1
|
Das S, Prakash S, Koutu V, Rawat D, Chauhan S, Vasudevan S, Pasricha R, Gupta M, Kharade V. Four-dimensional computed tomography scan-based evaluation of intrinsic lung tumour motion and hysteresis using tumour centroid: Implication towards high-precision radiotherapy for lung cancer. Cancer Radiother 2025; 29:104624. [PMID: 40378624 DOI: 10.1016/j.canrad.2025.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/29/2024] [Accepted: 04/03/2025] [Indexed: 05/19/2025]
Abstract
PURPOSE Predicting the target position accurately based on an external surrogate with quantifiable correlation is important for high-precision radiation in lung cancer. This study aimed to quantify the amount of movement of the lung tumours and understand the pattern of hysteresis based on four-dimensional (4D) computed tomography (CT) imaging compared to the chest wall movement. MATERIALS AND METHODS From the radiotherapy four-dimensional computed tomography (4DCT) scan images, a total of 43 lung tumours from 21 patients were contoured, and movement in mediolateral (X), anteroposterior (Z), and superoinferior (Y) directions were calculated based on tumour centroid of the smart breath cine mode of the 4DCT scan. The tumour motion in different phases of the breathing cycle was calculated, and the deformation of the shape was illustrated using a 3D slicer. The nonlinear trajectory of the tumour motion resulting in tumour hysteresis was computed. RESULT Tumour motion calculated from the 4DCT images in X, Z, and Y directions were 0.21±0.22 (range: 0.01-1.20), 0.18±0.15 (range: 0.01-0.49), 0.77±0.33 (range: 0.24-1.80) respectively. The mean three-dimensional radial motion vector was 0.85±0.31 (range: 0.21-1.81). No significant correlation between the magnitude of chest wall movement and three-dimensional radial vector was observed. Hysteresis in XZ plane was calculated to be 0.56±0.61cm2 (range: 0.01-3.03). A statistically significant difference in hysteresis was observed between central and peripheral tumours (0.19±0.31cm2 vs. 0.94±0.63cm2, P<0.01). CONCLUSION 4DCT-based tumour motion estimation is a feasible method, and the predictability of tumour motion by chest wall movement was not optimal. The movement was more for peripheral tumours compared to centrally located lesions. Location relative to midline was the most critical predictor of hysteresis. Considerable shape deformation in different phases of respiration was observed, and peripheral tumours had more than two times the motion during the breathing cycle compared to the central tumours.
Collapse
Affiliation(s)
- Saikat Das
- Radiotherapy Department, All India Institute of Medical Science, Bhopal, India.
| | - Suriya Prakash
- Radiotherapy Department, All India Institute of Medical Science, Bhopal, India
| | - Vaibhav Koutu
- Radiotherapy Department, All India Institute of Medical Science, Bhopal, India
| | - Deepak Rawat
- Radiotherapy Department, All India Institute of Medical Science, Bhopal, India
| | - Sunil Chauhan
- Physiology Department, All India Institute of Medical Science, Bhopal, India
| | | | - Rajesh Pasricha
- Radiotherapy Department, All India Institute of Medical Science, Bhopal, India
| | - Manish Gupta
- Radiotherapy Department, All India Institute of Medical Science, Bhopal, India
| | - Vipin Kharade
- Radiotherapy Department, All India Institute of Medical Science, Bhopal, India
| |
Collapse
|
2
|
Belikhin MA, Chernyaev AP, Pryanichnikov AA. High-speed bioimpedance-based gating system for radiotherapy: Prototype and proof of principle. J Appl Clin Med Phys 2024; 25:e14491. [PMID: 39194180 PMCID: PMC11633351 DOI: 10.1002/acm2.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
PURPOSE To investigate a novel bioimpedance-based respiratory gating system (BRGS) designed for external beam radiotherapy and to evaluate its technical characteristics in comparison with existing similar systems. MATERIALS AND METHODS The BRGS was tested on three healthy volunteers in free breathing and breath-hold patterns under laboratory conditions. Its parameters, including the time delay (TD) between the actual impedance change and the gating signal, temperature drift, root mean square (RMS) noise, and signal-to-noise ratio (SNR), were measured and analyzed. RESULTS The gate-on TD and the gate-off TD were found to be 9.0 ± 2.0 ms [mean ± standard deviation (M ± SD)] and 7.2 ± 1.3 ms, respectively. The temperature drift of the BRGS output signal was 0.02 Ω after 30 min of operation. RMS noise averaged 0.14 ± 0.05 Ω (M ± SD) for all subjects and varied from 0.08 to 0.20 Ω with repeated measurements. A significant difference in SNR (p < 0.001) was observed between subjects, ranging from 4 to 15. CONCLUSION The evaluated bioimpedance-based gating system showed a high performance in real-time respiratory monitoring and may potentially be used as an external surrogate guidance for respiratory-gated external beam radiotherapy. Direct comparison with commercially available systems, 4D correlation studies, and expansion of the patient sample are goals for future preclinical studies.
Collapse
Affiliation(s)
| | | | - Alexander A. Pryanichnikov
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
3
|
Fu Y, Zhang P, Fan Q, Cai W, Pham H, Rimner A, Cuaron J, Cervino L, Moran JM, Li T, Li X. Deep learning-based target decomposition for markerless lung tumor tracking in radiotherapy. Med Phys 2024; 51:4271-4282. [PMID: 38507259 DOI: 10.1002/mp.17039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND In radiotherapy, real-time tumor tracking can verify tumor position during beam delivery, guide the radiation beam to target the tumor, and reduce the chance of a geometric miss. Markerless kV x-ray image-based tumor tracking is challenging due to the low tumor visibility caused by tumor-obscuring structures. Developing a new method to enhance tumor visibility for real-time tumor tracking is essential. PURPOSE To introduce a novel method for markerless kV image-based tracking of lung tumors via deep learning-based target decomposition. METHODS We utilized a conditional Generative Adversarial Network (cGAN), known as Pix2Pix, to build a patient-specific model and generate the synthetic decomposed target image (sDTI) to enhance tumor visibility on the real-time kV projection images acquired by the onboard kV imager equipped on modern linear accelerators. We used 4DCT simulation images to generate the digitally reconstructed radiograph (DRR) and DTI image pairs for model training. We augmented the training dataset by randomly shifting the 4DCT in the superior-inferior, anterior-posterior, and left-right directions during the DRR and DTI generation process. We performed real-time 2D tumor tracking via template matching between the DTI generated from the CT simulation and the sDTI generated from the real-time kV projection images. We validated the proposed method using nine patients' datasets with implanted beacons near the tumor. RESULTS The sDTI can effectively improve the image contrast around the lung tumors on the kV projection images for the nine patients. With the beacon motion as ground truth, the tracking errors were on average 0.8 ± 0.7 mm in the superior-inferior (SI) direction and 0.9 ± 0.8 mm in the in-plane left-right (IPLR) direction. The percentage of successful tracking, defined as a tracking error less than 2 mm in the SI direction, is 92.2% on the 4312 tested images. The patient-specific model took approximately 12 h to train. During testing, it took approximately 35 ms to generate one sDTI, and 13 ms to perform the tumor tracking using template matching. CONCLUSIONS Our method offers the potential solution for nearly real-time markerless lung tumor tracking. It achieved a high level of accuracy and an impressive tracking rate. Further development of 3D lung tumor tracking is warranted.
Collapse
Affiliation(s)
- Yabo Fu
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Pengpeng Zhang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Qiyong Fan
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Weixing Cai
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Hai Pham
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - John Cuaron
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Laura Cervino
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Tianfang Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Xiang Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Manabe Y, Shiinoki T, Fujimoto K, Ueda K, Karita M, Ono T, Kajima M, Tanaka H. Intra- and inter-fractional variations of tumors with fiducial markers measured using respiratory-correlated computed tomography images for respiratory gated lung stereotactic body radiation therapy. J Appl Clin Med Phys 2024; 25:e14280. [PMID: 38252745 PMCID: PMC11163493 DOI: 10.1002/acm2.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 10/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
PURPOSE This study evaluated the intra- and inter-fractional variation of tumors with fiducial markers (FMs), relative to the tumor-FM distance, to establish how close an FM should be inserted for respiratory-gated stereotactic body radiation therapy (RG-SBRT). METHODS Forty-five lung tumors treated with RG-SBRT were enrolled. End-expiratory computed tomography (CT) (CTplan) and four-dimensional-CT (4D-CT) scans were obtained for planning. End-expiratory CT (CTfr) scanning was performed before each fraction. The FMs were divided into two groups based on the median tumor-FM distance in the CTplan (Dp). For the intra-fractional variation, the correlations between the corresponding tumor and FM intra-fractional motions, defined as the centroid coordinates of those in each 0-90% phase, with the 50% phase of 4D-CT as the origin, were calculated in the left-right, anterior-posterior, and superior-inferior directions. Furthermore, the maximum difference in the tumor-FM distance in each phase of 4D-CT scan, based on those in the 50% phase of 4D-CT scan (Dmax), was obtained. Inter-fractional variation was defined as the maximum distance between the tumors in CTplan and CTfr, when the CT scans were fused based on each FM or vertebra. RESULTS The median Dp was 26.1 mm. While FM intra-fractional motions were significantly and strongly correlated with the tumor intra-fractional motions in only anterior-posterior and superior-inferior directions for the Dp > 26 mm group, they were significantly and strongly correlated in all directions for the Dp ≤ 26 mm group. In all directions, Dmax values of the Dp ≤ 26 mm group were lower than those of the Dp > 26 mm group. The inter-fractional variations based on the Dp ≤ 26 mm were smaller than those on the Dp > 26 mm and on the vertebra in all directions. CONCLUSIONS Regarding intra- and inter-fractional variation, FMs for Dp ≤ 26 mm can increase the accuracy for RG-SBRT.
Collapse
Affiliation(s)
- Yuki Manabe
- Department of Radiation OncologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Takehiro Shiinoki
- Department of Radiation OncologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Koya Fujimoto
- Department of Radiation OncologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Kazushi Ueda
- Department of Radiation OncologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Masako Karita
- Department of Radiation OncologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Taiki Ono
- Department of Radiation OncologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Miki Kajima
- Department of Radiation OncologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Hidekazu Tanaka
- Department of Radiation OncologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| |
Collapse
|
5
|
Meng YJ, Mankuzhy NP, Chawla M, Lee RP, Yorke ED, Zhang Z, Gelb E, Lim SB, Cuaron JJ, Wu AJ, Simone CB, Gelblum DY, Lovelock DM, Harris W, Rimner A. A Prospective Study on Deep Inspiration Breath Hold Thoracic Radiation Therapy Guided by Bronchoscopically Implanted Electromagnetic Transponders. Cancers (Basel) 2024; 16:1534. [PMID: 38672616 PMCID: PMC11048337 DOI: 10.3390/cancers16081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Electromagnetic transponders bronchoscopically implanted near the tumor can be used to monitor deep inspiration breath hold (DIBH) for thoracic radiation therapy (RT). The feasibility and safety of this approach require further study. METHODS We enrolled patients with primary lung cancer or lung metastases. Three transponders were implanted near the tumor, followed by simulation with DIBH, free breathing, and 4D-CT as backup. The initial gating window for treatment was ±5 mm; in a second cohort, the window was incrementally reduced to determine the smallest feasible gating window. The primary endpoint was feasibility, defined as completion of RT using transponder-guided DIBH. Patients were followed for assessment of transponder- and RT-related toxicity. RESULTS We enrolled 48 patients (35 with primary lung cancer and 13 with lung metastases). The median distance of transponders to tumor was 1.6 cm (IQR 0.6-2.8 cm). RT delivery ranged from 3 to 35 fractions. Transponder-guided DIBH was feasible in all but two patients (96% feasible), where it failed because the distance between the transponders and the antenna was >19 cm. Among the remaining 46 patients, 6 were treated prone to keep the transponders within 19 cm of the antenna, and 40 were treated supine. The smallest feasible gating window was identified as ±3 mm. Thirty-nine (85%) patients completed one year of follow-up. Toxicities at least possibly related to transponders or the implantation procedure were grade 2 in six patients (six incidences, cough and hemoptysis), grade 3 in three patients (five incidences, cough, dyspnea, pneumonia, and supraventricular tachycardia), and grade 4 pneumonia in one patient (occurring a few days after implantation but recovered fully and completed RT). Toxicities at least possibly related to RT were grade 2 in 18 patients (41 incidences, most commonly cough, fatigue, and pneumonitis) and grade 3 in four patients (seven incidences, most commonly pneumonia), and no patients had grade 4 or higher toxicity. CONCLUSIONS Bronchoscopically implanted electromagnetic transponder-guided DIBH lung RT is feasible and safe, allowing for precise tumor targeting and reduced normal tissue exposure. Transponder-antenna distance was the most common challenge due to a limited antenna range, which could sometimes be circumvented by prone positioning.
Collapse
Affiliation(s)
- Yuzhong Jeff Meng
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Nikhil P. Mankuzhy
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Mohit Chawla
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (M.C.); (R.P.L.)
| | - Robert P. Lee
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (M.C.); (R.P.L.)
| | - Ellen D. Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Zhigang Zhang
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Emily Gelb
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Seng Boh Lim
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - John J. Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
- New York Proton Center, New York, NY 10035, USA; (C.B.S.II)
| | - Daphna Y. Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Dale Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Wendy Harris
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
- Department of Radiation Oncology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106 Freiburg, Germany
| |
Collapse
|
6
|
Tanaka H, Ono T, Ueda K, Karita M, Manabe Y, Kajima M, Sera T, Fujimoto K, Yuasa Y, Shiinoki T. Deep inspiration breath hold real-time tumor-tracking radiation therapy (DBRT) as a novel stereotactic body radiation therapy approach for lung tumors. Sci Rep 2024; 14:2400. [PMID: 38287139 PMCID: PMC10825222 DOI: 10.1038/s41598-024-53020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Radiotherapy with deep inspiration breath hold (DIBH) reduces doses to the lungs and organs at risk. The stability of breath holding and reproducibility of tumor location are higher during expiration than during inspiration; therefore, we developed an irradiation method combining DIBH and real-time tumor-tracking radiotherapy (RTRT) (DBRT). Nine patients were enrolled in this study. Fiducial markers were placed near tumors using bronchoscopy. Treatment planning computed tomography (CT) was performed thrice during DIBH, assisted by spirometer-based device. Each CT scan was fused using fiducial markers. Gross tumor volume (GTV) was contoured for each dataset and summed to create GTVsum; adding a 5-mm margin around GTVsum generated the planning target volume. The prescribed dose was mainly 42 Gy in four fractions. The treatment plan was created using DIBH CT (DBRT-plan), with a similar treatment plan created for expiratory CT for cases for which DBRT could not be performed (conv-plan). Vx defined as the volume of the lung received x Gy, and the mean lung dose, V20, V10, and V5 were evaluated. DBRT was completed in all patients. Mean dose, V20, and V10 were significantly lower in the DBRT-plan than in the conv-plan (all p = 0.003). Mean rates of decrease for mean dose, V20, and V10 were 14.0%, 27.6%, and 19.1%, respectively. No significant difference was observed in V5. We developed DBRT, a stereotactic body radiation therapy performed with the DIBH technique; it combines a spirometer-based breath-hold support system with an RTRT system. All patients who underwent DBRT completed the procedure without any technical or mechanical complications. This is a promising methodology that may significantly reduce lung doses.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan.
| | - Taiki Ono
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Kazushi Ueda
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Masako Karita
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Yuki Manabe
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Miki Kajima
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Tatsuhiro Sera
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Koya Fujimoto
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Yuki Yuasa
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| |
Collapse
|
7
|
Sakurai Y, Ambo S, Nakamura M, Iramina H, Iizuka Y, Mitsuyoshi T, Matsuo Y, Mizowaki T. Development of a prediction model for target positioning by using diaphragm waveforms extracted from CBCT projection images. J Appl Clin Med Phys 2023; 24:e14112. [PMID: 37543990 PMCID: PMC10647967 DOI: 10.1002/acm2.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
PURPOSE To develop a prediction model (PM) for target positioning using diaphragm waveforms extracted from CBCT projection images. METHODS Nineteen patients with lung cancer underwent orthogonal rotational kV x-ray imaging lasting 70 s. IR markers placed on their abdominal surfaces and an implanted gold marker located nearest to the tumor were considered as external surrogates and the target, respectively. Four different types of regression-based PM were trained using surrogate motions and target positions for the first 60 s, as follows: Scenario A: Based on the clinical scenario, 3D target positions extracted from projection images were used as they were (PMCL ). Scenario B: The short-arc 4D-CBCT waveform exhibiting eight target positions was obtained by averaging the target positions in Scenario A. The waveform was repeated for 60 s (W4D-CBCT ) by adapting to the respiratory phase of the external surrogate. W4D-CBCT was used as the target positions (PM4D-CBCT ). Scenario C: The Amsterdam Shroud (AS) signal, which depicted the diaphragm motion in the superior-inferior direction was extracted from the orthogonal projection images. The amplitude and phase of W4D-CBCT were corrected based on the AS signal. The AS-corrected W4D-CBCT was used as the target positions (PMAS-4D-CBCT ). Scenario D: The AS signal was extracted from single projection images. Other processes were the same as in Scenario C. The prediction errors were calculated for the remaining 10 s. RESULTS The 3D prediction error within 3 mm was 77.3% for PM4D-CBCT , which was 12.8% lower than that for PMCL . Using the diaphragm waveforms, the percentage of errors within 3 mm improved by approximately 7% to 84.0%-85.3% for PMAS-4D-CBCT in Scenarios C and D, respectively. Statistically significant differences were observed between the prediction errors of PM4D-CBCT and PMAS-4D-CBCT . CONCLUSION PMAS-4D-CBCT outperformed PM4D-CBCT , proving the efficacy of the AS signal-based correction. PMAS-4D-CBCT would make it possible to predict target positions from 4D-CBCT images without gold markers.
Collapse
Affiliation(s)
- Yuta Sakurai
- Department of Advanced Medical Physics, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Shintaro Ambo
- Department of Advanced Medical Physics, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiraku Iramina
- Department of Radiation Oncology and Image‐Applied Therapy, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yusuke Iizuka
- Department of Radiation Oncology and Image‐Applied Therapy, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Radiation OncologyShizuoka City Shizuoka HospitalShizuokaJapan
| | - Takamasa Mitsuyoshi
- Department of Radiation OncologyKobe City Medical Center General HospitalHyogoJapan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image‐Applied Therapy, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image‐Applied Therapy, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
8
|
Harris W, Yorke E, Li H, Czmielewski C, Chawla M, Lee RP, Hotca-Cho A, McKnight D, Rimner A, Lovelock DM. Can bronchoscopically implanted anchored electromagnetic transponders be used to monitor tumor position and lung inflation during deep inspiration breath-hold lung radiotherapy? Med Phys 2022; 49:2621-2630. [PMID: 35192211 PMCID: PMC9007909 DOI: 10.1002/mp.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate the efficacy of using bronchoscopically implanted anchored electromagnetic transponders (EMTs) as surrogates for 1) tumor position and 2) repeatability of lung inflation during deep-inspiration breath-hold (DIBH) lung radiotherapy. METHODS 41 patients treated with either hypofractionated (HF) or conventional (CF) lung radiotherapy on an IRB approved prospective protocol using coached DIBH were evaluated for this study. Three anchored EMTs were bronchoscopically implanted into small airways near or within the tumor. DIBH treatment was gated by tracking the EMT positions. Breath-hold cone-beam-CTs (CBCTs) were acquired prior to every HF treatment or weekly for CF patients. Retrospectively, rigid registrations between each CBCT and the breath-hold planning CT were performed to match to 1) spine 2) EMTs and 3) tumor. Absolute differences in registration between EMTs and spine were analyzed to determine surrogacy of EMTs for lung inflation. Differences in registration between EMTs and tumor were analyzed to determine surrogacy of EMTs for tumor position. The stability of the EMTs was evaluated by analyzing the difference between inter-EMT displacements recorded at treatment from that of the plan for the CF patients, as well as the geometric residual (GR) recorded at the time of treatment. RESULTS 219 CBCTs were analyzed. The average differences between EMT centroid and spine registration among all CBCTs were 0.45±0.42cm, 0.29±0.28cm, and 0.18±0.15cm in superior-inferior (SI), anterior-posterior (AP) and lateral directions, respectively. Only 59% of CBCTs had differences in registration <0.5cm for EMT centroid compared to spine, indicating that lung inflation is not reproducible from simulation to treatment. The average differences between EMT centroid and tumor registration among all CBCTs were 0.13±0.13cm, 0.14±0.13cm and 0.12±0.12cm in SI, AP and lateral directions, respectively. 95% of CBCTs resulted in <0.5cm change between EMT centroid and tumor registration, indicating that EMT positions correspond well with tumor position during treatments. Six out of the 7 recorded CF patients had average differences in inter-EMT displacements to be ≤0.26cm and average GR ≤0.22cm, indicating that the EMTs are stable throughout treatment. CONCLUSIONS Bronchoscopically implanted anchored EMTs are good surrogates for tumor position and are reliable for maintaining tumor position when tracked during DIBH treatment, as long as the tumor size and shape are stable. Large differences in registration between EMTs and spine for many treatments suggest that lung inflation achieved at simulation is often not reproduced. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wendy Harris
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Henry Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Christian Czmielewski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Mohit Chawla
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Robert P Lee
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Alexandra Hotca-Cho
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Dominique McKnight
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - D Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|