1
|
Léost F, Potiron V, Lepareur N, Rbah-Vidal L, Garcion E, Dumas F, Chérel M, Tripier R, Barbet J. ["Optimizing Imaging and Dose-Response in Radiotherapies" XVIth workshop organised by the Cancéropôle Grand-Ouest's "Vectorisation, Imagerie, Radiothérapies" network - 4-7 October 2023, Erquy, France]. Bull Cancer 2025; 112:435-445. [PMID: 39988486 DOI: 10.1016/j.bulcan.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
The sixteenth edition of the international workshop organized by "Tumour Targeting & Radiotherapies" network of the Cancéropôle Grand-Ouest focused on the problem of optimizing the dose-effect relationships of internal and external radiotherapy, using a variety of innovations from different disciplines, such as technological and imaging advances, vectorization, artificial intelligence, modeling and combined therapies.
Collapse
Affiliation(s)
- Françoise Léost
- Cancéropôle Grand-Ouest, IRS-UN, 8, quai Moncousu, 44007 Nantes cedex 1, France.
| | - Vincent Potiron
- Institut de cancérologie de l'Ouest, site de Saint-Herblain, Saint-Herblain, France; CNRS, US2B, UMR 6286, Nantes université, 44000 Nantes, France
| | - Nicolas Lepareur
- Inrae, Inserm, CLCC Eugène-Marquis, Institut Nutrition, Métabolismes et Cancer (NUMECAN), UMR_A 1341, UMR_S 1241, université de Rennes, Rennes, France
| | - Latifa Rbah-Vidal
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, université d'Angers, 44000 Nantes, France
| | - Emmanuel Garcion
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, Nantes université, 49000 Angers, France
| | - Florence Dumas
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, Nantes université, 49000 Angers, France
| | - Michel Chérel
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, université d'Angers, 44000 Nantes, France
| | - Raphaël Tripier
- UMR CNRS-UBO 6521 CEMCA, université de Brest, 6, avenue V.-Le-Gorgeu, 29200 Brest, France
| | | |
Collapse
|
2
|
Wang Y, Zhang Y, Huang C, Fu Q, Huang T. Impact of Ultra-High-Dose-Rate Irradiation on DNA: Single-Strand Breaks and Base Damage. Int J Mol Sci 2025; 26:1800. [PMID: 40076429 PMCID: PMC11899290 DOI: 10.3390/ijms26051800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Studying different types of DNA damage induced by ultra-high-dose-rate (UHDR) irradiation is essential for understanding the mechanism underlying the FLASH effect. pBR322 plasmid DNA was irradiated using an electron FLASH beam. The content of each subtype of plasmid DNA was measured via gel electrophoresis, and the extent of DNA double-strand breaks (DSBs) and single-strand breaks (SSBs) under UHDR and conventional-dose-rate irradiation (CONV) was quantitatively compared. Furthermore, by adding the endonucleases Nth and Fpg, the extent of base damage in the UHDR and CONV group was quantitatively analyzed. In addition, the effects of different plasmid concentrations on the damage degree were studied. The induction rates of SSBs (×10-3 SSB/Gy/molecule) under UHDR and CONV were 21.7 ± 0.4 and 25.8 ± 0.3, respectively. When treated with the Fpg and Nth enzymes, the base damage induction rates (×10-3 SSB/Gy/molecule) under UHDR and CONV irradiation were 43.3 ± 2.0 and 58.4 ± 4.5, respectively. Additionally, UHDR irradiation consistently reduced SSBs and base damage at both high and low plasmid concentrations, although the absolute level of DNA damage was still influenced by the plasmid concentration. UHDR has a significant effect on reducing SSBs and base damage when compared to CONV across plasmid concentrations.
Collapse
Affiliation(s)
| | | | | | - Qibin Fu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (Y.W.); (Y.Z.); (C.H.)
| | - Tuchen Huang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (Y.W.); (Y.Z.); (C.H.)
| |
Collapse
|
3
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
4
|
Scarmelotto A, Delprat V, Michiels C, Lucas S, Heuskin AC. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin Transl Radiat Oncol 2024; 49:100860. [PMID: 39381632 PMCID: PMC11458961 DOI: 10.1016/j.ctro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect, is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has already been demonstrated in several preclinical models, a complete mechanistic description explaining why tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the experimental evidence. A common point between many of these is the role of oxygen, which is described as a major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species (ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories, while proposing new mechanisms that could provide a complete description of the FLASH effect based on preclinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential biological implications.
Collapse
Affiliation(s)
- Andrea Scarmelotto
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Victor Delprat
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Ion Beam Application (IBA), Chemin du Cyclotron, 6, B-1348 Louvain-La-Neuve, Belgium
| | - Anne-Catherine Heuskin
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
5
|
Evin M, Koumeir C, Bongrand A, Delpon G, Haddad F, Mouchard Q, Potiron V, Saade G, Servagent N, Villoing D, Métivier V, Chiavassa S. Methodology for small animals targeted irradiations at conventional and ultra-high dose rates 65 MeV proton beam. Phys Med 2024; 120:103332. [PMID: 38518627 DOI: 10.1016/j.ejmp.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024] Open
Abstract
As part of translational research projects, mice may be irradiated on radiobiology platforms such as the one at the ARRONAX cyclotron. Generally, these platforms do not feature an integrated imaging system. Moreover, in the context of ultra-high dose-rate radiotherapy (FLASH-RT), treatment planning should consider potential changes in the beam characteristics and internal movements in the animal. A patient-like set-up and methodology has been implemented to ensure target coverage during conformal irradiations of the brain, lungs and intestines. In addition, respiratory cycle amplitudes were quantified by fluoroscopic acquisitions on a mouse, to ensure organ coverage and to assess the impact of respiration during FLASH-RT using the 4D digital phantom MOBY. Furthermore, beam incidence direction was studied from mice µCBCT and Monte Carlo simulations. Finally,in vivodosimetry with dose-rate independent radiochromic films (OC-1) and their LET dependency were investigated. The immobilization system ensures that the animal is held in a safe and suitable position. The geometrical evaluation of organ coverage, after the addition of the margins around the organs, was satisfactory. Moreover, no measured differences were found between CONV and FLASH beams enabling a single model of the beamline for all planning studies. Finally, the LET-dependency of the OC-1 film was determined and experimentally verified with phantoms, as well as the feasibility of using these filmsin vivoto validate the targeting. The methodology developed ensures accurate and reproducible preclinical irradiations in CONV and FLASH-RT without in-room image guidance in terms of positioning, dose calculation andin vivodosimetry.
Collapse
Affiliation(s)
- Manon Evin
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France.
| | - Charbel Koumeir
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France; GIP ARRONAX, Saint-Herblain, France
| | - Arthur Bongrand
- GIP ARRONAX, Saint-Herblain, France; Institut de Cancérologie de l'Ouest, site de Saint-Herblain, France
| | - Gregory Delpon
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France; Institut de Cancérologie de l'Ouest, site de Saint-Herblain, France
| | - Ferid Haddad
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France; GIP ARRONAX, Saint-Herblain, France
| | - Quentin Mouchard
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France
| | - Vincent Potiron
- Institut de Cancérologie de l'Ouest, site de Saint-Herblain, France; Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France
| | - Gaëlle Saade
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France
| | - Noël Servagent
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France
| | - Daphnée Villoing
- Institut de Cancérologie de l'Ouest, site de Saint-Herblain, France
| | - Vincent Métivier
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France
| | - Sophie Chiavassa
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France; Institut de Cancérologie de l'Ouest, site de Saint-Herblain, France
| |
Collapse
|
6
|
Wu X, Luo H, Wang Q, Du T, Chen Y, Tan M, Liu R, Liu Z, Sun S, Yang K, Tian J, Zhang Q. Examining the Occurrence of the FLASH Effect in Animal Models: A Systematic Review and Meta-Analysis of Ultra-High Dose Rate Proton or Carbon Ion Irradiation. Technol Cancer Res Treat 2024; 23:15330338241289990. [PMID: 39512217 PMCID: PMC11544673 DOI: 10.1177/15330338241289990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose: This systematic review and meta-analysis sought to assess whether ultra-high dose rate (UHDR) ion irradiations can induce the FLASH effect in animal models. Methods: A comprehensive search of the Web of Science, PubMed, and EMBASE databases was conducted from inception until March 20, 2023, to identify studies involving irradiated animals subjected to proton or carbon ion beams at varying dose rates. The research content should include various indicators that can reflect the effect and safety of radiation, such as survival, normal tissue toxicity, inflammatory response, tumor volume, etc Results: Compared to conventional dose rate (CONV) ion irradiations, UHDR ion irradiations can significantly improve mouse survival (HR 0.48, 95% CI 0.29 to 0.78, I2 = 0%) and maintain comparable tumor control. There was no significant impact of different dose rates on the survival of zebrafish embryos (SMD 0.11, 95% CI -0.31 to 0.53, I2 = 85%). Subgroup analysis showed that radiation dose was an important factor affecting the survival of zebrafish embryos. Achieving normal tissue sparing may require higher radiation dose under UHD.In mouse and zebrafish embryo models, normal tissue sparing did not always occur after UHDR ion irradiations. In addition, only a limited number of cytokines (CXCL1, IL-6, GM-CSF, G-CSF, HMGB1, and TGF-β) and immune cells (microglia and myeloid cells) showed differences at different dose rates. Conclusions: UHDR ion irradiation can achieve FLASH effect, but the reproducibility of normal tissue sparing remains a challenge. Compared to CONV irradiation, UHDR ion irradiations demonstrated equivalent or even superior tumor control.
Collapse
Affiliation(s)
- Xun Wu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Qian Wang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Tianqi Du
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Yanliang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Mingyu Tan
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- Graduate School, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100000, People's Republic of China
| |
Collapse
|
7
|
Metzkes-Ng J, Brack FE, Kroll F, Bernert C, Bock S, Bodenstein E, Brand M, Cowan TE, Gebhardt R, Hans S, Helbig U, Horst F, Jansen J, Kraft SD, Krause M, Leßmann E, Löck S, Pawelke J, Püschel T, Reimold M, Rehwald M, Richter C, Schlenvoigt HP, Schramm U, Schürer M, Seco J, Szabó ER, Umlandt MEP, Zeil K, Ziegler T, Beyreuther E. The DRESDEN PLATFORM is a research hub for ultra-high dose rate radiobiology. Sci Rep 2023; 13:20611. [PMID: 37996453 PMCID: PMC10667545 DOI: 10.1038/s41598-023-46873-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research. Here we present the DRESDEN PLATFORM, a research hub for ultra-high dose rate radiobiology. By uniting clinical and research accelerators with radiobiology infrastructure and know-how, the DRESDEN PLATFORM offers a unique environment for studying the FLASH effect. We introduce its experimental capabilities and demonstrate the platform's suitability for systematic investigation of FLASH by presenting results from a concerted in vivo radiobiology study with zebrafish embryos. The comparative pre-clinical study was conducted across one electron and two proton accelerator facilities, including an advanced laser-driven proton source applied for FLASH-relevant in vivo irradiations for the first time. The data show a protective effect of UHDR irradiation up to [Formula: see text] and suggests consistency of the protective effect even at escalated dose rates of [Formula: see text]. With the first clinical FLASH studies underway, research facilities like the DRESDEN PLATFORM, addressing the open questions surrounding FLASH, are essential to accelerate FLASH's translation into clinical practice.
Collapse
Affiliation(s)
| | | | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - René Gebhardt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Uwe Helbig
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Horst
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jeannette Jansen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Mechthild Krause
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | - Christian Richter
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joao Seco
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Emília Rita Szabó
- ELI ALPS, ELI-HU Non-Profit Ltd., Szeged, Hungary
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|