'. Advanced clinical practice roles were expressed by participants indicating that if a service need is presented, emerging roles will be created. Variation existed across the standardised roles of TRs and this discrepancy could present challenges when training for MRIgRT. TRs are pivotal in image verification and recognition on a standard linac, and skills developed there can be transferred to MRIgRT. Decision making is crucial for adaptive techniques and there are many skills within their current scope of practice that are indispensable for the MRIgRT. CONCLUSION It has been demonstrated that TRs have a range of roles that cover vast areas of the oncology pathway and so it is important that TRs are recognised so the pivotal role they play is understood by all. TRs have extensive soft-tissue IGRT knowledge and experience, aiding the evolution of decision-making skills and application of off-protocol judgments, the basis of MRIgRT. IMPLICATIONS FOR PRACTICE Role development and changes in education for therapeutic radiographers.
Collapse
Affiliation(s)
- E Joyce
- Royal Marsden NHS Foundation Trust, UK
| | - M Jackson
- St George's University of London, UK
| | - J Skok
- St George's University of London, UK
| | - B Peet
- Royal Marsden NHS Foundation Trust, UK
| | - H A McNair
- Royal Marsden NHS Foundation Trust, UK; Institute of Cancer Research, UK.
| |
Collapse
|
7
|
Shepherd M, Graham S, Ward A, Zwart L, Cai B, Shelley C, Booth J. Pathway for radiation therapists online advanced adapter training and credentialing. Tech Innov Patient Support Radiat Oncol 2021; 20:54-60. [PMID: 34917781 PMCID: PMC8665404 DOI: 10.1016/j.tipsro.2021.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Online Adaptive Radiation Therapy (oART) provides a solution to account for daily patient variations, but wide spread implementation is hindered by human resources and training. Physicians can mentor Radiation Therapists (RTTs) through traditional tasks such as contouring and plan approval. With evidence-based credentialing activities, decision support aids and ‘on-call’ caveats, RTTs can lead the oART workflow and a ‘Clinician-Lite’ approach. Compliance with legislative, regulatory and medico-legal governing bodies can be addressed through post-graduate study, advanced practice pathways, exemptions and delegation of task.
Online adaptive radiotherapy (oART) is an emerging advanced treatment option for cancer patients worldwide. Current oART practices using magnetic resonance (MR) and cone beam computed tomography (CBCT) based imaging are resource intensive and require physician presence, which is a barrier to widespread implementation. Global evidence demonstrates Radiation Therapists (RTTs) can lead the oART workflow with decision support tools and on ‘on-call’ caveats in a ‘clinician-lite’ approach without significantly compromising on treatment accuracy, speed or patient outcomes. With careful consideration of jurisdictional regulations and guidance from the multi-disciplinary team, RTTs can elevate beyond traditional scopes of practice. By implementing robust and evidence-based credentialing activities, they enable service sustainability and expand the real-world gains of adaptive radiotherapy to a greater number of cancer patients worldwide. This work summarises the evidence for RTT-led oART treatments and proposes a pathway for training and credentialing.
Collapse
Affiliation(s)
- Meegan Shepherd
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd, St Leonard, NSW 2065, Australia
| | - Siobhan Graham
- Queen's Hospital, BHRUT NHS Trust, Rom Valley Way, Romford RM1 0AG, UK
| | - Amy Ward
- Queen's Hospital, BHRUT NHS Trust, Rom Valley Way, Romford RM1 0AG, UK
| | - Lissane Zwart
- Medisch Spectrum Twente (MST), Koningstraat 1, 7512 KZ Enschede, Netherlands
| | - Bin Cai
- UT Southwestern Medical Center, Harry Hines Blvd, Dallas, TX 75390, USA
| | | | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd, St Leonard, NSW 2065, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2004, Australia
| |
Collapse
|
8
|
Yock AD, Ahmed M, Ayala-Peacock D, Chakravarthy AB, Price M. Initial analysis of the dosimetric benefit and clinical resource cost of CBCT-based online adaptive radiotherapy for patients with cancers of the cervix or rectum. J Appl Clin Med Phys 2021; 22:210-221. [PMID: 34529332 PMCID: PMC8504593 DOI: 10.1002/acm2.13425] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose This provides a benchmark of dosimetric benefit and clinical cost of cone‐beam CT‐based online adaptive radiotherapy (ART) technology for cervical and rectal cancer patients. Methods An emulator of a CBCT‐based online ART system was used to simulate more than 300 treatments for 13 cervical and 15 rectal cancer patients. CBCT images were used to generate adaptive replans. To measure clinical resource cost, the six phases of the workflow were timed. To evaluate the dosimetric benefit, changes in dosimetric values were assessed. These included minimum dose (Dmin) and volume receiving 95% of prescription (V95%) for the planning target volume (PTV) and the clinical target volume (CTV), and maximum 2 cc's (D2cc) of the bladder, bowel, rectum, and sigmoid colon. Results The average duration of the workflow was 24.4 and 9.2 min for cervical and rectal cancer patients, respectively. A large proportion of time was dedicated to editing target contours (13.1 and 2.7 min, respectively). For cervical cancer patients, the replan changed the Dmin to the PTVs and CTVs for each fraction 0.25 and 0.25 Gy, respectively. The replan changed the V95% by 9.2 and 7.9%. The D2cc to the bladder, bowel, rectum, and sigmoid colon for each fraction changed −0.02, −0.08, −0.07, and −0.04 Gy, respectively. For rectal cancer patients, the replan changed the Dmin to the PTVs and CTVs for each fraction of 0.20 and 0.24 Gy, respectively. The replan changed the V95% by 4.1 and 1.5%. The D2cc to the bladder and bowel for each fraction changed 0.02 and −0.02 Gy, respectively. Conclusions Dosimetric benefits can be achieved with CBCT‐based online ART that is amenable to conventional appointment slots. The clinical significance of these benefits remains to be determined. Managing contours was the primary factor affecting the total duration and is imperative for safe and effective adaptive radiotherapy.
Collapse
Affiliation(s)
- Adam D Yock
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mahmoud Ahmed
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Diandra Ayala-Peacock
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - A Bapsi Chakravarthy
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael Price
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiation Oncology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
9
|
Knutson NC, Kavanaugh JA, Li HH, Zoberi JE, Zhao T, Green O, Rodriguez V, Sun B, Reynoso FJ, Price AT, Prusator MT, Kim T, Cai B, Hugo GD. Radiation oncology physics coverage during the COVID-19 pandemic: Successes and lessons learned. J Appl Clin Med Phys 2021; 22:4-7. [PMID: 33742538 PMCID: PMC7984470 DOI: 10.1002/acm2.13225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nels C Knutson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James A Kavanaugh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - H Harold Li
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jacqueline E Zoberi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Olga Green
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vivian Rodriguez
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baozhou Sun
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Francisco J Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alex T Price
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael T Prusator
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Taeho Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bin Cai
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Geoffrey D Hugo
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
10
|
Glide-Hurst CK, Lee P, Yock AD, Olsen JR, Cao M, Siddiqui F, Parker W, Doemer A, Rong Y, Kishan AU, Benedict SH, Li XA, Erickson BA, Sohn JW, Xiao Y, Wuthrick E. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int J Radiat Oncol Biol Phys 2020; 109:1054-1075. [PMID: 33470210 DOI: 10.1016/j.ijrobp.2020.10.021] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
The integration of adaptive radiation therapy (ART), or modifying the treatment plan during the treatment course, is becoming more widely available in clinical practice. ART offers strong potential for minimizing treatment-related toxicity while escalating or de-escalating target doses based on the dose to organs at risk. Yet, ART workflows add complexity into the radiation therapy planning and delivery process that may introduce additional uncertainties. This work sought to review presently available ART workflows and technological considerations such as image quality, deformable image registration, and dose accumulation. Quality assurance considerations for ART components and minimum recommendations are described. Personnel and workflow efficiency recommendations are provided, as is a summary of currently available clinical evidence supporting the implementation of ART. Finally, to guide future clinical trial protocols, an example ART physician directive and a physics template following standard NRG Oncology protocol is provided.
Collapse
Affiliation(s)
- Carri K Glide-Hurst
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Percy Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam D Yock
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey R Olsen
- Department of Radiation Oncology, University of Colorado- Denver, Denver, Colorado
| | - Minsong Cao
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - William Parker
- Department of Radiation Oncology, McGill University, Montreal, Quebec, Canada
| | - Anthony Doemer
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - Yi Rong
- Department of Radiation Oncology, University of California-Davis, Sacramento, California
| | - Amar U Kishan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Stanley H Benedict
- Department of Radiation Oncology, University of California-Davis, Sacramento, California
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth A Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jason W Sohn
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evan Wuthrick
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|